

	[bookmark: OLE_LINK1][bookmark: OLE_LINK2]Doc# MAS-2016-0128R05-CR_TR-0007_ Access_Control_for_semantic_query_on_semantic_repository
Change Request
	

	

[bookmark: GSBox]
	[bookmark: _Toc338862360]CHANGE REQUEST

	Meeting:*
	MAS #23

	Source:*
	China Unicom

	Date:*
	2016-5-6

	Contact:*
	Junling Mao, China Unicom, maojl11@chinaunicom.cn
Mingzhe Sheng, China Unicom, shengmz5@chinaunicom.cn
Peng Wang, China Unicom,wangpeng@chinaunicom.cn

	Reason for Change/s:*
	Support access control for semantic query in the case that semantic descriptors in reousrce trees and semantic triples in a semantic repository

	CR against: Release*
	Rel-2

	CR against: WI*
	|X| Active WI-5
|_| MNT maintenace / < Work Item number(optional)>
|_| STE Small Technical Enhancements / < Work Item number (optional)>
Only ONE of the above shall be ticked

	CR against: TS/TR*
	TR-0007 V.2.9.0

	Clauses/Sub Clauses*
	

	Type of change: *
	|_| Editorial change
|_| Bug Fix or Correction
|_| Change to existing feature or functionality
|X| New feature or functionality
Only ONE of the above shall be ticked

	Post Freeze checking:*
	This CR contains only essential changes and corrections? YES |_| NO |_|
This CR may break backwards compatibility with the last approved version of the TS? YES |_| NO |_|
This CR is a mirror CR? YES |_| if YES, please indicate the document number of the original CR: <Document Number) : NO |_|

	Template Version:27 May 2015 (Dot not modify)

oneM2M Notice
The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.
[bookmark: _Toc300919386][bookmark: _Toc338862363]
GUIDELINES for Change Requests:
Provide an informative introduction containing the problem(s) being solved, and a summary list of proposals.
Each CR should contain changes related to only one particular issue/problem.
In case of a correction, and the change apply to previous releases, a separated “mirror CR” should be posted at the same time of this CR
Follow the principle of completeness, where all changes related to the issue or problem within a deliverable are simultaneously proposed to be made E.g. A change impacting 5 tables should not only include a proposal to change only 3 tables. Includes any changes to references, definitions, and acronyms in the same deliverable.
Follow the drafting rules.
All pictures must be editable.
Check spelling and grammar to the extent practicable.
Use Change bars for modifications.
The change should include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change. Additions of complete sections need not show surrounding clauses as long as the proposed section number clearly shows where the new section is proposed to be located.
Multiple changes in a single CR shall be clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.
When subsequent changes are made to content of a CR, then the accepted version should not show changes over changes. The accepted version of the CR should only show changes relative to the baseline approved text.
Introduction
In the clause 8.5.5.4 of TR0007 (V2_9_0), the semantic query for the case that semantic descriptors in resource trees and all semantic triples contained in a semantic repository is stated. How to implement the access control during querying the triples in the repository is identified as the main problem fo that case.
In the clause 8.5.5.5, three access control architectures are proposed to solve the access control problem.
1) Using the existing ACP in resource tree to control the query.

2) [bookmark: OLE_LINK11][bookmark: OLE_LINK12]Introducing new ACPs in semantic repository, and using these ACPs for the access control

3) Keep the ACPs in the resource tree of data entity and also introduce ACPs in semantic repository in semantic entity with the synchronization of ACPs in data entity and semantic entity.

