	Doc# MAS-2016-0015R01-TR-0007_section_8_5_editorial.DOC
	[image: C:\Users\grayv\Desktop\oneM2M-Logo.gif]

	

[bookmark: GSBox]
	[bookmark: _Toc338862360]CHANGE REQUEST

	Meeting:*
	MAS#21

	Source:*
	InterDigital

	Date:*
	2016-01-09

	Contact:*
	Catalina Mladin, InterDigital, Catalina.Mladin@InterDigital.com
Qing Li, InterDigital, Qing.Li@InterDigital.com

	Reason for Change/s:*
	

	CR against: Release*
	Rel-2

	CR against: WI*
	|X| Active WI-5
|_| MNT Maintenance / < Work Item number(optional)>
|_| STE Small Technical Enhancements / < Work Item number (optional)>
Only ONE of the above shall be ticked

	CR against: TS/TR*
	TR-0007 V.2.8.0

	Clauses/Sub Clauses*
	

	Type of change: *
	|X| Editorial change
|_| Bug Fix or Correction
|_| Change to existing feature or functionality
|_| New feature or functionality
Only ONE of the above shall be ticked

	Post Freeze checking:*
	This CR contains only essential changes and corrections? YES |_| NO |X|
This CR may break backwards compatibility with the last approved version of the TS? YES |_| NO |X|
This CR is a mirror CR? YES |_| if YES, please indicate the document number of the original CR: <Document Number) : NO |X|

	Template Version:27 May 2015 (Dot not modify)

oneM2M Notice
The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.
[bookmark: _Toc300919386][bookmark: _Toc338862363]
GUIDELINES for Change Requests:
Provide an informative introduction containing the problem(s) being solved, and a summary list of proposals.
Each CR should contain changes related to only one particular issue/problem.
In case of a correction, and the change apply to previous releases, a separated “mirror CR” should be posted at the same time of this CR
Follow the principle of completeness, where all changes related to the issue or problem within a deliverable are simultaneously proposed to be made E.g. A change impacting 5 tables should not only include a proposal to change only 3 tables. Includes any changes to references, definitions, and acronyms in the same deliverable.
Follow the drafting rules.
All pictures must be editable.
Check spelling and grammar to the extent practicable.
Use Change bars for modifications.
The change should include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change. Additions of complete sections need not show surrounding clauses as long as the proposed section number clearly shows where the new section is proposed to be located.
Multiple changes in a single CR shall be clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.
When subsequent changes are made to content of a CR, then the accepted version should not show changes over changes. The accepted version of the CR should only show changes relative to the baseline approved text.

Introduction
Two CRs agreed at TP#20 proposed changes to section 8.5.5: MAS-2015-0673R04 with changes within the existing section, and MAS-2015-0672R03 with a new clause which would have resulted in extensive re-numbering of 8.5.5 and 8.5.6.
It was agreed to apply the text from MAS-2015-0672R03 as section 8.5.7 temporarily for ease of merging. Given the logical flow of concepts, we now propose moving the new clause 8.5.7 to 8.5.5. and attend to the re-numbering process in an editorial CR.
Other corrections have been made to eliminate hanging sentences and typos throughout section 8.5.

-----------------------Start of change 1---
[bookmark: _Toc435666593]8.5	Architectural Aspects
[bookmark: _Toc435666594]8.5.1	Introduction
This clause presents architectural recommendations for, or potential constraints to, the oneM2M architectural design. This clause also highlights any restrictions that the oneM2M architecture potentially places on utilisation of the analysed semantics technologies within oneM2M.
[bookmark: _Toc435666595]8.5.2	oneM2M architectural design considering semantics
oneM2M architecture for the Common Service Layer in the M2M system specifies a Common Service Entity (CSE) with Common Services Functions (CSFs). The CSFs provide services to the Application Entities (AEs) via the Mca reference point and to other CSEs via the Mcc reference point. CSEs interact with the underlying Network Service Entity (NSE) via the Mcn reference point.
[bookmark: _GoBack]For supporting semantics in oneM2M architecture, core functionalities of semantics (i.e., semantic engine) should reside inside the CSE for interacitinginteracting the AEs via the Mca reference point and provide semantic interworking with other CSEs via the Mcc reference point. Then, oneM2M system can handle ontologies and semantic information through interacting with various CSFs in support of semantics engine in the CSE.
Figure X illustrate a high-level architectural model for semantics from the exsitngexisting oneM2M architecture.
[image:]
Figure X: A high-level architectural model for oneM2M semantics
The semantic related CSFs can be logically divided into the following groups:
· Semantic engine: The semantic engine provides core functionalilitesfunctionalities in the generic functional model of Figure 11 to support semantics.
· Semantic enabled functions: Enhanced functionalities for semantics are required to exsitingexisting CSFs through a direct link with semantic engine.
· CSFs requiring semantic enhancement / adaptation: data management & repository, discovery, location
· CSFs possibly requiring semantic enhancement / adaption: group management, registration, security, subscription and notification

[bookmark: _Toc435666596]8.5.3	Semantic Description of Resources
[bookmark: _Toc435666597]8.5.3.1	Overview
As identified in the requirements, SermanticSemantic Annotation within the oneM2M platform is of key importancesimportance for supporting semantic functionalities within the oneM2M platform. In the following subsections a semantic descriptor is introduced.
[bookmark: _Toc435666598]8.5.3.2	Semantic Descriptor
Resources of type <AE>, <container> and <contentInstance> optionally can have one or more semantic descriptor resources. The semantic descriptor resource is further described in section 8.5.2.3. This is shown in figure 8.5.2.2-1, where, where <resource> only refers to resources of type <AE>, <container> and <contentInstance>. The case that there are multiple semantic descirptorsdescriptors can be used if the same resource is to be semantically described according to multiple different ontologies.
[image:]
Figure 8.5.2.2-1: semanticDescriptor resource
[bookmark: _Toc435666599]8.5.3.3	Resource semanticDescriptor
The <semanticDescriptor> resource is used to store a semantic description pertaining to a resource and potentially sub-resources. Such a description can be provided according to ontologies. The semantic information is used byused by the semantic functionalities of the oneM2M system and is also available to applications or CSEs.
[image:]
Figure 8.5.2.3-1: Structure of <semanticDescriptor> resource
The <semanticDescriptor> resource contains the child resources specified in table 8.5.2.3-1.
Table 8.5.2.3-1: Child resources of <semanticDescriptor> resource
	Child Resources of <semanticDescriptor>
	Child Resource Type
	Multiplicity
	Description

	[variable]
	<subscription>
	0..n
	See [i.39], clause 9.6.8 where the type of this resource is described.

The <semanticDescriptor> resource contains the attributes specified in table 8.5.2.3-2.
Table 8.5.2.3-2: Attributes of <semanticDescriptor> resource
	Attributes of <semanticDescriptor>
	Multiplicity
	RW/
RO/
WO
	Description

	resourceType
	1
	RO
	See [i.39], clause 9.6.1.3 where this common attribute is described

	resourceID
	1
	RO
	See [i.39], clause 9.6.1.3 where this common attribute is described.

	resourceName
	1
	WO
	See [i.39], clause 9.6.1.3 where this common attribute is described.

	parentID
	1
	RO
	See [i.39], clause 9.6.1.3 where this common attribute is described.

	accessControlPolicyIDs
	0..1 (L)
	RW
	See [i.39], clause 9.6.1.3 where this common attribute is described

	creationTime
	1
	RO
	See [i.39], clause 9.6.1.3 where this common attribute is described

	expirationTime
	1
	RW
	See [i.39], clause 9.6.1.3 where this common attribute is described

	lastModifiedTime
	1
	RO
	See [i.39], clause 9.6.1.3 where this common attribute is described

	Labels
	0..1 (L)
	RW
	See [i.39], clause 9.6.1.3 where this common attribute is described

	Creator
	0..1
	RO
	The AE-ID of the entity which created the resource. This can also be the CSE-ID of the IN-CSE if the IN-CSE created the resource.

	descriptor
	1
	RW
	The semantic description of the resource whose child resource the <semanticDescriptor> resource is.

	ontologyRef
	0..1
	WO
	A reference (URI) of the ontology used to represent the information that is stored in the descriptor attribute. If this attribute is not present, the the ontologyRef from the parent resource is used if present.

[bookmark: _Toc435666600]8.5.3.4	Example showing the uesuses of the Semantic Descriptor resource
This section gives an example of how semantic annotations based on the Smart Appliance REFerence Ontology (SAREF) [i.40] can be used to describe an AE representing a smart appliance.

