	CHANGE REQUEST

	Meeting:*
	SEC 29

	Source:*
	Gemalto

	Date:*
	2017-05-12

	Contact:*
	francois.ennesser@gemalto.com

	Reason for Change/s:*
	The SE framework to support PKI deployments, contributed at SEC 28, needs to be completed.

	CR against: Release*
	3

	CR against: WI*
	 FORMCHECKBOX
 Active WI-0067
 FORMCHECKBOX
 MNT Maintenance

 FORMCHECKBOX
 STE Small Technical Enhancements / < Work Item number (optional)>
Only ONE of the above shall be ticked

	CR against: TS/TR*
	TS-0003 v3.2.0

	Clauses/Sub Clauses*
	Annex L

	Type of change: *
	 FORMCHECKBOX
 Editorial change

 FORMCHECKBOX
 Bug Fix or Correction

 FORMCHECKBOX
 Change to existing feature or functionality

 FORMCHECKBOX
 New feature or functionality
Only ONE of the above shall be ticked

	Post Freeze checking:*
	This CR contains only essential changes and corrections? YES FORMCHECKBOX
 NO FORMCHECKBOX

This CR may break backwards compatibility with the last approved version of the TS? YES
 NO
This CR is a mirror CR? YES FORMCHECKBOX
 if YES, please indicate the document number of the original CR: <Document Number) : NO FORMCHECKBOX

	Template Version:27 May 2015 (Dot not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

GUIDELINES for Change Requests:

Provide an informative introduction containing the problem(s) being solved, and a summary list of proposals.

Each CR should contain changes related to only one particular issue/problem.
In case of a correction, and the change apply to previous releases, a separated “mirror CR” should be posted at the same time of this CR

Follow the principle of completeness, where all changes related to the issue or problem within a deliverable are simultaneously proposed to be made E.g. A change impacting 5 tables should not only include a proposal to change only 3 tables. Includes any changes to references, definitions, and acronyms in the same deliverable.
Follow the drafting rules.

All pictures must be editable.
Check spelling and grammar to the extent practicable.
Use Change bars for modifications.
The change should include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change. Additions of complete sections need not show surrounding clauses as long as the proposed section number clearly shows where the new section is proposed to be located.
Multiple changes in a single CR shall be clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.
When subsequent changes are made to content of a CR, then the accepted version should not show changes over changes. The accepted version of the CR should only show changes relative to the baseline approved text.
Introduction

The present CR completes a previously agreed CR describing an interoperable framework to support PKI based oneM2M deployments with hardware Secure Environments.
R01 version completes the description of an ECDH mutual authentication sequence in Clause L.12.4.
R02 aligns terminology on personalization and operational state and implements enhancements following Monday comments.
-----------------------Start of change 1---

Annex L (normative):
Tamper-resistant secure element framework to support asymmetric cryptography Services
L.0
Introduction
L.0.1
Overview
The present annex is applicable to tamper-resistant hardware secure elements that interface with hosting M2M devices using a subset of commands, data structures and return codes complying with ISO 7816-4 [26], ISO 7816-6 [60], ISO 7816-8 [61] or ISO 7816-9 [62] as specified hereunder.
Such secure elements may be integrated in PKI systems to provide secure identification and authentication of devices, tamper-resistant storage areas for sensitive data (especially secure storage of private keys which may be generated on board in the SE and always used within it) managed by defined stakeholders, and digital signature services with management of digital certificates. Secure element supporting asymmetric cryptographic services are termed Asymmetric Secure Element (ASE) in the rest of the present annex, which specifies a minimum subset of features affecting the interface between the ASE and hosting device to enable interoperable deployments.
The ASE may be a UICC, in which case the framework proposed in the present annex may coexist with some features specified in Annex D. However, an ASE does not need to be UICC compliant to implement the framework specified in the present annex.
The ASE behaviour specified in the present annex is typically implemented as a secure element applet as per GlobalPlatform Card Specifications [63], which first needs to be selected in order for the ASE to exhibit the specified behaviour. This implementation provides the possibility to install and provision the asymmetric cryptographic capabilities on secure elements, even after deployment on the field, in a standard manner. It also enables to leverage on the Security Domains structure (SD) of the GlobalPlatform Card specification [63], allowing multiple stakeholders to independently operate and manage their own secure environments on a single secure element. In any case, operation of the secure element relies on support in the hosting device for the interface specified in the present annex for the operational state.
The functionalities described in the present annex imply the presence of a random number generation capability in the ASE. This functionality may be made available to the hosting device via a special mode of the GET CHALLENGE command.
L.0.2
Naming Conventions

To easily identify whether a key is public or private, whether it exists in the ASE or the hosting device or is a CA key, and also the usage of a key, the following notation is used in this annex:

KeyType.KeyOwner.KeyUsage
The possible values are shown in the following table:

Table L.0-1: Key naming convention
	Parameter
	Value
	Meaning

	KeyType
	PuK
	Public Key

	
	PrK
	Private key

	KeyOwner
	ICC
	ASE

	
	IFD
	Hosting device (i.e. interface with M2M application)

	
	CA
	Certification Authority

	KeyUsage
	AUT
	Authentication key

	
	DS
	Digital signature key

	
	KA
	Key Agreement

To easily identify whether a certificate can be verified in the ASE or not, whether it exists in the ASE or the hosting device or belongs to a CA or root CA, and also its usage, the following notation is used in this annex:

CertType.CertOwner.CertUsage

The possible values are shown in the following table:

Table L.0-2: Certificate naming convention
	Parameter
	Value
	Meaning

	CertType
	C
	Certificate

	
	C_CV
	ASE verifiable certificate

	CertOwner
	ICC
	ASE

	
	IFD
	Hosting device (i.e. interface with M2M application)

	
	CA
	Certification Authority

	
	CAICC
	Certification authority that generated the certificate for the ICC public key

	
	RCA
	Root Certification Authority

	CertUsage
	AUT
	Authentication

	
	CS-AUT
	Certificate Signature Authentication

	
	DS
	Digital Signature

L.1
Physical interface and transport protocol
The Secure Element may interface with the hosting M2M device through various physical communication means, as long as a transport protocol supporting ISO 7816-4 APDU [26] is supported. This is the case, for example, for UART supporting the “T=0” or “T=1” transport protocols, the USB Interface of ETSI TS 102 600 [i.23], or the Contactless Front-End interface (“T=CL” transport protocol) specified by ETSI SCP TS 102 622 [i.24]), The difference between the multiple communication links (wired or NFC) is only visible through Secure Element types in the present annex, but does not otherwise impact the way applications would interact with the Secure Element.
The present annex enables usage of the GlobalPlatform Open Mobile API specifications [i.22] as an intermediate layer to facilitate the interfacing of device applications with secure elements.
L.2
Lifecycle phases
The ASE or ASE applet lifecycle comprises the following phases:
· Personalization, where the ASE maintains the state initialized upon ASE creation or ASE applet installation to enable its initial provisioning. This phase is supposed to take place in a trusted facility under control of the stakeholder responsible for the ASE (e.g. ASE issuer facility, device assembly line or Point of sale). It ends when the ASE receives a special command which triggers transition into its operational state.
· Operational phase, where the ASE maintains a state suitable for secure operation in the field, into which a transition is triggered upon completion of the personalization phase.
During any of the above phases, the ASE may move into a blocked state designed as a protection mechanism, upon integrity problem or locking of the authentication mechanism.
In each state, three secure channel modes may be requested by the ASE to secure data exchange with a host:: None, MAC only, or MAC and encryption.

In case the ASE functions are provided under the form of a GlobalPlatform applet, the security of the applet during the installation phase is ensured by the Card Manager, which computes the session keys and opens a secure channel with the personalization device to protect loading and installation. Once loaded, the applet becomes selectable, which enables its provisioning.
Operation of the ASE (or ASE applet) during its personalization phase can be subject to specific constraints and can include special commands that are not available in the operational statee and not specified in the present document. The GlobalPlatform Card Specification [63] specifies personalization commands and procedures that may be implemented in deployments requiring interoperability in the personalization state.
At the end of initial provisioning/personalization, the ASE (or ASE applet) enters an operational state, in which it shall behave as specified in the present annex to enable interworking with the hosting device. The present document specifies the data structures, commands and procedures that shall be supported by the ASE.
 During operation, the secure element may move to a “blocked” state once it encounters any integrity problem or e.g.. if a maximum allowed number of authentication attempts has been reached. Only the GET DATA command may be allowed in this state.
L.3

Device Application / ASE Authentication and Secure Channel Establishment
To prevent execution of commands and access to information by unauthorized entities, communication between the hosting device application and ASE shall rely on the establishment of a secure channel, based on mutual authentication of the communicating entities, both in the personalization and the operational state. This enables encryption of the information exchanged over the Mcs and Mca reference points. This bilateral mechanism ensures that:

· On one side, any entity (such as a clerk) which wants to access the protected data on the ASE, shall authenticate themselves to the ASE. Behind the entity are the system and the hosting device (called IFD). The ASE checks that the entity who is requiring access to the data is allowed to do so.