In this contribution, we give the solution for the support of architecture 1, i.e. using the existing ACP in resource tree to control the semantic query on semantic repository.
-----------------------Start of change 1---
8.5.5.6 Access control solutions for semantic discovery
[bookmark: OLE_LINK7][bookmark: OLE_LINK8]8.5.5.6.1 Access Control based on the ACPs in resource tree and triples in the graph store
Implementing access control based on the ACPs in resource tree can be seen as an attractive approach since the compatiblity with existing resource tree ACPs will be kept.
8.5.5.6.1.1 Solution A ---- Semantic filtering based on graph store
In the solution descriptions below, some assumptions are considered.
1) There is a centralized graph store to store the triples in all <semanticDescriptor>s.
2) Based on the query request with a target URL in the resource tree, the scope of the query is limited to the triples in both the <semanticDescriptor>s as child resources in the sub-tree under the target URL and the relevant <semanticDescriptor>s linked to the <semanticDescriptor>s under the target URL.
Editor’note : the extensions of this solution for other cases (e.g. distributed graph stores) may be further considered.
In solution A, the triples in the <semanticDescriptor>s will be stored in one graph of a graph store. To retain the effect of ACPs in resource tree, the <semanticDescriptor>is used as the anchor to link the ACPs in resource tree and the access control during the query on semantic repository.The procedure of the solution A are described as follows.
· Pre-steps before semantic query process:
01) The CSE hosting the Graph store creates an internal ontology with class SemanticDescriptor and atomDescription, and the property describedIn, hasSubject hasObject and hasProperty
02) For each <semanticDescriptor>with ACP in resource tree(s), the CSE hosting the graph store creates corresponding semantic descriptor instances in the semantic graph store using IRI/URL of the respective <semantic Descriptor>. The semantic descriptor instances are the instances of the predefined class SemanticDescriptor.
03) The CSE hosting the graph store adds triples in semantic graph sotre to associate the semantic triples in the <semanticDescriptor>s in resource tree with the created semantic descriptor instances. The triples in the <semanticDescriptor>s in the resource tree(s) of other CSEs should be notified to the CSE hosting the graph store.
Considering that one subject can be described in multiple <semanticDescriptor>s with different ACPs, the association should be implemented with each triple for classification, and the association triples are added based on each triple described in the <semanticDescriptor>. The following figure X shows the association between the triple and the semantic descriptor instance.

Figure X. the association between the triple and the SemanticDescriptor instance
For example, for the triple in <semanticDescriptor> A as classX property Y classZ, the following association triples are needed to be added.
atomDescriptionA hasSubject classX
atomDescriptionA hasObject classX
atomDescriptionA hasproperty classZ
atomDescriptionA describedIn SemanticDescriptorA
· [bookmark: OLE_LINK5][bookmark: OLE_LINK6]The process after receiving the semantic query request with SPARQL statement.
1) The receiver CSE finds the <semanticDescriptor>s where the Originator (AE ID or CSE ID) is allowed to use for querying based on the ACPs in resource tree and the target URL in the request,.
2) The receiver CSE identifies the corresponding SemanticDescriptor instances (same IRI/URL with the <semanticDescriptor>) in the semantic graph store.
3) In the received original SPAQRL semantic query statements, the receiver CSE adds new sentences to indicate that the target variable triples are associated with the identified SemanticDescriptor instances as follows..
a) find the variables and theire relevant triples in the SPARQL query
b) create atomdescription variables for each triple with variables in the query,
c) associate the atomdescription variables with each triple with variables in the query
d) add the sentence to associate the atomdescription variables and the identified SemanticDescriptor instances.
Figure Y shows the association between the triple with variables and the SemanticDescriptor instances.

 Figure Y. the association between the triple with variables in SPARQL query and the SemanticDescriptor instances
For example, for the original SPAQRL query
SELECT ?device ?operation
WHERE {
?device rdf:type m2m:WashMachine.
?device m2m:hasOperation ?operation.
}
If the allowed SemanticDescriptor instance is SemanticDescriptorA, then the modified SPAQRL query is given as
 SELECT ?device ?operation
WHERE {
?device rdf:type m2m:WashMachine.
?device m2m:hasOperation ?operation.
?atom1 temp:hasSubject ?device.
?atom1 temp:hasObject ?operation
?atom1 temp:hasProperty m2m:hasOperation
?atom2 temp:hasSubject ?device
?atom2 temp:hasObject m2m:WashMachine
?atom2 temp:hasProperty rdf:type
?atom1 temp:desribedIn SemanticDescriptorA(IRI/URL).
?atom2 temp:desribedIn SemanticDescriptorA(IRI/URL).
}
4) The receiver CSE sends the modified SPARQL semantic query statement to the CSE hosting the graph store for querying the graph store.
5) The receiver CSE compose Response according to the semantic query results feedback from the CSE hosting the graph store..