[image:]
Figure 8.5.3.4-1: Resource structure of smart washing machine AE
Figure 5.5.3.4-1 shows the resource structure of an AE representing a smart washing machine.
NOTE: 	The assumption here is that the the Washing Machine acts as an AE using the Mca interface. Here no distinction is made between the Washing Machine AE and the washing machine as a physical device. This can be done under the given assumption, but could lead to problems in other cases, e.g. if an interworking proxy is involved.
It consists ofThe resource includes an ontologyRef attribute, which contains the URI of the ontology concept of the smart washing machine, e.g. "http://www.tno.com/saref#WashingMachine". The startStopContainer and the stateContainer represent the functional interface aspects of the washing machine, i.e. it can be started and stopped and the current state can be requested.
Table 8.5.3.4-1 shows the semantic annotation stored in the descriptor attribute of the semanticDescriptor resource. The information provides the link between the operations of the washing machines and the containers of the smart washing machine AE and describes the REST methods that can be executed on the containers. The washing operation can be started by executing a Create request on the startStopContainer whose URI is provided, the same for the state operation, where a Retrieve request on the latest contentInstance of the stateContainer will provide the current state of the washing machine.
Table 8.5.3.4-1 Semantic resource description of smart washing machine AE based on SAREF
	<rdf:RDF
 <rdf:Description rdf:about="http://www.tno.com/saref#WASH_LG_123">
 <rdf:type rdf:resource="http://www.tno.com/saref#WashingMachine"/>
 <saref:hasManufacturer>LG</saref:hasManufacturer>
 <saref:hasDescription>Very cool Washing Machine</saref:hasDescription>
 <saref:hasLocation rdf:resource="http://www.tno.com/saref#Bathroom"/>
 <msm:hasService rdf:resource="http://www.tno.com/saref#WashingService_123"/>
 <msm:hasService rdf:resource="http://www.tno.com/saref#StateService_123"/>
 </rdf:Description>

 <rdf:Description rdf:about="http://www.tno.com/saref#WashingService_123">
 <rdf:type rdf:resource="http://www.tno.com/saref#WashingService"/>
 <msm:hasOperation rdf:resource="http://www.tno.com/saref#WashingOperation_123"/>
 </rdf:Description>

 <rdf:Description rdf:about="http://www.tno.com/saref#WashingOperation_123">
 <rdf:type rdf:resource="http://www.tno.com/saref#WashingOperation"/>
 <hr:hasMethod>Create</hr:hasMethod>
 <hr:hasURITemplate>/CSE1/WASH_LG_123/startStopContainer </hr:hasURITemplate>
 <msm:hasInput rdf:resource="http://www.tno.com/saref#Action"/>
 </rdf:Description>

 <rdf:Description rdf:about="http://www.tno.com/saref#StateService123">
 <rdf:type rdf:resource="http://www.tno.com/saref#StateService"/>
 <msm:hasOperation rdf:resource="http://www.tno.com/saref#StateOperation123"/>
 </rdf:Description>

 <rdf:Description rdf:about="http://www.tno.com/saref#StateOperation123">
 <rdf:type rdf:resource="http://www.tno.com/saref#StateOperation"/>
 <hr:hasMethod>Retrieve</hr:hasMethod>
 <hr:hasURITemplate>/CSE1/WASH_LG_123/state/stateContainer/latest</hr:hasURITemplate>
 <msm:hasOutput rdf:resource="http://www.tno.com/saref#State"/>
 </rdf:Description>
</rdf:RDF>

[bookmark: _Toc435666601]8.5.3.5	Semantic Instance Management
[bookmark: _Toc435666602]8.5.3.5.1	Overview
The management of semantic instances stored in the <semanticDescriptor> resource is could be one of key semantic functionalities for semantics especially when it comes to dealing with , including the create, update and delete operations against semantic instances. A simple way to deal with the update of semantic instances is to overwrite the whole <semanticDescriptor> resource which might lead to data redundancy problems, but a. A more efficient approach is in needed to handle the management of semantic instances. We propose an approach using functions (e.g. SPARQL HTTP POST, SPARQL HTTP PUT etc.) provided by SPARQL to update or create semantic instances.
[bookmark: _Toc435666603]8.5.3.5.2	Concrete Example of Managing Semantic Instances
In the oneM2M system, in order to change a semantic instances in the <semanticDescriptor> resources, the system hasve to change the whole semantic instancesdescriptor.
[image:]
Figure 8.5.3.5.2: Concreate example of managing semantic instance in the oneM2M system
[bookmark: _Toc435666604]8.5.3.5.3	Managing Semantic Instances using SPARQL update operation
As mentioned in Section 8.5.3, a semantic description consisting of semantic instances is contained in the <semanticDescriptor> resource. In order to manage semantic instances using the SPARQL update operation, we assume that the semantic description is stored in the <semanticDescriptor> resource as depicted in Figure 8.5.3.5.3.1
[image:]
Figure 8.5.3.5.3.1: Representation of a semantic description in a <semanticDescripor> resource
To manage the semantic instances, the SPARQL update operation has to be mapped to the oneM2M UPDATE (U) procedure. The UPDATE procedure can be used by an AE Originator to manage the semantic instances stored in the <semanticDescriptor> resource on a Receiver CSE (also called the Hosting CSE).
Originator is responsible for sending requests to update semantic instances stored in the <semanticDescriptor> resource by using the UPDATE method.
Hosting CSE processes the update procedures against the requested semantic instances if the originator is allowed to do the update operation. Figure 8.5.3.5.3.2 shows the interaction between Originator and Receiver and the procedures are processed as follows.
[image:]
Figure 8.5.3.5.3.2: Procedure for managing the semantic instances using oneM2M UPDATE operation
Step 001: The Originator can include mandatory parameters and partial or whole optional parameters in the Request message for UPDATE operation. In Step 001, we can use different SPARQL statements in order to update (i.e., add, delete, and modify) an existing semantic description in a target <semanticDescriptior> resource at thein Receiver, as shown in the following cases.
· Case 1: This case is to add semantic instances (e.g., RDF, triples) to an existing semantic description in a target <semanticDescriptor> resource inat the Receiver. In this case, the Originator can include INSERT DATA or INSERT SPARQL statements in a Request as shown in the block below. The INSERT DATA statement can add semantic instances using the RDF PAYLOAD to the semantic description in a target <semanticDescriptor> resource. Thus, RDF PAYLOAD in an INSERT DATA SPARQL statement disallows blank nodes or variables. On the other hand, an INSERT SPARQL statement can add semantic instances corresponding to a template by copying semantic instances from a source <semanticDescriptor> resource to a target <semanticDescriptor> resource based on a pattern. Accordingly, a template in the INSERT statement allows blank nodes or variables with conditional SPARQL statements. Example 1 and Example 2 give examples using INSERT DATA and INSERT SPARQL statements, respectively.
	======================== INSERT DATA statement =========================
INSERT DATA
{GRAPH <Target URI of <semanticDescriptor> resource> {RDF PAYLOAD} }
========================== INSERT statement ============================
INSERT {
GRAPH <Target URI of <semanticDescriptor> resource 1> {template} }
WHERE {GRPAH <Target URI of <semanticDescriptor> resource 2> {pattern} }

Example 1: Add semantic instance to a <semanticDescriptor> resource using INSERT DATA statement
	INSERT DATA
{
GRAPH <http://<Hosting CSE address/<CSEBase>/<AE>/<semanticDescriptor>>
{saref:WASH_LG_123 msm:hasOperation saref:WashingOperation_123}
}

Example 2: Add semantic instance to a <semanticDescriptor> resource using INSERT statement
	INSERT {
GRAPH <http://<Hosting CSE address/<CSEBase>/<AE>/<semanticDescriptor1>>
{?a saref:hasManufacturer ?c}
}
WHERE {
GRAPH <http://<Hosting CSE address/<CSEBase>/<AE>/<semanticDescriptor2>>
{?a saref:hasManufacturer ?c}
}

· Case 2: This case is to remove any of the semantic instances from an existing semantic description in a target < semanticDescriptor > resource in the Receiver. In this case, the Originator can include two different SPARQL statements including DELETE DATA statement or DELETE statement in the Request as shown in the block below.
The DELETE DATA statement can remove specific semantic instances using RDF PAYLOAD from an existing semantic description in a target <semanticDescriptor> resource. Hence, the RDF PAYLOAD in the DELETE DATA SPARQL statement is not allowed to contain blank nodes or variables. However, the DELETE SPARQL statement can remove semantic instances corresponding to the template through matching semantic instances based on a pattern. Accordingly, the template in the DELETE SPARQL statement is allowed to contain blank nodes or variables with conditional SPARQL statements. Example 3 and Example 4 give examples using DELETE DATA and DELETE SPARQL statements, respectively.
	======================== DELETE DATA statement =========================
DELETE DATA
{GRAPH <Target URI of <semanticDescriptor> resource> {RDF PAYLOAD} }
========================== DELETE statement ============================
WITH <Target URI of <semanticDescriptor> resource>
DELETE {template }	
WHERE {pattern}

Example 3: Remove semantic instances in the <semanticDescriptor> resource using DELETE DATA statement
	DELETE DATA
{
GRAPH <http://<Hosting CSE address/<CSEBase>/<AE>/<semanticDescriptor>>
{saref:WASH_LG_123 msm:hasService saref:StateService_123}
}

Example 4: Remove semantic instance in the <semanticDescriptor> resource using DELETE statement
	WITH <<http://<Hosting CSE address/<CSEBase>/<AE>/<semanticDescriptor>>
DELETE {?a msm:hasService saref:StateService_123}
WHERE {?a saref:hasManufacturer ‘LG’}

· Case 3: This case is to modify any of the semantic instances from the semantic description in a target <semanticDescriptor> resource in the Receiver. In this case, the Originator can include DELETE/INSERT SPARQL statements with template1 and template2 in the Request as shown in the block below. At this time, blank nodes or variables are allowed in each template.