· On the other side, the ASE authenticates itself to the clerks systems via the IFD, to ensure that it is genuine.
After mutual authentication between an entity and the ASE, the ASE grants the specific access rights related to the entity.
The secure channel authentication required for the ASE and external entity to exchange sensitive information may be based on either symmetric or asymmetric credentials as defined below:
· Asymmetric key mutual authentication based on the ASE and IFD verifying the existence of a certified key pair in the other entity. This process can be based on either RSA device authentication, or ECC device authentication with privacy protection (DAPP) using the elliptic curve algorithm ECDSA recommended in EN 419 212 [63]. Where needed, common symmetric session keys can then be derived using the Diffie–Hellman key exchange mechanism to ensure integrity and/or confidentiality of the information exchange.
· Symmetric key mutual authentication based on the ASE and IFD verifying the existence of two AES symmetric secret keys, KENC and KMAC, in the other entity. A successful symmetric mutual authentication opens the secure channel. The succeeding operational state commands shall then be constructed using Secure Messaging as specified in ISO 7816-4 [26]. Note that command chaining may have to be used for long command or response data fields.
Establishment of a secure channel, i.e. a secure messaging session, requires a successful mutual authentication between the ASE and hosting device, using an ECDH or PKDH EXTERNAL AUTHENTICATE command in the case of asymmetric credentials, or a MUTUAL AUTHENTICATE command in the case of symmetric credentials.
A secure messaging session, i.e. the secure channel, may be terminated by performing an UNAUTHENTICATE Ext. command. The following scenarios shall also terminate a secure channel:

· Power off or reset of the ASE

· Reselection of the ASE applet
· An APDU command with an incorrect MAC is received by the ASE

· an APDU command in clear text is received by the ASE in AES secure messaging.
L.4

SE Verifiable Certificates

These are certificates stored in the ASE and used in asymmetric key mutual authentication. The SE Verifiable Certificate is issued and signed by a trusted certificate authority (CA) and stored in the hosting device to show that it (and so the entity behind it) can be trusted. This certificate is referred as C_CV.IFD.AUT. The ASE can check that the SE Verifiable Certificate in the hosting device can be trusted by using the CA’s public key.

Similarly, the ASE may contain a certificate issued and signed by the CA, called the C.ICC.AUT. The hosting device can check that this certificate was genuinely issued and signed by the CA by using the CA’s public key.
SE Verifiable Certificates used in RSA-based device authentication are non self-descriptive (i.e. the tags and lengths of the signature elements are not included in the format), while SE Verifiable Certificates used in Elliptic Curve Device Authentication are self-descriptive. Both shall follow the respective RSA-based and ECC-based format specified in EN 419 212 [63]. Such SE Verifiable Certificates include a Certificate Holder Authorization (CHA) that may be used as a security condition to access relevant sensitive data.
L.5

Secure Storage
L.5.0
Objects Overview
An ASE supports File Objects and Data objects as ways to store information in non volatile memory.

File objects comprise Elementary Files (EFs), and DFs used to organize the file structure in a hierarchy. EFs store information meant to be exchanged with external entities: This includes permanent storage of stakeholder information, storage of service credentials, and storage of data for service processing. File Objects are created using the CREATE FILE command. Unless specific restrictions are applied (see clause L.9), the content of EFs can be updated dynamically during operation provided that the required file access control conditions are satisfied.
Data objects are meant to store information used during internal processes such as secret keys. The structures for Data objects need to be reserved during the personalisation phase but their content can be updatable, if desirable, during the operational phase.
L.5.1
TLV Coding

Both files and data objects store data in Tag, Length, Value (TLV) format as pecified in ISO 7816-6 [60].

If a mandatory tag is not present, the ASE shall return an error if the tag is not found: 6985h or 6A80h depending on the command. If the tag byte is optional, the ASE shall use the default value if the tag byte is not found.

If the number of bytes in the chain exceeds the number expected, an error (6A80h) shall be returned.

If the number of bytes does not exceed the number expected, the ASE shall continue parsing and interpret them according to the information given. This may not necessarily cause an error because the chain could be correct in terms of a valid construction, but still give incorrect results and produce unpredictable behavior.

If the ASE is expecting an optional tag, it may ignore an unexpected tag value that it encounters. If extra tags are found and the TLV chain is correctly constructed, the ASE may ignore the extra tag bytes and their corresponding length and value bytes, and continue parsing the chain. No error may be returned in this case.

In case of duplication of tags, the first tag byte found shall be used, the later ones being ignored.

L.5.2
DF
The file structure of the ASE follows the principles of ISO 7816-4 [26]. Each ASE shall have a Master File (MF) under which application specific DFs may be created.
Each PKI application shall be represented on the Secure Element by a specific DF (Dedicated File) under which all Elementary Files pertaining to the application are stored. Each DF shall be associated with a File Control Parameters (FCP) template in TLV format with tag ‘62h’ that indicates the data elements contained in the DF,
Table L.5.2-1: FCP for DFs

	Tag
	Length
	Tag
	Length
	Value
	Description

	62h
	0Bh-25h
	
	Tag and Length of FCP template

	
	
	82h
	01h
	38h
	TLV of File Description Byte (FDB)

	
	
	83h
	02h
	Var.
	TLV of File ID

	
	
	8Ch
	02h-04h
	Var.
	TLV of Security Attributes (access mode

and security condition bytes) - contact

interface

	
	
	9Ch
	02h-04h
	Var.
	TLV of Security Attributes (access mode

and security condition bytes) - contactless

interface

	
	
	84h
	01h-10h
	Var.
	TLV of DF name

The FDB indicating a DF nature and the file ID are mandatory.They are allocated upon creation.
TheSecurity Attributes are made up of one Access Mode byte which indicates the commands to be controlled, followed by 1–3 Security Condition bytes which indicate the conditions for each command indicated in the Access Mode byte. The coding is identical for the contact and contactless interfaces. At least one security attribute is mandatory, depending on the physical interface(s) of the secure element (it is possible to have 8Ch or 9Ch or both).

The DF name is optional and if used shall be the final parameter. The DF Name can be up to a maximum of 16 bytes. It may be used to reference a file in a command.

L.5.3
EF
Data stored in the ASE requiring access by external entities are stored in Elementary Files (EFs) that may be located at MF level or under a DF. The information needed to manage an EF are recorded in its File Control Parameters (FCP) structure (TLV format, tag 62h) that are specified upon creation (see CREATE FILE Command). The access mode byte of the parent file (DF or MF) indicates whether file creation is allowed in the operating phase,
At least transparent files shall be supported. A transparent file consists of an unstructured sequence of bytes that can be accessed by specifying an offset relative to the start of the EF. The offset size is given in bytes. The first byte of a transparent EF has the relative address 00h.

 Table L.5.3-1: FCP for EFs

	Tag
	Length
	Tag
	Length
	Value
	Description

	62h
	12h-1Eh
	
	Tag and Length of FCP template

	
	
	81h
	02h
	Var.
	TLV of file size (in bytes)

	
	
	82h
	01h
	01h.
	TLV of FDB

	
	
	83h
	02h
	Var.
	TLV of File ID

	
	
	8Ah
	01h
	Var.
	TLV of Lifecycle status

	
	
	8Ch
	02h-06h
	Var.
	TLV of Security Attributes (access mode

and security condition bytes) - contact

interface

	
	
	9Ch
	02h-06h
	Var.
	TLV of Security Attributes (access mode

and security condition bytes) - contactless

interface

At least one security attribute (tag 8Ch and/or 9Ch) is required. All other TLV elements are mandatory.
Content of the Value field:
The file size value specifies the file size in bytes.
The FDB value is set when an EF is created. The value ‘01h’ indicates a transparent file, other file types are not used in the present annex.
The File ID is allocated when the file is created. The short file identifier corresponds to the 5 least significant bits of the file identifier. It is used to reference a file in a command.
The life cycle status shows the status of the EF. The Lifecycle status byte is coded as follows:
Table L.5.3-2: Lifecycle Status byte coding
	b8…b5
	b4
	b3
	b2
	b1
	State

	0..0
	0
	0
	0
	1
	CREATED

	0..0
	0
	0
	1
	1
	INITIALIZED

	0..0
	0
	1
	–
	1
	OPERATIONAL (ACTIVATED)

	0..0
	0
	1
	–
	0
	OPERATIONAL (DEACTIVATED)

The Security Attributes are made up of one Access Mode byte which indicates the commands to be controlled, followed by 1–5 Security Condition bytes which indicate the conditions for each command indicated in the Access Mode byte. The coding is identical for the contact and contactless interfaces.

L.5.3.1
File referencing

Any file can be referenced by its two–byte file identifier (tag 83h). Some commands such as READ BINARY can reference EFs by the 5 least significant (rightmost) bits of the file identifier, known as the short file identifier (SFI).

One shall make sure that no two files under the same parent have the same ID, nor the same ID as the parent file.
NOTE:

1 The value 3F 00h is reserved for the MF.

2 The value FF FFh is reserved for future use (RFU).

3 The value 3F FFh is reserved (see “referencing by path” in ISO/IEC 7816-4 [26]).
Any DF can be selected by its name (1–16 bytes). One shall make sure that no two DFs share the same name. When referencing a file by its name, the whole name shall be specified (partial names may not be supported).
A file’s path is the concatenation of two–byte file identifiers starting from the MF (but not including the MF) and ending with the file itself. This effectively means that the path for a DF or an EF directly under the MF is just its two byte file-IDs. For EFs under a DF, the path becomes a concatenation of the parent DF file ID and the EF's file ID (four bytes).