 In the following part, we give a complete example to explain solution A. The considered resource tree is shown in figure Z where three <semanticDescriptor> (SD) resources are involved.

Figrue Z. considered resource tree in the example
The triples in SD-1, SD-2 and SD-3 are assumed as follows.
SD-1
 HomeA rdf:type ex:Home
HomeA ex:hasLocation LocationA
LocationA ex:hasLatitude “300”
LocationA ex:hasLongitude “200”

SD-2
DeviceA rdf:type m2m:TemperatureSensor
DeviceA ex:hasLocation LocationA

There is a link to SD-1 in SD-2 that indicates Location(class) related information can be trieved from SD-1.

SD-3
DeviceB rdf;type ex:DoorLock
DerviceB ex:hasLocation LocationA

The CSEA hosts the graph store. The triples in the graph store will include all the tripes in the<semanticDescriptor>, and there will be 4 additional triples for each triple in the<semanticDescriptor>. The total additional triples are given as follows.
For SD-1
atom1 temp:hasSubject HomeA
atom1 temp:hasObject ex:Home
atom1 temp:hasProperty rdf:type
atom1 temp:describedIn SD-1
atom2 temp:hasSubject HomeA
atom2 temp:hasObject LocationA
atom2 temp:hasProperty ex:hasLocation
atom2 temp:describedIn SD-1
atom3 temp:hasSubject LocationA
atom3 temp:hasObject “300”
atom3 temp:hasProperty ex:Latitude
atom3 temp:describedIn SD-1
atom4 temp:hasSubject LocationA
atom4 temp:hasObject “200”
atom4 temp:hasProperty ex:hasLongtitude
atom4 temp:describedIn SD-1

For SD-2
atom5 temp:hasSubject DeviceA
atom5 temp:hasObject m2m:TemperatureSensor
atom5 temp:hasProperty rdf:type
atom5 temp:describedIn SD-2
atom6 temp:hasSubject DeviceA
atom6 temp:hasObject LocationA
atom6 temp:hasProperty ex:hasLocation
atom6 temp:describedIn SD-2

For SD-3
atom7 temp:hasSubject DeviceB
atom7 temp:hasObject m2m:DoorLock
atom7 temp:hasProperty rdf:type
atom7 temp:describedIn SD-3
atom8 temp:hasSubject DeviceB
atom8 temp:hasObject LocationA
atom8 temp:hasProperty ex:hasLocation
atom8 temp:describedIn SD-3

It is assumed that an originator sends the query request in which the target URL is the URL of AppA and SPARQL query filter is
SELECT ?device
WHERE {
?device ex:hasLocation ?Location.
?Location ex:hasLatitude ?val1.
?Location ex:hasLagitude ?val2.
FILTER(?val1==”300” && ?val2 ==”200”)
}
When receiving this query request, the CSEA will first identify the scope of the <semanticDescriptor>s related to the query as follows.
1) find that there are two SDs, i.e. SD-2 and SD-3, under the target URL, and then check the ACPs linked to these SDs and find that only SD-2 is allowed to be used by the originator in the query.
2) find that there is a link (e.g. relatedSemantics attribute of <semanticDescriptor>) in the SD-2 to SD-1 for the class Location, and then check the original SPARQL query and find that class Location is involved.
3) check the ACP linked to SD-1 and find that SD-1 is not allowed to be used by the originator in the query.
After identifying the scope of the <semanticDescriptor>s (SD_2) related to the query, the CSEA revises the original SPARQL query as
SELECT ?device
WHERE {
?device ex:hasLocation ?Location.
?Location ex:hasLatitude ?val1.
?Location ex:hasLagitude ?val2.
?agtom1 temp:hasSubject ?device.
?atom1 temp:hasObject ?Location.
?atom1 temp:hasProperty ?hasLocation.
?atom2 temp:hasSubject ?Location.
?atom2 temp:hasObject ?val1.
?atom2 temp:hasProperty ex:hasLatitude.
?atom3 temp:hasSubject ?Location.
?atom3 temp:hasObject ?val2.
?atom3 temp:hasProperty ex:hasLongitude
?atom1 temp:describedIn SD-2
?atom2 temp:describedIn SD-2
?atom3 temp:describedIn SD-2
FILTER(?val1==”300” && ?val2 ==”200”)
}
 The CSEA applies the revised SPARQL query to the graph store, and return the result.
The returned result is none device.