	WITH <Target URI of <semanticDescriptor> resource>
DELETE {template1} INSERT {template2}
WHERE {pattern}

Example 5: Modify semantic instances in a <semanticDescriptor> resource using DELETE/INSERT operation
	WITH http://<Hosting CSE address/<CSEBase/<AE>/<semanticDescriptor>
DELETE {?a saref:hasManufacturer ‘LG’}
INSERT {?a saref:hasManufacturer ‘SAMSUNG’}
WHERE {?a saref:hasManufacturer ‘LG’}

Step 002: The Receiver will verify the existence (including Filter Criteria checking, if it is given) of the requested resource first and whether the Originator has the appropriate privilege to update the requested resource. On successful validation, the Receiver can update the semantic instances according to the SPARQL statements in the Request message. The update procedures are processed as follows:
· According to Case 1: If the INSERT DATA SPARQL statement is included in Request message, the RDF PAYLOAD in the statement will be added to the target <semanticDescriptor> resource. However, if the RDF PAYLOAD already exists in the target <semanticDescriptor> resource, then the Receiver will return a failure request status with additional error information through Step 003. If the INSERT SPARQL statement included in the Request message, the Receiver adds semantic instances corresponding to template by copying semantic instances from the source <semanticDescripor> resource to the target <semanticDescriptor> resource based on the pattern. At this time, if there are no existing semantic instances corresponding to template or matched semantic instances based on pattern, the Receiver will return a failure request status with additional error information through Step 003. The blocks below show the processing result of Example 1 and Example 2 presented in Case 1.

Result of Example 1 and Example 2 presented in Case 1 using semantic description in Figure 8.5.3.5.3.1
Description before:
	<rdf:RDF
 <rdf:Description rdf:about="http://www.tno.nl/saref#WASH_LG_123">
 <rdf:type rdf:resource="http://www.tno.nl/saref#WashingMachine"/>
 <saref:hasManufacturer>LG</saref:hasManufacturer>
 <saref:hasDescription>Very cool Washing Machine</saref:hasDescription>
 <saref:hasLocation rdf:resource="http://www.tno.nl/saref#Bathroom"/>
 <msm:hasService rdf:resource="http://www.tno.nl/saref#WashingService_123"/>
 <msm:hasService rdf:resource="http://www.tno.nl/saref#StateService_123"/>
 </rdf:Description>
</rdf:RDF>

Description after:
	<rdf:RDF
 <rdf:Description rdf:about="http://www.tno.nl/saref#WASH_LG_123">
 <rdf:type rdf:resource="http://www.tno.nl/saref#WashingMachine"/>
 <saref:hasManufacturer>LG</saref:hasManufacturer>
 <saref:hasDescription>Very cool Washing Machine</saref:hasDescription>
 <saref:hasLocation rdf:resource="http://www.tno.nl/saref#Bathroom"/>
 <msm:hasService rdf:resource="http://www.tno.nl/saref#WashingService_123"/>
 <msm:hasService rdf:resource="http://www.tno.nl/saref#StateService_123"/>
 <msm:hasOperationrdf:resource="http://www.tno.nl/saref#WashingOperation_123"/>
 </rdf:Description>
</rdf:RDF>

· According to Case 2: If the DELETE DATA SPARQL statement is included in Request message, then the RDF PAYLOAD in the statement will be removed from the target <semanticDescriptor> resource. At this time, if the RDF PALOAD does not exist in the resource, then the Receiver can return a failure request status with additional error information through Step 003. If the DELETE SPARQL statement is included in the Request message, the Receiver will remove all of semantic instances corresponding to the template based on a pattern. Accordingly, if there are no existing semantic instances corresponding to template or matched semantic instances base on pattern, then the Receiver will return a failure request status with additional error information through Step 003. The block below shows the processing result of Example 3 and Example 4 presented in Case 2.

Result of Example 2 presented in Case 2 using semantic description in Figure 8.5.3.5.3.1
Description before:
	<rdf:RDF
 <rdf:Description rdf:about="http://www.tno.nl/saref#WASH_LG_123">
 <rdf:type rdf:resource="http://www.tno.nl/saref#WashingMachine"/>
 <saref:hasManufacturer>LG</saref:hasManufacturer>
 <saref:hasDescription>Very cool Washing Machine</saref:hasDescription>
 <saref:hasLocation rdf:resource="http://www.tno.nl/saref#Bathroom"/>
 <msm:hasService rdf:resource="http://www.tno.nl/saref#WashingService_123"/>
 <msm:hasService rdf:resource="http://www.tno.nl/saref#StateService_123"/>
 </rdf:Description>
</rdf:RDF>

Description after:
	<rdf:RDF
 <rdf:Description rdf:about="http://www.tno.nl/saref#WASH_LG_123">
 <rdf:type rdf:resource="http://www.tno.nl/saref#WashingMachine"/>
 <saref:hasManufacturer>LG</saref:hasManufacturer>
 <saref:hasDescription>Very cool Washing Machine</saref:hasDescription>
 <saref:hasLocation rdf:resource="http://www.tno.nl/saref#Bathroom"/>
 <msm:hasService rdf:resource="http://www.tno.nl/saref#WashingService_123"/>
 </rdf:Description>
</rdf:RDF>

· According to Case 3: If the target semantic instance included in the Request message exists in the <semanticDescriptor> resource, then the Receiver will remove all semantic instances corresponding to template1 from the <semanticDescriptor> resources, and then the Receiver will create new semantic instances corresponding to template2 in the <semanticDescriptor> resource base on pattern. In case that either the target semantic instance corresponding to template1 requested to be removed does not exist in the <semanticDescriptor> resource or the target semantic instance corresponding to template2 requested to be added to the <semanticDescriptor> resource already exists, the Receiver will return a failure request status with additional error information through Step 003. The block below shows the processing result of Example 3 presented in Case 3.
Result of Example 3 presented in Case 3 using semantic description in Figure 8.5.3.5.3.1
Description before
	<rdf:RDF
 <rdf:Description rdf:about="http://www.tno.nl/saref#WASH_LG_123">
 <rdf:type rdf:resource="http://www.tno.nl/saref#WashingMachine"/>
 <saref:hasManufacturer>LG</saref:hasManufacturer>
 <saref:hasDescription>Very cool Washing Machine</saref:hasDescription>
 <saref:hasLocation rdf:resource="http://www.tno.nl/saref#Bathroom"/>
 <msm:hasService rdf:resource="http://www.tno.nl/saref#WashingService_123"/>
 <msm:hasService rdf:resource="http://www.tno.nl/saref#StateService_123"/>
 </rdf:Description>
</rdf:RDF>

Description after:
	<rdf:RDF
 <rdf:Description rdf:about="http://www.tno.nl/saref#WASH_LG_123">
 <rdf:type rdf:resource="http://www.tno.nl/saref#WashingMachine"/>
 <saref:hasManufacturer>SAMSUNG</saref:hasManufacturer>
 <saref:hasDescription>Very cool Washing Machine</saref:hasDescription>
 <saref:hasLocation rdf:resource="http://www.tno.nl/saref#Bathroom"/>
 <msm:hasService rdf:resource="http://www.tno.nl/saref#WashingService_123"/>
 <msm:hasService rdf:resource="http://www.tno.nl/saref#StateService_123"/>
 </rdf:Description>
</rdf:RDF>

Step 003: The Receiver will include all mandatory parameters and partial or whole optional parameters in the Response message for the UPDATE operation.

[bookmark: _Toc435666605]8.5.4	Semantic Filtering and Discovery
In Section 8.5.3, the <semanticDescriptor> resource has been introduced. One of the key functionalities generating value from the semantic descriptions contained in such resources is enabling semantic filtering. Semantic filtering is especially relevant if an application wants to discover resources and specifies the characteristics of the resources it is interested in.
Previously, filtering has been supported by having filter criteria on attributes (see [i.1], Table 8.1.2-1). By adding support for <semanticDescriptor> child resources containing the semantic description, a filter criteria has to be added that pertains to this semantic descriptions. Table 8.5.4-1 shows the definition of the semantics filter criteria. There can be multiple instances, which according to the general semantics for evaluating filter criteria, means that an "OR" semantics applies, i.e. the overall result for the semantics filter criteria is true if one or more of the semantic filters matches the semantic description.
Table 8.5.4-1: semantics Filter Criteria
	semantics
	0..n
	The semantic description contained in one of the <semanticDescriptor> child resources matches the specified semantic filter.