L.5.4
Data Objects

Data Objects (DO) are created with the PUT DATA command and are meant to store secret information used during access request verification, authentication, hash, signature and decryption processes. They are independent of the rest of the file structure. They include:

· ISO Security Environments parameters (EP)

· PINs

· Symmetric secret keys for supported algorithms such as 3DES and AES

· Private and Public keys for supported algorithms such as RSA and ECC
· Diffie-Hellman key exchange parameters for supported asymmetric algorithms

PUT DATA may be used to initialize or update data objects during personalization.

During operation, the PUT DATA command may be used to update symmetric secret keys, Diffie-Hellman key exchange parameters, PINs including PIN policy, PUK reference and PIN type only, and certain additional applicative parameters. One PUT DATA command shall be used for each key element.
All keys loaded during the personalization phase shall be identified by a KID that is set during this phase. The KID belongs to the key pair, that is, the private key and public key share the same KID.Apart from PuK.IFD.AUT, all RSA and ECC keys are identified by a one-byte identifier (KID). PuK.IFD.AUT uses the certificate holder reference (CHR) as a key name. This name is taken from the IFD certificate, C_CV.IFD.AUT, used in asymmetric key mutual authentication.

L.5.4.1
ISO Security Environment parameters
Security Environments Parameters (EPs) have three purposes as follows:

· To control access to a file or data object, by referencing the keys, PINs and algorithms to use for protection procedures (i.e. Secure Messaging, Mutual Authentication, User Authentication)
· To indicate the keys and algorithms to use in the decryption, hash and signatures operations, i.e. with the PERFORM SECURITY OPERATION (PSO) and
PKDH or ECDH INTERNAL AUTHENTICATE commands. In this case the current EP specifies the keys ands algorithms to use
In the first case, Security Attributes determine whether user authentication (PIN) is necessary to perform a command. The Security Attributes can specify an EP which contains the references of the PIN(s) to be used.

In all cases, the EP defines in which life cycle states the keys and PINs can be used.
NOTE: For simplicity, it is recommended to dissociate both purposes (access control vs. cryptographic contexts) into separate EPs.
The components of an EP are the following TLVs:

· The security environment parameters identifier (EPID)

· An optional life cycle status (LCS) TLV object, indicating life cycle status for object access.

· One or more Control Reference Templates
The EPID is a one–byte identifier that is unique for each EP. It is a TLV object with a

tag value of 80h. Certain values have specific meanings as shown in the following

table:
Table L.5.4.1-1: EPID values

	Value
	Meaning

	00h
	Empty EP, no Secure Messaging or Authentication defined

	01h
	Default EP

	EFh
	RFU

	FFh
	No operation can be performed

Although the EPID can take any value in the range 00–FFh subject to above table, only EPIDs in the range 01h – 0Eh can be coded in the security attributes of a data object. EPID = 01h is reserved for the default EP which shall always be defined in an ASE.
The LCS tag is 8Ah. LCS coding is specified in Table L.5.3-2.

The ASE shall grant access to a file if the LCS of the file matches the LCS of the EP. If there is no LCS data object present, the EP is valid for the OPERATIONAL (ACTIVATED) life cycle status.

Access shall be granted to data objects if the LCS of the EP is either absent or set to OPERATIONAL (ACTIVATED).

Control Reference Templates define the use of the EP and are each specified by their own tag. The ASE shall support the following CRT:
Table L.5.4.1-2: Control reference templates tag values

	Tag
	Template
	Purpose

	A4h
	AT (Authentication Template)
	Protect data objects by one of the following:

Card holder verification (PIN reference)

Symmetric key mutual authentication (key set)

Asymmetric key mutual authentication (CHA).

Verification of certificate used in asymmetric key mutual authentication

	A6h
	KAT (Key Agreement Template)
	Defines CA public key prior to certificate verification

	AAh
	HT (Hash Template)
	Defines the hash algorithm to use for the PSO-Hash command. Can also be used to define the EC private key and algorithm to be used when creating a digital signature with ECDSA

	B4h
	CCT (Cryptographic Checksum Template)
	Protect data objects by specifying whether Secure Messaging with MAC is necessary for the command, the response or both.

	B6h
	DST (Digital Signature Template)
	Defines the RSA or ECC private key and algorithm to be used when creating a digital signature

	B8h
	CT (Confidentiality Template)
	Protect data objects by specifying whether Secure Messaging with MAC and Encryption is necessary for the command, the response or both.

Defines the RSA private key and algorithm to be used when decrypting data

It is possible to have more than one Control Reference Template with the same tag in the same EP, e.g. several authentication template each indicating a different PIN, or each with its own CHA.
Control Reference templates may contain the different kinds of Control Reference Data Objects (CRDO) indicated by an X in Table L.5.4.1-3, each having its own tag. If more than one CRDO with the same tag exists in a Control reference Template, then at least one of these objects shall be fulfilled (OR condition). All the CRDOs are optional.
Table L.5.4.1-3: Control Reference Data Objects

	Tag
	CRDO
	AT
	KAT
	HT
	CCT
	DST
	CT

	80h
	Algorithm ID
	X
	-
	X
	-
	X
	-

	83h
	PIN reference (user authentication)

Key reference for a symmetric key

mutual authentication

Diffie–Hellman key exchange

Parameters

PK for Verify certificate
	X
X

-

-
	-
-

X

-
	-
-

-

-
	-
-

-

-
	-
-

-

X
	-
-

-

-

	84h
	Key reference for a private key
	X
	-
	-
	-
	X
	-

	91h
	Random data object
	-
	X
	-
	-
	-
	-

	95h
	Control reference Template Usage Qualifier
	X
	-
	-
	X
	-
	X

	5F4Ch
	Certificate Holder Authorization (CHA) (asymmetric key mutual authentication)
	X
	-
	-
	-
	-
	-

 In order to specify the type of use for a Control Reference Template, it may contain a special type of CRDO

called a Control Reference template usage qualifier (tag 95h). The possible values for this are shown in the following table: Thus for AT, the values are 80h for mutual authentication or 08h for user authentication. The values for CCT and CT are always 30h since if Secure Messaging is used, it shall be used in both the command and response. Here Secure Messaging refers to MAC for Cryptographic Checksum Template and encryption for Confidentiality Template.
Table L.5.4.1-4: Control Reference Template Usage Qualifier Values

	Meaning
	b8
	b7
	b6
	b5
	b4
	b3
	b2
	b1

	RFU
	0
	X
	0
	0
	0
	X
	X
	X

	Mutual Authentication (AT)
	1
	0
	0
	0
	0
	0
	0
	0

	Secure Messaging in response (CCT, CT, DST)
	0
	0
	1
	0
	0
	0
	0
	0

	Secure Messaging in command (CCT, CT, CST)
	0
	0
	0
	1
	0
	0
	0
	0

	User Authentication (PIN) (AT)
	0
	0
	0
	0
	1
	0
	0
	0

Authentication Templates (AT, tag A4h) are coded as follows:

· For PIN User Authentication: ATs contain only one PIN. A security attribute specifying 2 PINs requires 2 ATs, one for each PIN. The AT TLV length is 06h, containing the following AT Template:
Table L.5.4.1-5: AT Template for PIN
	Tag
	Length
	Value
	Presence

	83h
	01h
	PIN Reference: Refer to PIN Reference Notation for coding
	Mandatory

	95h
	01h
	CRT Usage Qualifier, set to 08h to indicate User Authentication
	Mandatory

· For Symmetric Key Mutual Authentication: The AT TLV length is 06h or 09h, containing the following AT Templates:

Table L.5.4.1-6: AT Template for AES Symmetric Secret Key
	Tag
	Length
	Value
	Presence

	80h
	01h
	Algorithm Reference, set to 8Ch for AES. Refer to Algorithms for Symmetric Authentication for coding. If this TLV is absent, AES (8CH) is used y default.
	Optional

	83h
	01h
	Key Reference TLV
	Mandatory

	95h
	01h
	CRT Usage Qualifier, set to 80h to indicate Mutual Authentication
	Mandatory

· For Certificate Holder Authorization (CHA): If a CHA is to be used as part of the security conditions to access data or functions, it shall be present in the corresponding AT and coded in a data element with tag 5F4Ch. The CHA in the SE Verifiable Certificate shall match the one specified in the EP. The AT TLV length is 0Dh, containing the following AT Template:

Table L.5.4.1-5: AT Template for a CHA
	Tag
	Length
	Value
	Presence

	5F4Ch
	07h
	CHA
	Mandatory

	95h
	01h
	CRT Usage Qualifier, set to 80h to indicate Mutual Authentication
	Mandatory

Key Agreement Templates (KAT, tag A6h) are used with asymmetric key mutual authentication to send the ASE the ID of the Diffie-Hellman Key Exchange Parameters used to compute the KIFD value as well as the KIFD itself, to enable the ASE to calculate the value of the session key. They.have a length of 86h and are are coded as follows:

Table L.5.4.1-8: Key Agreement Template (KAT) Coding
	Tag
	Length
	Value
	Presence