-----------------------End of change 1---
-----------------------Start of change 2--
8.5.5.6.1.2 [bookmark: _Toc300919392]Solution B ----- Graph division based semantic filtering
In the solution descriptions below, some assumptions are considered.
1) There is a centralized graph store to store the triples in all <semanticDescriptor>s.
2) The returned information for query request is in the scope of the triples in all possible <semanticDescriptor>s. The scope may contain more triples (i.e. from <semanticDescriptor>s not explicitely linked to the <semanticDescriptor>s under the original target URL) compared with solution A.
Editor’note : the extensions of this solution for other cases (e.g. distributed graph stores) may be further considered.
In solution B, the triples in the <semanticDescriptor>s will be stored in separated graphs in the graph store. There are two options for the graph division.
· Option 1
Store the triples in the same <semanticDescriptor> in a graph.
· Option 2
Store the triples in the semantic descriptors linked to the same ACP in a graph
For Option 1, there will be many graphs in the graph store and the query speed will be slow when the query across the union of a lot of graphs, but each graph of Option 1 is not necessary to be updated with the update of ACPs. For Option 2, the number of graphs will be small but it needs the synchronization between the graphs and the ACPs.
The procedure of solution B is simple.
· Pre-step
01) The CSE hosting the graph store stores the triples in the separated graphs of graph store as Option 1 or Option 2.
02) The ACP information related to <semanticDescriptor>s in the resource tree(s) of other CSEs should be notified to the CSE hosting the graph store.
· Query-step
The query request will be forwarded from the receiver CSE to the CSE hosting the graph store for query.
For Option 1:
After receiving the forwarded request, the CSE hosting the graph store will
1) Find the <semanticDescriptor>which is allowed to be used in the query according to the ACP.
2) Identify the graphs that corresponds to the found <semanticDescriptor>in the previous step.
3) Apply the SPARQL query on the union of the identified graphs
4) Return the query result
For Option 2:
After receiving the forwarded request, the CSE hosting the graph store will
1) Identify the access permissions of the Originator of the original request before forwarding according to ACPs, and find the relevant ACPs that includes the Originator to have discovery permissions.
2) Identify the graphs that corresponds to the found ACPs in the previous step.
3) Apply the SPARQL query on the union of the identified graphs.
4) Retrun the query results
---End of change 2-----------------------------------
CHECK LIST
· Does this change request include an informative introduction containing the problem(s) being solved, and a summary list of proposals.?
· Does this CR contain changes related to only one particular issue/problem?
· Have any mirror crs been posted?
· Does this change request make all the changes necessary to address the issue or problem? E.g. A change impacting 5 tables should not only include a proposal to change only 3 tables. Includes any changes to references, definitions, and acronyms in the same deliverable?
· Does this change request follow the drafting rules?
· Are all pictures editable?
· Have you checked the spelling and grammar?
· Have you used change bars for all modifications?
· Does the change include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change? (Additions of complete sections need not show surrounding clauses as long as the proposed section number clearly shows where the new section is proposed to be located.)
· Are multiple changes in this CR clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.?

© 2016 oneM2M Partners	 Page 5 (of 11)	

image3.png

image4.png

image5.png

image6.png

image1.emf
semanticDescriptorACP1RDF triplessemanticDescriptorACP2RDF triplessemanticDescriptorACP3RDF triplessemanticDescriptorACP4RDF triplesData LayerSemantic LayerCSESemantic Resource Discovery

image2.emf
Semantic QueryRDF triplesACPsOntology Data LayerSemantic LayerCSEIndex MappingA data resource addressed by a triple associated with a ACPSemantic Resource Discovery

image7.png