Since the representation of the semantic descriptions has not been specified in the architecture, the definition of the semantics filter criteria there remains on a high abstraction level as well. It has to be decided, whether the architecture description has to become more specific in this respect, or whether this is left for stage 3.
For the purpose of this technical report, the assumption is that the semantic descriptions are specified as RDF triples – in whatever representation, e.g. RDF/XML, Turtle. The semantics filter criteria can thus be specified as SPARQL requests that are executed on each of the semantic descriptions. The interpretation is that the semantic filter evaluates to true whenever the execution of the SPARQL request provides one or more results and false otherwise.
In the following, two examples are shown. The semantic descriptors are given as triples. For readability the ontology concepts and instances are shown with namespaces, but the namespace and prefix definitions are omitted. The entries are shown as subject-predicate-object triples, or domain- object property-range as used in the definition of OWL object properties.
Example 1: Filter for AE resources representing devices that measure temperature.
Semantic Descriptor of Device 1 AE
my:MyDevice1 			rdf:type 						base:Device
my:MyDevice 1			base:hasService 				my:MyService1
my:MyService1 			base:hasFunctionality 		my:MyFunctionality1
my:MyFunctionality1 	rdf:type	 					base:Measuring 	
my:MyFunctionality1 	base:refersTo					my:MyAspect1
my:myAspect1			rdf:type						aspect:Temperature
Semantic Descriptor of Device 2 AE
my:MyDevice2 			rdf:type 						base:Device
my:MyDevice2 			base:hasService 				my:MyService2
my:MyService2 			base:hasFunctionality 		my:myFunctionality2
my:myFunctionality2	rdf:type	 					base:Controlling 	
my:myFunctionality2	base:refersTo					my:myAspect2
my:myAspect2			rdf:type						aspect:Temperature
SPARQL Request 1
SELECT ?device
	WHERE { ?device rdf:type base:Device .
 ?device base:hasService ?service .
 ?service base:hasFunctionality ?functionality .
 ?functionality rdf:type base:Measuring .
 ?functionality base:refersTo ?aspect .
 ?aspect rdf:type instance:Temperature }
SPARQL Execution Results
(oOn Device1 semantic description) --> my:myDevice1
(oOn Device 2 semantic description) --> empty
This means that the AE resource that is described by my:myDevice1 will be included in the result set, whereas the AE resource described by my:MmyDevice2 	will not be included.
Note, that the following SPARQL request would yield the same result in our case, but without checking whether the functionality is actually offered by a device (base:Device). The core concept identifying what is being represented by the resource (in this case a device) could be specified in the ontologyRef attribute.
SPARQL Request 2
SELECT ?functionality
	WHERE { ?functionality rdf:type base:Measuring .
 ?functionality base:refersTo ?aspect .
 ?aspect rdf:type instance:Temperature }
SPARQL Execution Results
(oOn Device1 semantic description) --> my:myDevice1
(oOn Device 2 semantic description) --> empty
Example 2: Filter for contentInstance resources that contain a temperature value in Celsius with an accuracy of +/- 1°C.
Semantic Descriptor of Temperature 1 contentInstance
my:myTemperature123			rdf:type						aspect:Temperature
my:myTemperature123			tempOnt:hasUnit				tempOnt:Celsius
my: myTemperature123			tempOnt:has Accuracy		0.9
Semantic Descriptor of Temperature 2 contentInstance
my:myTemperature234			rdf:type						aspect:Temperature
my:myTemperature234			tempOnt:hasUnit				tempOnt:Celsius
my: myTemperature234			tempOnt:has Accuracy		1.5
Semantic Descriptor of Temperature 3 contentInstance
my:myTemperature345			rdf:type						aspect:Temperature
my:myTemperature345			tempOnt:hasUnit				tempOnt:Fahrenheit
my: myTemperature345			tempOnt:has Accuracy		0.5
SPARQL Request
SELECT ?temperatureInstance
	WHERE { ?temperatureInstance rdf:type tempOnt:Temperature .
 ?temperatureInstance tempOnt:hasUnit tempOnt:Celsius .
 ?temperatureInstance tempOnt:hasAccuracy ?accuracy
 FILTER (?accuracy <= 1.0) }
SPARQL Execution Results
(oOn Temperature1 description) --> my:myTemperature123
(oOn Temperature 2 description) --> empty – not accurate enough
(oOn Temperature 3 description) --> empty – not in Celsius

[bookmark: _Toc435666606][bookmark: _Toc420966787]8.5.5	Semantic Queries and the Use of Semantic Repositories
8.5.5.1	Introduction
Semantic Repositories as introduced in section 7 are supported by existing technologies and dedicated to the management of semantic annotations. Semantic Repositories may also store new semantic information resulting from reasoning and may support optimized query tools.
Also as discussed in section 5, Semantic Query is a function that is required in the oneM2M System to support annotation, reasoning, as well as the discovery of resources. Semantic Query uses linked Semantic Triples contained in Semantic Graph Stores (i.e. Semantic Repositories).
In order to support the use of Semantic Repositories for Semantic Query in the oneM2M System, several architectural options are considered in the following sections.
8.5.5.2	Semantic Queries with Semantic Descriptors Distributed in Resource Tree(s)
Semantic Filtering and Discovery have been described in the previous section which uses the distributed Semantic Descriptors without Semantic Repositories.
For the purpose of performing Semantic Queries, local and temporary Semantic Graph Stores (i.e. temporary Semantic Repositories) may be employed, as illustrated in Figure 8.5.5.2-1

[image:]
Figure 8.5.5.2-1 Architecture for Distributed Semantic Descriptors with Temporary Semantic Graph Stores

After an initial discovery of Semantic Descriptors in hierarchical Resource Tree(s), the Semantic Triples may be extracted from the Semantic Descriptors discovered and deposited into a local temporary Semantic Graph Store (i.e. a Temporary Semantic Repository). The Semantic Query is then performed on the resultant graph, using the tools supported by the graph store. An example is illustrated in Figure 8.5.5.2-2.

[image:]
Figure 8.5.5.2- 2 Semantic Query with Distributed Semantic Descriptors and a Temporary Semantic Graph Store

NOTE: a Temporary Semantic Graph Store is used to store all the Semantic Triples extracted from the Semantic Descriptors discovered from the Resource Tree(s), i.e. to form the relationship graph for each Semantic Query. It may be cleared for each query or periodically based on local policies.

8.5.5.3	Semantic Queries with all Semantic Triples Contained in a Semantic Repository
Editor’s Note: Operations related to this approach have not been addressed in the currentTS-0001. The filtering semantic discovery is not applicable to this approach.
The architecture supporting Semantic Queries with all Semantic Triples contained in a Semantic Graph Store is exemplified by Figure 8.5.5.3-1. It illustrates the implementation of Semantic Repositories as a linked-data databases available for semantic operations.

[image:]
Figure 8.5.5.3-1 Architecture with all Semantic Triples Contained in a Semantic Graph Store

A Semantic Query in the architecture shown in Figure 8.5.5.3-1 is illustrated in Figure 8.5.5.3-2.

[image:]
Figure 8.5.5.3-2 Semantic Query with all Semantic Triples Contained in a Semantic Graph Store

8.5.5.4	Semantic Queries with Semantic Descriptors in Resource Tree(s) and Semantic Triples in a Semantic Repository
A hybrid approach is shown in Figure 8.5.5.4-1 with the following two variants:
1. Hybrid I – in which all Semantic Descriptors are distributed in Resource Tree(s) for Semantic Resource Discovery and all the Semantic Triples are contained in a Semantic Graph Store for Semantic Query.
2. Hybrid II – in which all the Semantic Descriptors are “virtual resources” as distributed in Resource Tree(s) and any operation to them will trigger the corresponding operation in the Semantic Graph Store which contains all the Semantic Triples.

[image:]
Figure 8.5.5.4-1 Architecture with Semantic Descriptors in Resource Tree(s) and Semantic Triples in a Semantic Repository

An example of a semantic query processing in the hybrid architecture is illustrated in Figure 8.5.5.4-2.

[image:]
Figure 8.5.5.4-2 Semantic Query with Semantic Descriptors in Resource Tree(s) and Semantic Triples in a Semantic Repository
Editor’s note:
1) Hybrid I: why need a permanent Semantic Graph Store? i) May be needed for advanced semantic features such as reasoning, mash-up etc. ii) May be needed for interworking with W3C Semantic Web based applications.
2) Hybrid II: the list of Semantic Triples discovered may not be retrievable due to access control.