	83h
	01h
	Key Reference: Key ID for the DH key exchange parameters
	Mandatory

	91h
	81h80h
	KIFD (considered as a random data object)
	Mandatory

Hash Templates (HT, tag AAh) define the hash algorithm to use for the PSO-Hash command. It shall be consistent with the DST temaplate used for the subsequent PSO - Compute Digital Signature command. They have a length of 03h and are are coded as follows:

Table L.5.4.1-7: Hash Template (HT) Coding
	Tag
	Length
	Value
	Presence

	80h
	01h
	Algorithm Reference: Refer to Table L.7.2.2-1 for coding.
	Mandatory

Cryptographic Checksum Templates (CCT, tag B4h) specify the secure messaging (MAC) to be used for commands accessing the data object (MAC needed in the command or the response or both). They.have a length of 06h and are are coded as follows:

Table L.5.4.1-8: Cryptographic Checksum Template (CCT) Coding
	Tag
	Length
	Value
	Presence

	83h
	01h
	Session Key Reference, set to 00h as there is only one possible session key generated during mutual authentication
	Mandatory

	95h
	01h
	CRT Usage Qualifier: see table L.5.4.1-4 for coding
	Mandatory

NOTE: When using the MSE-set command, the tag and length of the CCT are not included in the coding of the data field.
Digital Signature Templates (DST, tag B6h) may serve the following purposes:

· To specify the algorithm and private key to use in a digital signature computation (to be used in aPSO - Compute Digital Signature command): In this case, DSTs have a length of 06h and are are coded as follows:

Table L.5.4.1-9: Digital Signature Template (DST) Coding
	Tag
	Length
	Value
	Presence

	80h
	01h
	Algorithm Reference: Refer to table L.7.2.2-1 for coding.
	Mandatory

	84h
	01h
	Private Key Reference.
	Mandatory

· To specify the CA Public Key prior to a certificate verification: In this case, DSTs have a length of 03h and are are coded as follows:

Table L.5.4.1-9: Digital Signature Template (DST) Coding
	Tag
	Length
	Value
	Presence

	84h
	01h
	Reference to Public Key PK_CA_AUT.
	Mandatory

NOTE: When using the MSE-set command, the tag and length of the DST are not included in the coding of the data field. When the hash is performed externally, the ASE does not interpret the most significant nibble of the AlgorithmID.
Confidentiality Templates (CT, tag B8h) are used to specify either the secure messaging (use MAC and encryption, in the command or the response or both) for the commands accessing a data object, or the algorithm and keys in a decryption operation (using the PSO – Decipher command).
· For Secure Messaging, they have a length of 03h and are are coded as follows:

Table L.5.4.1-10: Confidentiality Template (CT) Coding for Secure Messaging
	Tag
	Length
	Value
	Presence

	95h
	01h
	CRT Usage Qualifier: see table L.5.4.1-4 for coding
	Mandatory

· For Decryption, they have a length of 06h and are are coded as follows:

Table L.5.4.1-11: Confidentiality Template (CT) Coding for Decryption
	Tag
	Length
	Value
	Presence

	84h
	01h
	Private Key Reference (decipher key)
	Mandatory

	80h
	01h
	Algorithm Reference: See table L.7.2.2-1 for coding. Set to 1Ah to indicate no hash, RSA and PKCS#1_v1.5 padding.
	Mandatory

NOTE: When using the MSE-set command, the tag and length of the CT are not included in the coding of the data field.

L.5.4.2
PIN

PINs are used to identify a user and to protect data. See clause L.10 for further details.
L.5.4.3
Symmetric secret keys
Symmetric secret keys are 16-byte, 24-byte or 32-byte AES keys used for symmetric key mutual authentication. Two secret keys, KENC and KMAC, are shared by the secure element and its host, and can be diversified, for example by using the secure element serial number. Mutual authentication consists of each entity proving that it possesses the two keys to the other entity. A symmetric key can optionally be protected by a ratification counter. There may be multiple key pairs (KENC, KMAC) in an ASE. They shall be created together and initialized during the personalization phase.
L.5.4.4
Public keys
RSA and ECC public keys are associated with private keys in a key pair sharing a common one byte identifier, KID. These Data objects shall be created during the personalization phase. These could be used for mutual authentication or to verify a signature or certificate. RSA Public Keys can also be used to encrypt sensitive data, while ECC Public Keys can be used to derive a symmetric shared key (ZZ) to be used to encrypt data.
The process to create a key pair is as follows:

1. Create an Asymmetric Key Header during the personalization phase, e.g. through a PUT DATA – Asymmetric Key Header command. This initializes a key container waith at least a public portion and optionally a private portion.
2. Initialize the private portion using the PUT DATA – Private key command. If this is not done first, only the public element of the key pair will be stored in the ASE.
3. Initialize the private portion using the PUT DATA – Public key command.

The following RSA and ECC public keys are always stored as data objects:

· CA public keys used in asymmetric key mutual authentication

· RSA and ECC public keys used by the application

More than one CA may store its public key PuK.CA.AUT on an ASE.

RSA public keys always contain a modulus, N, and a public exponent, e.
The tags for these keys are shown in the following table:
Table L.5.4.4-1: RSA Public key data Objects
	Tag
	Length (in bytes)
	Value

	81h
	N
	N, modulus

	82h
	1-8 bytes
	e, public exponent

ECC public keys contain the following elements, where Z* equals Z or Z + 1 according to ECC key characteristics:

Table L.5.4.4-2: ECC Public Key CRT elements
	Tag
	Length (in bytes)
	Value

	06h
	Max 16 bytes
	Curve identifier OID

	81h
	Z
	p: Prime modulus according to curve type

	82h
	Z
	a: 1st coefficient of curve

	83h
	Z
	b: 2nd coefficient of curve

	84h
	2 x Z + 1
	G: Coordinates X and Y in F; defining a curve point G of order n.

Formatted as follows (uncompressed format): 04h || XG || YG

	85h
	Z*
	n: order of the base point (positive prime integer)

	86h
	2 x Z + 1
	Q: Coordinates X and Y in F; defining a curve point Q in E.

Formatted as follows (uncompressed format): 04h || XQ || YQ

	87h
	01h
	h: Cofactor

The value Z depends on the curve size as follows:

Curve Size
Z

ECC 256

32 bytes

ECC 384

48 bytes
ECC 512

64 bytes
The key elements may be initialized in any order. As with private keys, the GENERATE PUBLIC KEY PAIR command may be used to automatically update the public key values, or the keys may be generated outside the secure element and then updated by using PUT DATA- Private Key commands to initialize the CRT components of the key, which can be done in any order..
L.5.4.5
Private keys
Private keys are used for public key cryptographic operations of M2M applications, such as generation of digital signatures, sensitive data decryption, and asymmetric scheme mutual authentication.
An RSA private key shall include the following key elements defined in the Chinese Remainder Theorem (CRT), where n is the length in bytes of the key modulus and d is the private exponent (see IEEE P1363 [i.25]):
Table L.5.4.5-1: RSA Private Key CRT elements
	Tag
	Length (in bytes)
	Value

	92h
	n/2
	p (first prime number of modulus n)

	93h
	n/2
	q (second prime number of modulus n)

	94h
	n/2
	iq (0 ≤ i ≤ n)

	95h
	n/2
	dp

	96h
	n/2
	dq

An ECC private key shall comprise the following elements, where Z* equals Z or Z+1 according to ECC key characteristics (see IEEE P1363 [i.25]):

Table L.5.4.5-2: ECC Private Key CRT elements

	Tag
	Length (in bytes)
	Value

	06h
	Max 16 bytes
	Curve identifier OID

	81h
	Z
	p: Prime modulus according to curve type

	82h
	Z
	a: 1st coefficient of curve

	83h
	Z
	b: 2nd coefficient of curve

	84h
	2 x Z + 1
	G: Base Point coordinates X and Y in F; defining a curve point G of order n.

Formatted as follows (uncompressed format): 04h || XG || YG

	85h
	Z*
	n: order of the base point (positive prime integer)

	87h
	01h
	h: Cofactor

	90h
	Z
	d: The private key (never returned by the secure element)

Private keys are always stored as data objects and shall be created during the personalization phase. They may be initialized either during the personalization phase or during the operational phase. The key header shall be created first, using the PUT DATA (Asymmetric Key Pair) command. The key elements may be initialized in any order.

The GENERATE PUBLIC KEY PAIR command to may be used to automatically update the private key value securely. This is true for RSA keys and ECC keys.

Alternatively, both types of key may be generated outside the ASE and then updated by using the PUT DATA command.
L.5.4.6
Diffie-Hellman Key Exchange parameters
The Diffie–Hellman key exchange parameters used in asymmetric key mutual authentication are also stored as a public key data object.

The tags for Diffie–Hellman parameters when using RSA are shown in the following table (see EN 419 212 [63]) :
Table L.5.4.6-1:Public Diffie-Hellman Key Exchange parameters Data Objects for RSA
	Tag
	Length (in bytes)
	Value

	86h
	80h (128), C0h (192) or 100h (256)
	Diffie-Hellman p element

	87h
	14h (20)
	Diffie-Hellman q element

	88h
	80h, C0h or 100h
	Diffie-Hellman g element

The tags for Diffie-Hellman parametrers when using ECC are the same as for ECC public Keys CRT elements in table L.5.4.4-2.
When created, a Diffie-Hellman key exchange parameters data object is specified as such by the choice of Control Reference Template.