8.5.65	Semantic Filtering on Distributed Semantic Descriptors
[bookmark: _Toc435666607]8.5.65.1	Problem Description
In the previous section, semantic filtering criteria have been introduced and it has been described how they are applied to the content of the <semanticDescriptor> child resource. However, in some cases the relevant semantic information is not contained in the <semanticDescriptor> child resource directly, but in a different <semanticDescriptor> resource. For example, this could be the case if we are looking for devices that can provide temperature output. This semantic information may not be directly attached to the resource representing the device, but there is another resource that represents a specific operation of the device and the semantic description can be found there. In order to correctly include the device in the result set, the semantic information attached to the operation has to be considered.
Figure 8.5.65.1-1 shows the general situation. In the lower part of the figure, a semantic graph representing subject-predicate-object relations is shown. In an oneM2M system, different parts of this graph may be stored in different <semanticDescriptor> resources. If semantic operations like the semantic filtering are to be applied to (parts of) the complete semantic graph, the different parts of the graph have to be linked and these links have to be followed when executing the semantic operation.
[image:]
Figure 8.5.65.1-1: Mapping of logical semantic graph to oneM2M resource structure
Figure 8.5.56.1-2 shows the case of a semantic filter whose scope takes into account semantic information stored in different <semanticDescriptor> resources.
[image:]
Figure 8.5.65.1-2: Scope of semantic filter across semantic information stored in different resources
[bookmark: _Toc435666608]8.5.65.2	Related Solutions
· Semantic Web
In the semantic web, the URI identifying the class instance can be directly de-referenced, possibly resulting in some re-direction. This means that for each instance the related information can be found based on its URI. In the oneM2M case, the semantic instances are not first-class citizens, it is only resources that can be accessed and the information about instances is stored as content of the resources. This means that based on only the URI of the semantic information the related information cannot be found, so the approach is not applicable in the oneM2M case.
· Federated SPARQL queries
[bookmark: REF_W3CSPARQL]SPARQL [i.23] supports federated queries using the SERVICE keyword, where the URL of a remote SPARQL endpoint can be specified. This approach would work only, if the requestor would a-priori know which semantic descriptors contain which information. This is not the case here as we do not a-priori know the resources, it is the purpose of the filter to select them, therefore the approach is also not applicable.
[bookmark: _Toc435666609]8.5.65.3	Proposed Solution 1
The underlying assumption is that the semantic description stored in the <semanticDescriptor> resources are represented as RDF triples [i.26] in some kind of serialization. The semantic descriptions can be part of an overall semantic description that is distributed across the <semanticDescriptor> resources. The RDF triples are based on classes and properties defined in OWL.
[image:]
Figure 8.5.56.3-1: Parts of semantic descriptions stored in different <semanticDescriptor> resources
Figure 8.5.56.3-1 shows an example of two semantic descriptions in the form of RDF triples, visualized as semantic graphs, each stored in a <semanticDescriptor> resource. Logically the two graphs form a combined semantic graph, as the "OperationA" instance is part of both trees, both in the subject and object role of a triple.
To enable semantic operations across the overall logical tree, the proposal is to add an annotation link in the form of a resourceDescriptorLink OWL annotation property. This annotation property can be specified for any class instance and its value is the URL of a <semanticDescriptor> resource, where additional RDF triples for the given class instance can be found.
For enabling semantic filtering on semantic descriptions stored across <semanticDescriptor> resources connected by resourceDescriptorLink properties, the SPARQL-based semantic filtering engine has to be modified in the following way:
· The semantic filter formulated as a SPARQL request is executed on the content of the semantic descriptor resource of the candidate resource
· If in the course of the execution a class instance with one or more resourceDescriptorLink annotations is encountered, the execution is halted
· The content of each of the <semanticDescriptor> resources the semanticDescriptorLink references is added to the content on which the SPARQL request is being executed (lazy evaluation, alternative: fetch everything before execution, but may result in fetching unnecessary information)
· The execution of the SPARQL request is continued on the enlarged content

Advantages of the proposed solution 1:

· The required semantic information can be found
· The application adding the resourceDescriptorLinks only has to be aware of directly related instances in other <semanticDescriptor> resources.
· Resource-based access control can be easily enforced as the information is being accessed at execution time of the operation and the access privileges of the requester can be applied

Disadvantages of the proposed solution 1:
· The execution of the SPARQL request has to be changed to allow retrieving semantic descriptor information whenever a resourceDescriptorLink has to be followed for which the information was not already previously retrieved.

[bookmark: _Toc435666610]8.5.65.3.1	Examples for Solution 1
Figures 8.5.65.3.1-1, 8.5.56.3.1-2 and 8.5.65.3.1-3 show three different examples, where semantic descriptions are stored across <semanticDescriptor> resources as they describe aspects more closely related to different oneM2M resources. Nevertheless, the filter request needs to be applied across the distributed semantic description.
[image:]
Figure 8.5.65.3.1-1: Semantic filter for devices that produce temperature output

[image:]
Figure 8.5.65.3.1-2: Semantic filter for rooms with indoor temperature in Celsius

[image:]
Figure 8.5.56.3.1-3: Semantic filter for groups of valves that include a valve manufactured by Grundfos

[bookmark: _Toc435666611]8.5.65.4	Proposed Solution 2
The same underlying assumptions as in the previous solution are made:
· [bookmark: REF_RDF]The semantic descriptions stored in the <semanticDescriptor> resources are represented as RDF triples [i.26] in some kind of serialization;
· The semantic descriptions can be part of an overall semantic description that is distributed across the <semanticDescriptor> resources;
· The RDF triples are based on classes and properties defined in OWL.

Figure 8.5.65.4-1: Distributed concepts across different <semanticDescriptor> resources
Figure 8.5.56.4-1 shows the example of two semantic descriptions in the form of RDF triples, visualized as semantic graphs, each stored in a separate <semanticDescriptor> resource. The two descriptions are logically related, as "OperationA" and “CommandK” instances are part of both trees. Other concept instances might be common between the two trees, so several resourceDescriptorLinks might be established between the same two descriptors.
In this proposal an attribute relatedSemantics is added to the <semanticDescriptor> resource to indicate all the resources with semantics descriptors related to the current one.

Figure 8.5.65.4-2: relatedSemantics attribute

Two representations of the relatedSemantics information are envisioned, and may be used in the same implementation:
· List of links: In this case the relatedSemantics attribute contains a list of links pointing to other <semanticDescriptor> resources which should be used together to perform semantic queries as described in section 8.5.65.4.1
· Group of links: In this case the relatedSemantics attribute points to either:
· a <group> resource with the functionality described in section 8.5.65.4.2
· a newly proposed <semanticGroup> resource as described in section 8.5.56.4.3.
The way the SPARQL query results are produced is detailed with the previous example of graphs containing information relevant to each other, but which are stored in two independent resources <Device12>, and <OperationA>. Semantically the OperationA concept from the first graph is further described in the descriptor of <Device12>, while the relationship exposesCommand and object commandK are contained in both.
The goal is to enable the creation of a larger resultant graph to be submitted for evaluation of the SPARQL query, as shown in Figure 8.5.6.4-3 REF _Ref433129767 \h * MERGEFORMAT Figure 40.

Figure 8.5.65.4-3: Composite graph from sub-graphs distributed in separate descriptors

[bookmark: _Toc435666612]8.5.65.4.1	“List of links” use
In this representation the relatedSemantics attribute contains a list of links pointing to descriptors associated with other resources, which should be used together with the descriptor in the given <semanticDescriptor> resource in order to perform semantic queries. In our case the list points to the semantic descriptor of <operationA>.

Figure 8.5.56.4.1-1: Use of relatedSemantics attribute with a list of links
This representation is useful in cases like the one presented, when a more limited number of semantic descriptors are related, making the link list short.
[bookmark: _Toc435666613]8.5.65.4.2	<group> Resource use
In this representation the relatedSemantics attribute points to a <group> resource which includes <Device12> and <operationA> resources.

Figure 8.5.65.4.2-1 Use of relatedSemantics attribute with a <group> resource

By using the memberID attribute, all the descriptors to be used together when performing semantic queries are identified. The SPARQL query engine would use all the links to retrieve the needed descriptors and perform the Query on the overall graph.
For descriptors distributed across CSEs, this is useful when there is only one SPARQL query engine which will process all the descriptors, including on the other CSEs. This means that the process of fetching descriptors from other CSEs is left for implementation and the process of retrieving descriptors from other CSEs is not specified.
When there are individual SPARQL query engines in each CSE, the <group> resource may be used as well to target queries to resources belonging to different CSEs by using the <fanOutPoint> virtual resource. If the <group> resource residing on a first CSE includes member resources on other CSEs, the <group> hosting CSE will forward the RETRIEVE request including the SPARQL query to each CSE containing a group member resource. The individual SPARQL engines on each CSE can process the SPARQL request individually. This means that the SPARQL engine on the <group> hosting CSE needs to be able to merge the results before the returning the final query result.

[bookmark: _Toc435666614]8.5.65.4.3	<semanticGroup> Resource use
In this representation the relatedSemantics attribute points to a new <semanticGroup> resource shown below, which also includes <Device12> and <operationA> resources.

Figure 8.5.65.4.3-1 <semanticGroup> resource

Figure 8.5.56.4.3-12 Use of relatedSemantics attribute with a <semanticGroup> resource

The semanticGroupLinks attribute of the <semanticGroup> resource has the same role as the memberID of <group>, containing the descriptors to be used together for when performing semantic discoveryqueries are identified. The SPARQL query engine would use all the links to retrieve the needed descriptors and perform the query on the overall graph.
The difference in using the <semanticGroup> resource, compared to the <group> resource, is in targeting queries to resources belonging to different CSEs using <semanticFanOutPoint>. In this case the <semanticGroup> hosting CSE will transform the RETRIEVE request including the SPARQL query into RETRIEVE requests for the semantic descriptors on each CSE. Upon return of the results, the SPARQL engine at the <semanticGroup> hosting CSE will be
For enabling semantic filtering on semantic descriptions stored across several resources connected by relatedSemantics attributes, in either representation, the semantic engine has to be modified in the following way:
When a resource other than <semanticFanOutPoint> is targeted:
· The receiver begins processing the request by retrieving the <semanticDescriptor> resource of the request target
· Based on the relatedSemantics attribute of the <semanticDescriptor> resource targeted, all the related descriptors are discovered, as follows:
· If the relatedSemantics attribute includes a list of links, each of the linked Descriptors are accessed based on the respective access control policies.
· If the relatedSemantics points to a <group> resource, the group members from the memberID attribute are used and each of their <semanticDescriptor>(s) are accessed based on the respective access control policies.
· If the relatedSemantics points to a <semanticGroup> resource, the group members from the semanticGroupLinks attribute are used and each of their <semanticDescriptor>(s) are accessed based on the respective access control policies.
· Once all of the related <semanticDescriptor>(s) have been accessed, the content of each of the descriptor attributes is added to the content on which the SPARQL request is being executed.
· The full/enlarged content subject to the SPARQL request is provided to the SPARQL engine for processing

When a <semanticFanOutPoint> resource is targeted:
· Based on the semanticGroupLinks attribute targeted all the related Descriptors are discovered, and those on the <semanticGroup> hosting CSE are retrieved together
· If there are descriptors stored on a different CSE, individual RETRIEVE requests are sent to each CSE for retrieving the external descriptors.
· All semantic descriptors are accessed based on the respective access control policies.
· Once all of the related <semanticDescriptor>(s) have been accessed, the content of each of the descriptor attributes is added to the content on which the SPARQL request is being executed.
· The full/enlarged content subject to the SPARQL request is provided to the SPARQL engine for processing

It may be left to implementation or local policies if, in case the discovered related descriptors specify further relatedSemantics, these are added to the original list and how many levels of indirection may be accommodated. This would enable different implementations and applications to specifically target their goals towards either: expansive and thorough query results with potential runtime costs, or narrower query results optimized for time and/or memory. Other rules which may be specified may include for example handling of the descriptors of child resources e.g. by default all the descriptors attached to children may be considered related (or not, or for a certain number of levels only, etc.)

Advantages of the proposed solution 2:

· The required semantic information can be found
· Resource-based access control can be easily enforced as the information is being accessed at execution time of the operation and the access privileges of the requester can be applied
· The content to be processed by the SPARQL engine is collected prior to processing, allowing the use of external, non-oneM2M specific engines.
· Descriptors containing more than one common concept are linked by only one link, allowing for easier avoidance of duplicate content being considered for request processing.

Disadvantages of the proposed solution 2:
· All linked semantic information has to be fetched, even if it is not needed for the execution of the SPARQL query

Editor’s note: It is FFS if/how the processing described using <semanticGroup> resource may be implemented using the <group> resource.

[bookmark: _Toc435666615]8.5.65.4.4	SPARQL query result examples for Solution 2
Consider the example in figure 8.5.65.4-1 where semantic descriptions are stored across resources <operationA> and <device12> with the following filter request:
“Find all devices that have a service that has an operation whose output quantifies a temperature aspect, and filter it for those with the output = OutputX and command = commandK”
The corresponding SPARQL representation of the request is:
…
SELECT ?device
WHERE { 	?device rdf:type base:Device .
		?device base:hasService ?service .
		?service base:hasOperation ?operation .
		?operation base:hasOutput ?output .
		?output base:quantifies temp:TemperatureAspect .
?device base:exposesCommand ?command .
FILTER (?output == OutputX && ? command == commandK)
}
The SPARQL request will be applied across the resultant graph in Figure 8.5.65.4-3. The RDF representation below reflects the resultant description, in red for the subgraph retrieved from <Device12>, and in blue for the subgraph retrieved from <operationA>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix oneM2M: <http://oneM2M.org/owl#> .
@prefix ex: <http://example.com/cseBase/> .

<rdf:Description rdf:about ex: Device12>
<oneM2M:hasService> ex:Service23 </oneM2M:hasService>.
<oneM2M:hasFunctionality> ex:FuncF </oneM2M:hasFunctionality>
</rdf:Description>
<rdf:Description rdf:about ex: Service23 >
<oneM2M:hasOperation> ex:OperationA </oneM2M:hasOperation>
</rdf:Description>

<rdf:Description rdf:about ex: OperationA >
<oneM2M:exposesCommand> ex:CommandK </oneM2M:exposesCommand>
<oneM2M:hasOutput> ex:OutputX </oneM2M:hasOutput>
</rdf:Description>

<rdf:Description rdf:about ex: OutputX >
<oneM2M:quantifies> ex:TemperatureAspect </oneM2M:quantifies>
</rdf:Description>

Figure 8.5.56.4.4-1 RDF representation of resultant graph

The SPARQL query execution result on <Device12>, using this solution is ex:Device12. The query execution without the ability to link in the <operationA> semantic descriptor content would be empty as the output filter would not be matched.

[bookmark: _Toc435666616]8.5.76	Ontology Support Resources
[bookmark: _Toc435666617]8.5.76.1	Overview
As identified in the requirements, storage, discovery and management of ontologies within the oneM2M platform are key for supporting basic and advanced semantic functionalities within the oneM2M platform. In general, the M2M system needs to represent knowledge as a hierarchy of concepts (ontologies), either external or internal to the M2M domain, using a shared vocabulary to denote the classes, properties and interrelationships of those concepts.
In the following subsections architectural support for Ontology-related functionality is introduced.

[bookmark: _Toc435666618]8.5.76.2	Ontology Repository
An Ontology Repository is capable of storing multiple ontologies in the unified languages adopted by the M2M system, e.g. RDFS/OWL. For easy illustration of the examples, in this section we assume the M2M system adopts RDFS/OWL in describing ontologies. Figure 8.5.76.2-1 provides an example of Ontology Repository with the oneM2M Base Ontology, SSN and SAREFSaref ontologies represented by individual resources.
This structure provides support for re-use of existing ontologies, the ability to access both internal and external ones and for ontology import into the system. It also allows to fulfil the requirements for ontology discovery, as well as addition and updates, via CRUD operations.

Figure 8.5.76.2-1 Ontology Repository example

Resources of type <CSEBase> and <AE> optionally can have one Ontology Repository resource. The ontology resource is further described in the following sections.

[bookmark: _Toc435666619]8.5.76.3	Ontology Resource
The <ontology> resource is used to store the representation of an ontology. This representation may contain ontology descriptions in a variety of formats, given the requirements for re-use of existing ontologies, for support for ontologies available only externally and for support of ontology import into the system. The ontology description is made available to the semantic-related functions of the oneM2M system provided by applications or CSEs.
Various approaches to defining an ontology resource are identified in the following sections, with the goal of providing an architecture to support all the identified requirements, as well as the flexibility needed for advanced features.
The “Unstructured” approach seeks to provide the oneM2M system access to any ontology document in a format supported by the system. The “Structured” approach aims to provide an oneM2M resource structure suitable for representing ontology information within the system. Another method seeks to provide flexibility in using both of these concepts through a dual use approach.
[bookmark: _Toc435666620]8.5.76.3.1	Use of Ontologies
In the following, a number of examples are given what applications, but also the semantic functionalities supported by the oneM2M platform itself, may need from an ontology.
1. get all classes of an ontology
2. get all object | data properties of ontology
3. get direct subclasses of class A
4. get also transitive subclasses class A
e.g. if information from instances of class A is requested, all subclasses of class A also need to be included as they are also instances of class A
5. get all the superclasses of class A
e.g. if for derived ontologies the class of the base ontology needs to be found from which the class is derived, for example to apply rules defined for the base ontology, e.g. for creating a resource structure
6. get all object | data properties where class A is in the domain
e.g. to find out what properties an instance of class A can possibly have
7. get all object | data properties where class A is in the range
8. get all sub-properties of a property A
e.g. if information concerning property A is requested all sub-properties of A also need to be included
9. get classes that are equivalent to class A
[bookmark: _Toc435666621]8.5.76.3.2	Unstructured approach
Using OWL 2.0 as an ontology format example to be supported by the oneM2M system and based on W3C specifications (http://www.w3.org/TR/owl2-syntax/#IRIs) the following apply:
“Ontologies and their elements are identified using Internationalized Resource Identifiers (IRIs) [RFC3987]; thus, OWL 2 extends OWL 1, which uses Uniform Resource Identifiers (URIs). Each IRI MUST be absolute (i.e., not relative). In the structural specification, IRIs are represented by the IRI UML class. Two IRIs are structurally equivalent if and only if their string representations are identical.”
And
“Ontology documents are not represented in the structural specification of OWL 2, and the specification of OWL 2 makes only the following two assumptions about their nature:
• Each ontology document can be accessed via an IRI by means of an appropriate protocol.
• Each ontology document can be converted in some well-defined way into an ontology (i.e., into an instance of the Ontology UML class from the structural specification).”
Therefore current methods of accessing and importing ontologies requires access to the respective ontology document via an IRI (Internationalized Resource Identifiers) as specified in RFC3987. Given that access to the ontology document has been obtained, this approach also provides for local storage of the document in a content attribute which is available to the platform based on access control rules.
Given the possible need to have access to multiple versions of an ontology, and to different formats, a specialized attribute contentFormat provides information necessary for the system to interpret the information available in the content attribute.