L.5.5
Access Rights
L.5.5.0
Overview
Access rights to objects are controlled in the application phase by each object’s security attributes, coded in TLV format and made of:

· One Access Mode Byte (AMB) which defines the commands that are allowed to be performed on the object, i.e. CREATE / DELETE FILE, READ/UPDATE BINARY, PUT / GET DATA.

· One Security Conditions byte (SCB) for each protected command, i.e. for each bit set to 1 in the AMB. Each SCB specifies the procedures that shall be performed to execute the corresponding command.

When multiple physical interfaces are supported by an ASE, each file or data object may have one security attribute for each interface.
 ISO Security Environments parameters (EP) define the lifecycle state in which a command is valid, and reference the data objects to be used for these procedures. Security Environments parameters do not have security attributes because they cannot be modified.
L.5.5.1
Access Mode Byte
The access mode byte (AMB) determines the commands that are to be controlled. Its coding has a different meaning for files and data objects since the commands that are used with them are different. In both cases, if a bit in the AMB is set to zero, that is there is no corresponding SCB, then the security attribute for the corresponding command is NEVER.
The AMB is coded as follows:

For DFs:

Table L.5.5.1-1: Access Mode Byte coding for DFs
	Meaning
	b8
	b7
	b6
	b5
	b4
	b3
	b2
	b1

	DELETE DF (self deletion)
	
	1
	
	
	
	
	
	

	CREATE DF
	
	
	
	
	
	1
	
	

	CREATE EF
	
	
	
	
	
	
	1
	

When DFs are supported only at MF level, the CREATE DF condition is used only by the MF.
For EFs:

Table L.5.5.1-2: Access Mode Byte coding for EFs
	Meaning
	b8
	b7
	b6
	b5
	b4
	b3
	b2
	b1

	DELETE EF (current EF)
	
	1
	
	
	
	
	
	

	ACTIVATE FILE
	
	
	
	1
	
	
	
	

	DEACTIVATE FILE
	
	
	
	
	1
	
	
	

	UPDATE BINARY, ERASE BINARY
	
	
	
	
	
	
	1
	

	READ BINARY
	
	
	
	
	
	
	
	1

For PIN Data Objects:

Table L.5.5.1-3: Access Mode Byte coding for PIN Data Objects
	Meaning
	Type of Data Object
	b8
	b7
	b6
	b5
	b4
	b3
	b2
	b1

	RESET RETRY COUNTER
	PIN
	1
	1
	
	
	
	
	
	

	CHANGE REFERENCE DATA
	PIN
	1
	
	1
	
	
	
	
	

	VERIFY
	PIN
	1
	
	
	1
	
	
	
	

Bit 8 of AMB shall be set to 1 for PIN Data Objects.

For Key Data Objects:

Table L.5.5.1-4: Access Mode Byte coding for Key Data Objects

	Meaning
	Type of Data Object
	b8
	b7
	b6
	b5
	b4
	b3
	b2
	b1

	ERASE KEY PAIR
	Private / Public
	1
	1
	
	
	
	
	
	

	PUT DATA – ASK Header (when updating Security Attribute)
	Private / Public
	1
	
	1
	
	
	
	
	

	PSO-Hash

PSO – Compute Digital Signature (DTBS)
	Private / Public
	1
	
	
	1
	
	
	
	

	PSO - Compute Digital Signature,
PSO – Decipher
	Private Key
	1
	
	
	
	1
	
	
	

	DELETE KEY PAIR
	Private / Public
	1
	
	
	
	
	1
	
	

	PUT DATA (UPDATE)
GENERATE PK PAIR
	Symmetric / Private / Public Key

DH Key Parameters Private Key
	1
	
	
	
	
	
	1
	

	GET DATA
	DH Key Parameters Public Key
	1
	
	
	
	
	
	
	1

Bit 8 of AMB shall be set to 1 for Key Data Objects.

Bit 6 is refers to updating a security attribute when using the PUT DATA – Asymmetric Key Pair command. When using the command to create a key container in the application phase, the security attribute does not have to be satisfied, instead the PIN shall be successfully verified.
When bit 5 is used for private keys, it is intended to protect the Digital Signature Input before performing a signature.

The PUT DATA (Update) and GENERATE PUBLIC KEY PAIR commands share the same bit, b2. It is possible upon Secure Data Object creation to define which of these commands (or both), the access mode bit refers to.
L.5.5.2
Security Condition Byte

There is one security condition byte (SCB) for each bit set to one in the AMB. Each SCB is coded as follows:
Table L.5.5.2-1: Security Condition Byte coding
	Meaning
	b8
	b7
	b6
	b5
	b4
	b3
	b2
	b1

	No condition (ALWAYS)
	0
	0
	0
	0
	0
	0
	0
	0

	NEVER
	1
	1
	1
	1
	1
	1
	1
	1

	Conditions
	X
	X
	X
	X
	0

	At least one condition (OR) (b7 to b5)
	0
	
	

	All Conditions (AND) (b7 to b5)
	1
	
	

	Secure Messaging (Command and Response)
	
	1
	
	
	

	Mutual Authentication
	
	
	1
	
	

	User Authentication (PIN)
	
	
	
	1
	

	Security environment Parameters (EP) reference
	
	X
	X
	X
	X

	No EP referenced
	
	0
	0
	0
	0

	EP # 0001 - 1110
	
	-
	-
	-
	-

	RFU
	
	1
	1
	1
	1

Bits 8–5 indicate the conditions that shall be fulfilled to access the file or data object.
Bit 7 set to 1 indicates that the command and the response shall be sent with secure messaging. The level of secure messaging, i.e. “MAC” or “MAC and encryption”, depends on the ASE built–in security.

Bit 6 set to 1 indicates that mutual authentication shall be successfully executed before access is granted. If the application uses asymmetric key mutual authentication, this implies the extraction of the CHA from the host device certificate C_CV.IFD.AUT during processing of the PKDH EXTERNAL AUTHENTICATE command. For access to be granted, the extracted CHA shall match the one indicated in the security environment parameters (EP). The value of the CHA has no significance for the ASE and can be defined at the application level.

If the application uses symmetric key mutual authentication, bit 6 set to 1implies the MUTUAL AUTHENTICATION command shall be successfully executed before granting access.

Bit 5 set to 1 (user authentication) indicates that the PIN or FP indicated by the security environment parameters (EP) shall be correctly presented to allow access to the file or data object. If no EP is referenced, the default EP #1 is used. The ASE returns the error 6982h if the referenced EP does not exist or if the PIN referenced by the EP does not exist.

Bits 4–1 indicate the security environment parameters to use. They are used only if at least one bit in bits 7–5 are set to 1.

L.5.5.3
Minimum levels of secure Messaging

As an extra security feature, the ASE may impose a minimum level of secure messaging for certain commands, regardless of how the security attributes are coded during personalization. The following table shows these commands and their corresponding level of required secure messaging when used in the operating phase.

Table L.5.5.3-1: Built-in minimum level of Secure Messaging

	Command
	Minimum Secure Messaging level

	GENERATE PUBLIC KEY PAIR
	MA + MAC

	PUT DATA (UPDATE) – Symmetric secret keys (AES and 2xDES)
	MA + MAC + ENC

	PUT DATA – Asymmetric Key Headers (AES & ECC), when creating a key header
	MA + MAC + ENC

	PUT DATA (UPDATE) – Private Keys (RSA & EC)
	MA + MAC + ENC

	PUT DATA (UPDATE) – Public Keys (RSA & EC)
	MA + MAC

	PUT DATA (UPDATE) – DH Key Exchange Parameters
	MA + MAC

	PUT DATA (UPDATE) strong security for certification
	MA + MAC + ENC

MA means mutual authentication.

MAC means the command shall be sent with a MAC.

ENC means the command shall be encrypted.
When used to create a key header, the PUT DATA–Asymmetric Key Header command shall be issued with the built-in security (MA + MAC + ENC). However, when the command is used to update the security attributes of a key container, the built-in security does not apply.

L.6

On-Board Key Generation (OBKG)

The On-Board Key Generation functionality enables creation of a public / private key pair within an ASE, so that the private key never leaves the ASE which protects it during storage and usage (e.g. to sign a certificate).
OBKG is initiated when GENERATE PUBLIC KEY PAIR command is sent to the ASE to initialize or update the value of an RSA key pair when the ASE is in Operational state. The GENERATE PUBLIC KEY PAIR command does not create a new data object. This command only generates new values for private key and public key and returns the public key value in its response.
On-Board Key Generation has several advantages:

· The ASE performs the computation of the key values. The key value is not precomputed or imposed by an external entity.

· As the key update takes place within the ASE, the secure element handles the security of the operation instead of the hosting application.

· The GENERATE PUBLIC KEY PAIR command needs to satisfy the private key data object security attributes in order to update the value of the private key data object.

· The new private key value never leaves the secure element.

· The life span of the key pair can be easily managed within the application.