Figure 8.5.76.3.1-1: <ontology> resource for ontology document access
The <ontology> resource above contains the child resources specified in table 8.5.76.3.1-1.
Table 8.5.76.3.1-1: Child resources of <ontology> resource in the unstructured approach
	Child Resources of <semanticDescriptor>
	Child Resource Type
	Multiplicity
	Description

	[variable]
	<subscription>
	0..n
	See [i.39], clause 9.6.8 where the type of this resource is described.

The <ontology> resource above contains the attributes specified in table 8.5.76.3.1-2.

Table 8.5.76.3.1-2: Attributes of <ontology> resource in the unstructured approach
	Attribute Name
	Multiplicity
	RW/RO/WO
	Description

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	Description
	0..1
	RW
	Text description of the ontology

	contentFormat
	1..n
	RW
	Attribute providing information about the format of the content attribute. It may indicate the content as:
IRI – for an ontology to be accessed via the IRI provided in the content attribute
OR
File format – for an ontology for which the document is stored in the content attribute. In this case contentFormat also provides a description of the ontology format, e.g. OWL, Turtle, etc.

	Content
	0..n
	RW
	Depending on the contentFormat attribute, it may be interpreted either as:
The IRI of the corresponding ontology document
OR
The content of the corresponding ontology document

Editor’s Note: It is FFS to determine how to handle the case when the content is the IRI of the corresponding ontology document, but it is not dereferenceable.

[bookmark: _Toc435666622]8.5.76.3.2.1	SPARQL request on ontology procedure via Retrieve Operation
This procedure shall be used for SPARQL requests to <ontology> resources. A Semantic Request parameter, defined as follows has to be provided:
· Semantic Request: Contains a SPARQL request to be executed on the ontology content.
The contentFormat attribute of the <ontology> has to represent a file format. The result corresponds to the result of the execution of the SPARQL request on the content attribute of the <ontology> resource and shall be returned to the Originator using a successful Response message.
Editor's note: The table detailing the SPARQL request on ontology procedure needs to be provided.
In the following, the SPARQL content for the Semantic Request parameter for all the examples defined in Section 8.5.76.3.1 is given:
1. get all classes of an ontology
SELECT ?subject WHERE { ?subject rdfs:subClassOf+ owl:Thing }
2. get all object | data properties of ontology
SELECT ?subject WHERE { {?subject rdf:type+ owl:ObjectProperty } UNION {?subject rdf:type+ owl:DatatypeProperty } }
3. get direct subclasses of class A
SELECT ?subject WHERE { ?subject rdfs:subClassOf saref:Command }
4. get also transitive subclasses class A
SELECT ?subject WHERE { ?subject rdfs:subClassOf + saref:Command }
5. get all the superclasses of class A
SELECT ?object WHERE { saref:SetAbsoluteLevelCommand rdfs:subClassOf + ?object }
6. get all object | data properties where class A is in the domain
SELECT ?subject ?object WHERE { ?subject rdfs:domain saref:Service }
7. get all object | data properties where class A is in the range
SELECT ?subject ?object WHERE { ?subject rdfs:range saref:Command }
8. get all sub-properties of a property A
SELECT ?subject WHERE { ?subject rdfs:subPropertyOf om:singular_unit
9. get classes that are equivalent to class A
SELECT ?class WHERE {{ saref:Device owl:equivalentClass ?class} UNION {?class owl:equivalentClass saref:Device}}
[bookmark: _Toc435666623]8.5.76.3.3	Structured approach
The structured approach provides an oneM2M resource structure suitable for representing ontology information within the system.
In this case, the resource structure seeks to represent and maintain all the class and relationship information provided by the ontology definition. As such individual <class> and <relationship> sub-resources are defined, with attributes providing the corresponding mapping.

Figure 8.5.67.3.3-1: <ontology> resource for ontology document access
The <ontology> resource above contains the child resources specified in table 8.5.7.6.3.32-1.
Table 8.5.67.3.3-1: Child resources of <ontology> resource in the structured approach
	Child Resources of <semanticDescriptor>
	Child Resource Type
	Multiplicity
	Description

	[variable]
	<class>
	0..n
	

	[variable]
	<relationship>
	0..n
	

	[variable]
	<subscription>
	0..n
	See [i.39], clause 9.6.8 where the type of this resource is described.

The description attribute provides high-level description of the ontology. The attributes of two sub-resources are detailed in the following tables, providing also examples based on the oneM2M Base Ontology. Additional attributes may be envisioned and added for to further enable new functionality.

Table 8.5.67.3.3-2: Attributes of <class> resource
	Attribute Name
	Multiplicity
	RW/RO/WO
	Description

	isSubjectOf
	1..n
	RW
	URI(s) of a <relationship> resource for which the class is a subject
E.g. for oneM2M Base class <Service> this attribute may be the URI of: <hasOperation>, <consistsOf>,

	isObjectOf
	1..n
	RW
	URI(s) of a <relationship> resource for which the class is an object
E.g. for oneM2M Base class <Service> this attribute may be the URI of: <hasService>, <isExposedBy>

	hasSubclass
	0..n
	RW
	URI to another class which is a subclass of the one being defined E.g. for oneM2M Base class <thing> this attribute may be the URI of <device>

	isSubclassOf
	0..n
	RW
	URI to another class resource which is a superclass of the one being defined
E.g. for oneM2M Base class <device> this attribute may be the URI of <thing>

	equivalentTo
	0..n
	RW
	URI to another class resource which is the equivalent of this class.

Table 8.5.76.3.3-3: Attributes of <relationship> resource
	Attribute Name
	Multiplicity
	RW/RO/ WO
	Description

	relationshipCategory
	0..n
	RW
	Optional, describes the relationship type, e.g. Synonymy, Antonymy, Hyponymy, Meronymy, Holonymy.

	hasSubject
	1..n
	RW
	URI(s) of a <class> resource who is a subject for this relationship

	hasObject
	1.. n
	RW
	For Object relationships/properties, a URI(s) to a class which is the object for this relationship. For Data properties it would contain a data type

	restriction
	0..n
	RW
	Restrictions posed by this relationship, as they map to the OWL use of restriction

Figures 8.5.76.3.3-1 and 8.5.76.3.3-2 further detail how the oneM2M Base Ontology would be represented using the structured approach (not all of the currently defined classes and relationships have been depicted).
Note: Notations like <serviceClass> and<hasOperationRel> are meant to convey that these represent the <service> resource of <class> type and <hasOperation> resource of <relationship> type. The notation isSubjectOf (hasOperation) denotes an attribute of isSubject of type with the value hasOperation.

Figure 8.5.76.3.3-2: Example of <ontology> resource as a representation of the oneM2M Base Ontology
Editor's Note: Not all aspects of ontologies are represented as resources yet, e.g. individuals and implicitly defined classes.
[bookmark: _Toc435666624]8.5.76.3.4	Dual approach
The unstructured approach presented above has the advantage of providing direct access to the ontology file which then can be locally stored, cached, etc. It represents a simple method of accessing a broad range of ontologies in a straightforward manner. Using semantic requests on <ontology> resources, the aspects of the ontology relevant to the requester can be retrieved, making use of the full expressiveness of SPARQL.
Editor's Note: SPARQL can also be used for partial updates, which has not been described yet,
The structured approach, in turn creates a resource representation of the ontology within the oneM2M resource tree with addressable entities for several of aspects of the ontology.. The resource structure enables inter-ontology mapping within the platform, as well as providing ways for representing ontology extensions, especially to externally defined ontologies. It also enables use of ontology sections and easier to identify partial updates of the ontology, which may trigger semantic annotation updates. It is also envisioned to enable reasoning-related features, as each class/ relationship is discoverable and addressable.
Figure 8.5.76.3.4-1 presents a dual mode approach to the ontology resource definition which allows both representations to be used by the system, for maximum flexibility and increased system capabilities.

Figure 8.5.76.3.4-1: Ontology resource structure in the Dual Approach

[bookmark: _Toc435666625]8.5.7	Semantic Queries and the Use of Semantic Repositories
[bookmark: _Toc435666626]8.5.7.1	Introduction
Semantic Repositories as introduced in section 7 are supported by existing technologies and dedicated to the management of semantic annotations. Semantic Repositories may also store new semantic information resulting from reasoning and may support optimized query tools.
Also as discussed in section 5, Semantic Query is a function that is required in the oneM2M System to support annotation, reasoning, as well as the discovery of resources. Semantic Query uses linked Semantic Triples contained in Semantic Graph Stores (i.e. Semantic Repositories).
In order to support the use of Semantic Repositories for Semantic Query in the oneM2M System, several architectural options are considered in the following sections.
[bookmark: _Toc435666627]8.5.7.2	Semantic Queries with Semantic Descriptors Distributed in Resource Tree(s)
Semantic Filtering and Discovery have been described in the previous section which uses the distributed Semantic Descriptors without Semantic Repositories.
For the purpose of performing Semantic Queries, local and temporary Semantic Graph Stores (i.e. temporary Semantic Repositories) may be employed, as illustrated in Figure 8.5.7.2-1

[image:]
Figure 8.5.7.2-1 Architecture for Distributed Semantic Descriptors with Temporary Semantic Graph Stores

After an initial discovery of Semantic Descriptors in hierarchical Resource Tree(s), the Semantic Triples may be extracted from the Semantic Descriptors discovered and deposited into a local temporary Semantic Graph Store (i.e. a Temporary Semantic Repository). The Semantic Query is then performed on the resultant graph, using the tools supported by the graph store. An example is illustrated in Figure 8.5.7.2-2.

[image:]
Figure 8.5.7.2- 2 Semantic Query with Distributed Semantic Descriptors and a Temporary Semantic Graph Store

NOTE: a Temporary Semantic Graph Store is used to store all the Semantic Triples extracted from the Semantic Descriptors discovered from the Resource Tree(s), i.e. to form the relationship graph for each Semantic Query. It may be cleared for each query or periodically based on local policies.

[bookmark: _Toc435666628]8.5.7.3	Semantic Queries with all Semantic Triples Contained in a Semantic Repository
Editor’s Note: Operations related to this approach have not been addressed in the currentTS-0001. The filtering semantic discovery is not applicable to this approach..
The architecture supporting Semantic Queries with all Semantic Triples contained in a Semantic Graph Store is examplified by Figure 8.5.7.3-1. It illustrates the implementation of Semantic Repositories as a linked-data databases available for semantic operations.

[image:]
Figure 8.5.7.3-1 Architecture with all Semantic Triples Contained in a Semantic Graph Store

A Semantic Query in the architecture shown in Figure 8.5.7.3-1 is illustrated in Figure 8.5.7.3-2.

[image:]
[bookmark: _Ref434148462][bookmark: _Ref434148215]Figure 8.5.7.3-2 Semantic Query with all Semantic Triples Contained in a Semantic Graph Store
[bookmark: _Toc433978315]
[bookmark: _Toc435666629]8.5.7.4	Semantic Queries with Semantic Descriptors in Resource Tree(s) and Semantic Triples in a Semantic Repository
A hybrid approach is shown in Figure 8.5.7.4-1 with the following two variants:
3. Hybrid I – in which all Semantic Descriptors are distributed in Resource Tree(s) for Semantic Resource Discovery and all the Semantic Triples are contained in a Semantic Graph Store for Semantic Query.
4. Hybrid II – in which all the Semantic Descriptors are “virtual resources” as distributed in Resource Tree(s) and any operation to them will trigger the corresponding operation in the Semantic Graph Store which contains all the Semantic Triples.

[image:]
Figure 8.5.7.4-1 Architecture with Semantic Descriptors in Resource Tree(s) and Semantic Triples in a Semantic Repository

An example of a semantic query processing in the hybrid architecture is illustrated in Figure 8.5.7.4-2.

[image:]
Figure 8.5.7.4-2 Semantic Query with Semantic Descriptors in Resource Tree(s) and Semantic Triples in a Semantic Repository
Editor’s note:
1) Hybrid I: why need a permanent Semantic Graph Store? i) May be needed for advanced semantic features such as reasoning, mash-up etc. ii) May be needed for interworking with W3C Semantic Web based applications.
2) Hybrid II: the list of Semantic Triples discovered may not be retrievable due to access control.

----------------------- End of change 1---

© 2016 oneM2M Partners	 Page 3 (of 44)	

image1.emf
Mca Reference PointMcn Reference PointUnderlying Network Service Entity (NSE) Common Services Entity (CSE)Mcc ReferencePointData Management & RepositoryLocationSecurityCommunication Management/ Delivery HandlingRegistrationDevice ManagementService Charging & AccountingDiscoveryNetwork Service Exposure/Service Ex+TriggeringGroup ManagementApplication Entity (AE)Subscription and NotificationApplication and Service Layer Management SemanticsEngineCSF requiring semantic enhancement / adaptationProposed new CSF with semantic functionalityCSF possibly requiring semantic enhancement / adaptation

image2.emf
<resource>

0..n

semanticDescriptor

image3.emf
<semanticDescriptor>

1

descriptor

<subscription>

0..n

0..1

ontologyRef

image4.emf
AEwashingMachine1

ontologyRef

startStopContainer

stateContainer

semanticDescriptor

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.jpeg

image15.png

image16.png

image17.png

image18.png

image19.png

image20.emf
Device 12<semanticDescriptor>Operation Adescriptor<subscription>ontologyRef0..1<semanticDescriptor>descriptor<subscription>ontologyRef0..n0..10..1exposesCommand...Operation AhasOutputexposesCommand...OutputXquantifiesTemperatureAspectcommandKDevice12hasServicehasFunctionalityService23hasOperationOperationA......commandKresourceDescriptorLinkresourceDescriptorLink

image21.emf
<semanticDescriptor>relatedSemanticsdescriptor<subscription>ontologyRef0..n0..10..10..1

image22.emf
exposesCommandhasOutputOutputXquantifiesTemperatureAspectDevice12hasServicehasFunctionalityService23hasOperationOperationA......commandK

image23.emf
Device 12<semanticDescriptor>Operation ArelatedSemanticsdescriptor<subscription>ontologyRef0..n0..10..10..1<semanticDescriptor>relatedSemanticsdescriptor<subscription>ontologyRef0..n0..10..10..1exposesCommand...Operation AhasOutputexposesCommand...OutputXquantifiesTemperatureAspectcommandKDevice12hasServicehasFunctionalityService23hasOperationOperationA......commandK

image24.emf
Device 12<semanticDescriptor>Operation ArelatedSemanticsdescriptor<subscription>ontologyRef0..n0..10..10..1<semanticDescriptor>relatedSemanticsdescriptor<subscription>ontologyRef0..n0..10..10..1exposesCommand...Operation AhasOutputexposesCommand...OutputXquantifiesTemperatureAspectcommandKDevice12hasServicehasFunctionalityService23hasOperationOperationA......commandK<group>reourceIDmemberIDgroupName10..111memberType[...<device12>, <operationA>…]

image25.emf
<semanticGroup>semanticGroupNamesemanticGroupLinks<subscription>ontologyRef0..n0..10..11<semanticFanOutPoint>0..1

image26.emf
Device 12<semanticDescriptor>Operation ArelatedSemanticsdescriptor<subscription>ontologyRef0..n0..10..10..1<semanticDescriptor>relatedSemanticsdescriptor<subscription>ontologyRef0..n0..10..10..1exposesCommand...Operation AhasOutputexposesCommand...OutputXquantifiesTemperatureAspectcommandKDevice12hasServicehasFunctionalityService23hasOperationOperationA......commandK<semanticGroup>semanticGroupNamesemanticGroupLinksontologyRef0..10..10..11[...<device12>, <operationA>…]<subscription><semanticFanOutPoint>0..1

image27.emf
OntologyRepositorySarefSSNoneM2M Base

image28.emf
OntologycontentFormatcontentdescription<subscription>0..n0..10..n0..n

image29.emf
Ontologydescription<subscription>0..n0..10..n0..n<relationship><class>

image30.emf
Ontology<is_aRel><serviceClass><subscription>IsSubjectOf(refersTo)IsObjectOf(hasFunctrionality)<is_exposed_byRel><hasOperationRel><consists_ofRel>isSubjectOf (hasOperation)IsObjectOf(Is exposed by)<measuringClass><controllingClass><functionalityClass><refersToRel>IsObjectOf(is_a)IsObjectOf(is_a)HasSubject(Functionality)HasObject(measuring)HasSubject(Functionality)HasObject(Service)HasSubject(Service)HasObject(Operation)HasSubject(Functionality)HasObjec(Aspect)HasSubject(Service)HasObject(Service)isSubjectOf (consistsOf)IsObjectOf(hasService)HasObjectL(controlling)IsObjectOf(is_a)

image31.emf
OntologycontentFormat<relationship>content<class>description<subscription>IsSubjectOfhasSubclass0..n1..n0..n0..nIsObjectOf1..nisSubclassOfequivalentTo0..n0..n0..n0..10..nrelationshipCategoryhasSubject1..n0..nhasObjectrestriction1..n1..n0..n

image32.png