L.7

Digital Signature

X.7.1
Overview
The ASE may be used to generate Digital Signatures, by which a message is authenticated by the receiver to ensure that it is sent by the intended sender and that the message was not altered since it was sent. The signatures are generated using the Digital Signature RSA keys stored in the ASE. The ASE shall support RSASSA -PKCS1_v1_5 signature scheme.

L.7.2
Digital Signature Generation
The digital signature generation process is the computation of the message signature using the digital signature private key on a pre-computed message hash digest. As the signature is generated using the sender's private key which is securely stored in the ASE, the message can only be sent by authorized sender and not by anybody else.
The digital signature creation process is as follows:

1. Message Hashing. The sender (Host Application) computes the hash of the original message using a hash algorithm. The host application calls the PSO - HASH command to perform the hashing.

2. Formatting Hash to Digital Signature Input (DSI). The ASE pads the hash to the length and format accepted by the PSO-COMPUTE DIGITAL SIGNATURE command.

3. Signature Creation. The hash is ciphered with the sender's private key using the PSO-Compute Digital Signature command. The result is known as the signature

4. Digitally Signed Message Sending.The signature is appended to the original message and sent.

L.7.2.1
Message Hashing
The generation of the hash may be performed in three ways:

1. performed entirely by the ASE using the PSO-Hash command
2. performed externally

3. partially performed by the ASE and partially performed externally (in this case, the data is split).

For RSA Signatures, the ASE may use any of the following secure hash algorithms:

· SHA-256

· SHA-384

· SHA-512

For ECC signatures, the ASE may also use any of these SHA algorithms.
L.7.2.2
Formatting Hash to Digital Signature Input (DSI)
For RSA signatures, the Digital Signature Input (DSI) shall be the same length as the key modulus. The generated hash is shorter than this length and needs to be padded accordingly. The DSI shall also conform to a particular format so the hash cannot be simply padded by adding a padding character. For this reason, the ASE is able to perform the necessary padding. The EP provides the algorithm ID and padding, as well as the key references to use. The EP could be the current EP or an EP set by an MSE-SET command before computing the digital signature. The digital signature is performed using the PSO- Compute Digital Signature command.
Algorithm IDs are coded on one byte according to the following table:

Table L.7.2.2-1: Algorithm ID values

	Algo ID Value
	Meaning

	0xh; x= 1, 2, 3
	No hash indicated. Either the hash function is defined implicitly or is not applicable.

	4xh; x= 1, 2, 4, 5
	SHA-256

	5xh; x= 2, 4, 5
	SHA-384

	6xh; x= 2, 4, 5
	SHA-512

	x2h
	RSA with padding according to PKCS#1 v1.5

	x4h
	ECDSA

	xxh
	All other values are RFU

The most significant nibble indicates the hash algorithm to use (or no hash), while the least significant nibble indicates the cryptographic algorithm to use to compute the digital signature and the type of padding.
When the hash is performed outside the ASE, the most significant nibble of the Algorithm ID is not interpreted by the ASE. However, the PSO - HASH command shall still be called in order to set the hashed message for the PSO–COMPUTE DIGITAL SIGNATURE command.

The PSO - HASH command is able to perform the hash fully or partially inside the card,
L.7.2.3
Signature Creation

To compute the digital signature, the external entity shall send the PSO-COMPUTE DIGITAL SIGNATURE command. The ASE uses the DSI to compute the digital signature. The current EP defines the algorithm, padding (see Table L.7.2.2-1) and key references to use.
Algo ID = 02h —Hash Performed Externally—PKCS #1 Padding :
With PKCS padding, the DSI includes padding bytes of FFh as shown in the following table:
Table L.7.2.3-1: Algo ID = 02h: Hash performed externally – PKCS#1 padding

	Value
	Description
	Length (in bytes)

	00h
	Start byte
	1

	01h
	Block type (01 for signature)
	1

	FFh, FFh..FFh
	Padding string
	Key modulus length - (3 + Input data length)

	00h
	Separator
	1

	Input Data
	Data to be signed
	1-36

For hash computations involving a header, this header shall be included in the data to be signed.

Algo ID = 42h —SHA-256 Hash Performed by ASE—PKCS #1 Padding:
Whether the ASE performs the hash partially or entirely, the result shall always be a length of 32 bytes. With PKCS#1 padding, the DSI includes padding bytes of FFh and the SHA–256 header as shown in the following table:
Table L.7.2.3-2: Algo ID = 42h: SHA-256 Hash performed in the ASE – PKCS#1 padding

	Value
	Description
	Length (in bytes)

	00h
	Start byte
	1

	01h
	Block type (01 for signature)
	1

	FFh, FFh..FFh
	Padding string
	Key modulus length – 54 bytes

	00h
	Separator
	1

	30h, 31h, 30h, 0Dh, 06h, 09h, 60h, 86h, 48h, 01h, 65h, 03h, 04h, 02h, 01h, 05h 00h, 04h, 20h
	SHA-256 header
	19

	Hash Value
	Hash result
	32

Algo ID = 52h —SHA-384 Hash Performed by ASE—PKCS #1 Padding:
Whether the ASE performs the hash partially or entirely, the result shall always be a length of 48 bytes. With PKCS#1 padding, the DSI includes padding bytes of FFh and the SHA–384 header as shown in the following table:
Table L.7.2.3-3: Algo ID = 52h: SHA-384 Hash performed in the ASE – PKCS#1 padding

	Value
	Description
	Length (in bytes)

	00h
	Start byte
	1

	01h
	Block type (01 for signature)
	1

	FFh, FFh..FFh
	Padding string
	Key modulus length – 70 bytes

	00h
	Separator
	1

	30h, 41h, 30h, 0Dh, 06h, 09h, 60h, 86h, 48h, 01h, 65h, 03h, 04h, 02h, 02h, 05h, 00h, 04h, 30h
	SHA-384 header
	19

	Hash Value
	Hash result
	48

Algo ID = 62h —SHA-512 Hash Performed by ASE—PKCS #1 Padding:
Whether the ASE performs the hash partially or entirely, the result shall always be a length of 64 bytes. With PKCS#1 padding, the DSI includes padding bytes of FFh and the SHA–512 header as shown in the following table:
Table L.7.2.3-4: Algo ID = 62h: SHA-512 Hash performed in the ASE – PKCS#1 padding

	Value
	Description
	Length (in bytes)

	00h
	Start byte
	1

	01h
	Block type (01 for signature)
	1

	FFh, FFh..FFh
	Padding string
	Key modulus length – 86 bytes

	00h
	Separator
	1

	30h, 51h, 30h, 0Dh, 06h, 09h, 60h, 86h, 48h, 01h, 65h, 03h, 04h, 02h, 03h, 05h, 00h, 04h, 40h
	SHA-512 header
	19

	Hash Value
	Hash result
	64

L.7.3
Integrity of the Data to be Signed
The ASE may check integrity of the data to be signed, i.e. the DSI provided by the PSO- Hash command, as required by some signature certification schemes.
The integrity is provided by defining a specific access condition in the security attributes of the signature key. In effect, bit 5 of the access mode byte (AMB) is set to 1. The corresponding security condition byte (SCB) shall be set to Secure Messaging (which therefore guarantees at least a minimum of SM + MAC). The command processing for the PSO–Hash command is as follows:

1. The current EP shall specify a DST Control Reference Template.

2. The first (or only) PSO–Hash command checks the SCB linked to bit 5 of the AMB for the DST key referenced in the EP. If this access condition is satisfied, it sets an internal “hash integrity flag” to “verified” for the referenced DST key.

3. If more than one PSO–Hash command is needed to perform the hash, the remaining PSO–Hash commands use the same SCB but without updating the “hash integrity flag”. This flag can only be reset as soon as a PSO–Hash command in the sequence does not satisfy the SCB (in which case the whole hash sequence needs to be restarted).

4. The PSO–Compute Digital Signature checks that the internal “hash integrity flag” is set to “verified” for the same referenced DST key. If so, the command processing continues as normal (including checking its own SCB coded on AMB bit 4).

5. At the end of the PSO–Compute Digital Signature command, the internal “hash integrity flag” is reset to “unverified”, regardless of whether the command is successful or not.
PSO–Compute Digital Signature Internal Processing:

If the AMB bit 5 of the DST key referenced in the current EP is set to ‘1’:

1. The command shall check that the internal “hash integrity flag” is “verified” and the recorded DST reference key matches with the DST key referenced in the current EP before continuing normal processing.

2. If the internal “hash integrity flag” is “not verified” or the key references do not match (for example if the key reference in the current EP has changed), the PSO– Compute Digital Signature command shall be rejected and return the status 6982h (Security status not satisfied).

If the AMB bit 5 of the DST key referenced in the current SE is set to ‘0’:

No check is made on the hash security level by the PSO–Compute Digital Signature command.
L.7.4
Digital Signature Verification
The digital signature verification typically involves decrypting the signature using the sender's public key and hashing the original message using the hashing algorithm. If the hashes are equal, the signature is valid.

As the signature is created using the sender's private key, it can only be verified by the sender's public key. By verifying the signature, the recipient has proof that the sender's private key was used to encrypt the message hash and that the message has not been altered.

Since this does not require a high level of security, this process is typically performed externally and the ASE is not involved in this operation. The principle of digital signature verification is shown for informational purposes only:

1. The receiver uses the sender's public key to decrypt the signature and retrieve the message hash.

2. The receiver hashes the original message and compares it with the result obtained in step 1. If the two hashes match, then the sender is authentic.

L.8

Decryption

L.8.1
Overview

Public key pairs may be used for encryption and decryption of sensitive data, typically symmetric session keys.
In the case of RSA, the public key of the receiver’s RSA key pair is used to encrypt messages and the private key of the key pair stored in the ASE is used to decrypt the message. The external entity uses the ASE’s public key to encrypt the message, which is not a sensitive operation, while the ASE uses the corresponding private key to decrypt the message internally using the PSO- Decipher (RSA use) decryption function. This process ensures that only the intended recipients can decrypt and read the message. Upon successful completion of the command, the ASE returns the deciphered message in the response.

In the case of ECC, the public key of the receiver (the ASE) is used to derive a shared key ZZ, which is used to encrypt and decrypt data. The key is generated by using the PSO–Decipher (ECC Use) function.
Editor’s note: Assess and specify applicability of ASE based encryption/decryption to M2M Primitives and parameters.
For security reason, it is strongly recommended to never use the same private key for deciphering and signing.
The following subclauses provide an example of a message encryption and decryption process wherein the encrypted data is a one-time session key that has been used to encrypt another message.

L.8.2
RSA Message Encryption and Decryption
The message encryption process is performed by the message sender (external entity). The process includes the following steps:

1. Message Encryption. The message sender encrypts the document with a one-time session key. Typically, this is an AES session key.

2. Symmetric Key Encryption. The message sender encrypts the symmetric session key with the host application RSA public key with padding according to PKCS #1.

3. Message Sending. The message sender sends the encrypted session key and the encrypted message to the host application.
The message decryption occurs in the host application. The process includes the following steps:

1. Symmetric Key Decryption. Upon receiving the message, the host application sends the PSO-DECIPHER command to instruct the ASE to decrypt the symmetric key. The ASE returns the decrypted symmetric key in the response.

2. Message Decryption. The host application decrypts the message using the symmetric key retrieved in Step 1. This step is performed by the host application.
For security reasons, it is strongly recommended not to use the same private key for decryption and signing.

The messages to be decrypted may be protected by either RSASSA PKCS#1 v1.5 algorithm or RSAES OAEP algorithms. The algorithm is indicated in the current EP or an EP set by an MSE-SET command sent before the PSO-DECIPHER command. The coding of Algorithm ID values is as follows:

Table L.8.2-1: Algorithm ID values for Deciphering

	Algo ID Value
	Meaning

	1Ah
	RSASSA PKCS#1_v1.5 No hash

	4Dh
	RSAES OAEP SHA-256

	5Dh
	RSAES OAEP SHA-384

	6Dh
	RSAES OAEP SHA-512

L.8.3
ECC Message Encryption and Decryption

Encrypting a Message (ECC):
The steps are as follows:

1. The sender derives a shared key, ZZ, from the ASE certified public key (yb) and the hosting device ephemeral private key (ra). This process involves generation of a random challenge.
2. The sender encrypts a document using ZZ.

Decrypting a Message (ECC):

1. The sender sends both the encrypted document and his/her public key (ya) to the ASE acting as the receiver.

2. The receiver uses ZZ to decrypt the document.
L.9

Read-only state

The ASE may be configured to be in 'Read Only' state. In this state, the ASE forbids any write operation. The ASE shall forbid the execution of the following commands and return the status 6985h (Conditions of use not satisfied):
· ERASE BINARY
· UPDATE BINARY
· CREATE FILE
· DELETE FILE

· DELETE Asymmetric Key Pair

· ERASE Asymmetric Key Pair

· PUT DATA (Update)

· GENERATE PUBLIC KEY PAIR

This mechanism can be activated or deactivated by setting the value of the Read Only State Additional Parameter. During Personalization Phase, the parameter value could be set through the PUT DATA (CREATE) - Additional Parameters. During Operational Phase, the parameter value may be updated through the PUT DATA (UPDATE) - Additional Parameters.
The 'Read Only' state activation can be set during the Personalization Phase, but the state only takes effect when the ASE moves to Operational Phase.

L.10

User Authentication through PIN

L.10.1
Local PIN

PINs are used to identify the owner of an ASE and to protect its data.
A file object or data object may be protected by a PIN through the object's security attributes. In this case, access to the object shall only be allowed upon successful verification of the PIN.

L.10.1.1
Activation PIN
ASE may support an Activation PIN verification mechanism to prevent unauthorized use of the ASE before verification that the ASE is provided to the authorized owner.

The ASE Local PIN designated as the the Activation PIN is defined through the Activation PIN Reference. If this parameter is set, the activation mechanism is activated. Once activated, the feature cannot be deactivated. In this case, the applet rejects all commands (except VERIFY PIN and CHANGE REFERENCE DATA) in the Operational Phase until the Activation PIN has been successfully verified. The conceived use case is as follows:
1. The addressee receives the ASE.

2. The addressee receives an activation PIN in an out-of-band manner.

3. The addressee contacts to the ASE issuer, referring his ASE and identification.

4. The addressee enters the activation PIN.
5. The ASE issuer also enters another activation PIN dedicated for the ASE.

6. The host application combines the two activation codes into a single one and sends it to the ASE.

The Activation PIN needs to be presented once only during the Operational Phase. However, after activation it can still be used as a Local PIN.

L.10.2
PIN processes

L.10.2.1
PIN Verification
The PIN is verified using the VERIFY command. This command compares the PIN value entered by the user with the Local PIN value stored in the ASE.

A PIN can be verified as many times as specified in the initial value of the PIN Attributes - Usage Counter (this may be set to FFh meaning no limit). With each successful verification, the counter is decremented. When the counter reaches zero, the PIN can no longer be verified. The Usage Counter cannot be reset.

Following a reset of the ASE or selection of the ASE applet, the PIN validation flags for all local PINs are set to false. In other words, all local PINs need to be reverified.
L.10.2.2
Unblocking a PIN
If the Unblocking PIN method byte is set 00h, the PIN cannot be unblocked.

The PIN Attributes - Try Counter counts the number of remaining attempts to verify a PIN. Initially, it is set to the value of TryLimit and is decremented with each unsuccessful PIN verification. If the Try Counter reaches zero, the PIN is blocked.

In order to unblock the PIN, one of the Unblock PIN Method specified in the reference PIN Attributes shall be satisfied. If the Unblock PIN Method indicates PUK Method, the RESET RETRY COUNTER command shall be sent to verify the PUK specified and optionally change the value of the reference PIN.

The Security Condition Byte (SCB) for the Reset Retry Counter in the security attributes shall be satisfied. This action decrements the reference PINs Unblocking Counter and resets the reference PIN Try Counter to TryLimit.
The PIN unblocking counter restricts the number of times that the PIN can be unblocked. Once this value reaches zero, the PIN can no longer be unblocked. It is not possible to reset the Unblocking Counter back to its original value.

L.10.2.3
PIN Value Change
Change of PIN value is only allowed in the Operational Phase. The process is performed through a CHANGE REFERENCE DATA command. The new PIN value can also be specified when unblocking the PIN using a RESET RETRY COUNTER command.

The ASE may support the "Force PIN Change Before Signature" mechanism.

If the feature is activated after personalization and if the Digital Signature key is protected by a PIN, the PIN shall be changed at least once after personalization to make the signature functionality available. The use case for this mechanism is as follows:

1. Perform a PIN verification using the PIN received out-of-band from the ASE issuer.

2. Sign a message. The signing operation fails.

3. Change the PIN as required.

4. Verify the new PIN.

5. Sign a message. The signing operation is successful.

Digital Signature keys may optionally contain a non-repudiation flag (Tag DF31h) in the asymmetric key header.

· If the non-repudiation flag has a value of 00h, the “Force PIN Verification Before Signature Activation” is deactivated. In this case, the PIN status remains as “verified” after successful PIN verification and the PIN is not requested again for further signatures with that key.

· If this flag is absent or has a value other than 00h, then the “Force PIN Verification Before Signature Activation” mechanism is activated. The PIN status is changed to “unverified” after the PSO-COMPUTE DIGITAL SIGNATURE command is performed. The PIN shall be verified and changed each time a signature uses that key.

L.11

Supported APDU commands

During operational state, the interface between the hosting device and ASE shall support the following APDU commands, in compliance with ISO 7816-4 [26], ISO 7816-8 [61], ISO 7816-9 [62] and EN 419 212 [63] as applicable :
· ACTIVATE FILE (ISO 7816-9 [62]): This command changes the state of a file to ACTIVATED.
· DEACTIVATE FILE (ISO 7816-9 [62]): This command changes the state of a file to DEACTIVATED.
· CREATE FILE (ISO 7816-9 [62]): This command creates an EF under the MF or the currently selected DF, or creates a DF under the MF.

· DELETE FILE (ISO 7816-9 [62]): This command deletes the selected DF (with its subtree) or a referenced EF in the current DF.

· SELECT FILE (ISO 7816-4 [26]): This command selects a DF or an EF by its file ID, path or name (in the case of DF).
· READ BINARY (ISO 7816-4 [26]): This command reads part of a binary file.
· UPDATE BINARY (ISO 7816-4 [26]): This command updates part of a binary file.
· ERASE BINARY (ISO 7816-4 [26]): This command erases part of a binary file.
· GET DATA (ISO 7816-4 [26]): This command retrieves BER-TLV Data Objects, including at least:

· Public Key Elements

· The value of KICC, a data element generated by the ASE during mutual authentication

· The content of a specified Environment Parameters (called Security Environment in ISO 7816)

· PIN information
· PUT DATA (ISO 7816-4 [26]): This command updates existing Data Objects or creates new ones, where allowed in the operational phase of an ASE application, including at least:
· PINs

· Symmetric secret keys

· Asymmetric key headers (security attributes only)
· Diffie-Hellman key exchange parameters
· GET CHALLENGE (ISO 7816-4 [26]): This command generates an 8 byte or 16 byte random number. Optionally, this command may additionally support a GENERATE RANDOM mode by setting P2 to 01h, where the generated 8 byte value is to be used by the hosting device for its own purposes instead of being used for authentication purposes only (i.e. valid only for the next authentication command as specified in ISO 7816-4 [26]).
· VERIFY PIN (ISO 7816-4 [26]): This command authenticates a user by comparing the entered PIN with a reference PIN.
· EXTERNAL AUTHENTICATE for PKDH and ECDH (ISO 7816-4 [26], EN 419 212 [63]): This command authenticates the hosting device to the ASE by checking for the presence of the certified private key PrK.IFD.AUT: The hosting device signs a challenge from the ASE with the certified privete key. Depending on parameter , the ASE performs an ECDSA or RSA based signature verification using the hosting device’s public authentication key PuK.IFD.AUT. The command Data field shall include an identifier of the hosting device followed by the signature as specified in EN 419 212 [63]. Sending the command with Lc = 00h and no data can be used to check that the authentication has already been made. The ASE authentication ratification counter shall be decremented each time the command fails, and shall be reset to its initial value upon successful command execution. If the counter reaches 0, the authentication process shall be blocked. For RSA keys of 2048 bits or higher, the PKDH EXTERNAL AUTHENTICATE command shall be used in chaining mode,as specified in ISO 7816-8, implying a first command sent with CLA = 90h followed by other commands with CLA set to 80h.
· INTERNAL AUTHENTICATE for PKDH and ECDH (ISO 7816-4 [26], EN 419 212 [63]): This command authenticates the ASE to the hosting device by checking for the presence of the certified private key PrK.ICC.AUT. Depending on parameter , the ASE computes a signature using ECDSA or RSA. The hosting device verifies the signature using the ASE public key, PuK.ICC.AUT. The ASE response includes an 8 bytes ASE identifier followed by the signature as specified in EN 419 212 [63].
· MUTUAL AUTHENTICATE (ISO 7816-8 [61], EN 419 212 [63]): Based on a previous GET CHALLENGE command issued by the hosting device, this command mutually authenticates the ASE and hosting device by checking for the presence of the 2 symmetric secret keys KENC and KMAC, and generates rthe session keys used in secure messaging. If the command is successful, both entities know that the other entity possesses the same KENC and KMAC. It does not use secure messaging and cannot be issued if an authentication session is already established. The command data include a message S’ encrypted using KENC from the hosting device and a MAC computation of this encrypted message using its KMAC key. The ASE verifies the MAC, decrypts the message and encrypts the same data as the hosting device but in reverse order with its own KENC, resulting in SS’. performs a MAC computation on this ecncrypted message with its own KMAC, and returns both the encrypted message SS’ and the associated MAC in the command response to the hosting device.
· GENERAL AUTHENTICATE (EN 419 212 [63]):This command is used to generate a secure messaging session key between the ASE and its hosting device as part of Elliptic Curve asymmetric key mutual authentication.
· UNAUTHENTICATE EXTERNAL: This command breaks a secure messaging session. It shall be sent with INS=82h, P1=FFh, P2=00h and Lc=00h infdicating an empty data field. It returns a 2 bytes status word with no data field, set to 9000h to indicate success or to 6A86h indicating incorrect parameters.
· CHANGE REFERENCE DATA (ISO 7816-8 [61]): This command changes the value of a PIN.
· RESET RETRY COUNTER (ISO 7816-8 [61]): This command is used to unblock a PIN.
· GENERATE PUBLIC KEY PAIR (ISO 7816-8 [61]): This command generates a RSA or ECC asymmetric key pair and stores both keys in the ASE, returning the public part in its response.
· MANAGE SECURITY ENVIRONMENT (ISO 7817-8 [61], EN 419 212 [63]): This command is used for the following functions:
· RESTORE replaces the current EP by an EP stored in the ASE

· SET sets or replaces one component of the current EP.
· PERFORM SECURITY OPERATION (ISO 7816-8 [61], EN 419 212 [63]): This command supports the following functions:
· PSO – COMPUTE DIGITAL SIGNATURE computes a digital signature.

· PSO – DECIPHER generates a shared symmetric key in case of ECC use, or deciphers an encrypted message using a decipher key stored in the ASE in case of RSA use.

· PSO – ENCIPHER enciphers the data provided in the command data field, returning the result in the response field.François
· PSO – HASH entirely or partially hashes data prior to a PSO – COMPUTE DIGITAL SIGNATURE command, or prepares the data if hashed externally.
· PSO – VERIFY CERTIFICATE sends the hosting device certificate C_CV.IFD.AUT used in asymmetric key mutual authentication to the ASE for verification.
L.12

Procedures for mutual authentication
L.12.1
Introduction

This clause describes typical command sequences that may be sent by the hosting device to the ASE to result in mutual authentication of both entities, in each of the 3 scenarios supported by the present annex:

· Mutual authentication based on pre-shared symmetric key (PSK): see clause L.12.2

· Asymmetric RSA-based mutual authentication: see clause L.12.3
· Asymmetric ECC-based mutual authentication: see clause L.12.4
These descriptions rely on the naming conventions in clause L.0.2.
L.12.2
PSK-based mutual authentication

Following ASE activation, the hosting device application may need to authenticate itself to the ASE to enable access to certain protected data objects stored in the ASE. The MUTUAL AUTHENTICATE command serves this purpose. AES keys of 16, 24 or 32 butes may be used. For improved security, the keys KENC and KMAC stored in the ASE may actually result themselves from diversification based on a mother key stored in the hosting device.
The typical command sequence for symmetric key mutual authentication is as follows:
1. The hosting device application retrieves an 8 bytes ASE identifier, SN.ICC, using the GET DATA command.
2. The hosting device application issues the MSE SET (Authentication Template) command for KENC, KMAC and optionally the algorithm ID.
3. The hosting device application issues a GET CHALLENGE command and obtains an 8 bytes random number CRnd.

4. The hosting device application issues a MUTUAL AUTHENTICATE command involving the following actions:

a. Generates a 32 bytes data element, KIFD, and an 8 or 16 byte challenge TRnd

b. Concatenate a string, S = TRnd || SN.IFD || CRnd || SN.ICC || KIFD, where SN.IFD is made of the 8 least significant bytes of the hosting device application identifier.
c. Computes S’ = AES CBC encrypted version of S using KENC, and MAC = KMAC based S’ MAC calculation
d. Include S’ || MAC in the command data field

e. The ASE verifies the MAC using its own KMAC, decrypts S’ using KENC, and verifies CRnd and SN.ICC.

f. The ASE generates a 32 bytes data element KICC

g. The ASE computes session keys for MAC and encryption from KIFD and KICC using mechanisms in EN 419 212 [63].
h. The ASE concaterrnates a string SS = CRnd || SN.ICC || TRnd || SN.IFD || KICC

i. The ASE computes SS’ = AES CBC encrypted version of SS using KENC, and MAC = KMAC based SS’ MAC calculation

j. The ASE sets the Send Sequence Counter to the concatenation of the 8 Least Significant Bytes (LSB) of CRnd followed by the 8 LSB of TRnd.

k. The ASE returns SS’ || MAC in the Response Data field to the hosting device.
L.12.3
RSA-based mutual authentication
For this process to succeed, the following data shall be provisioned:

· In the ASE:
· PrK.ICC.AUT, the private key used for mutual authentication.
· C.ICC.AUT, the certificate issued for the ASE, containing the ASE public key PuK.ICC.AUT used for asymmetric key mutual authentication.
· p, q and g, the Diffie-Hellman key exchange parameters.
· PuK.CA.AUT, the CA public key.
· SN.ICC, the ASE serial number.
· In the hosting device application:
· PrK.IFD.AUT, the private key of the hosting device used for authentication.
· C_CV.IFD.AUT, the certificate issued for the terminal by the CA, used for asymmetric key mutual authentication and containing the Certificate Holder Authorization.
· SN.IFD, the device identifier.
The key lengths are 1024, 1536 or 2048 bits In some cases the certificate key may be of different length than the CA root key PuK.CA.AUT.
The typical command sequence for RSA-based asymmetric key mutual authentication is as follows:

1. The hosting device application retrieves the Diffie-Hellman key exchange parameters from the ASE using the GET DATA command. The ASE returns the DH elements p, q and g.

2. The hosting device application computes KIFD = gx mod p, where 1 <= x <= q-1.
3. The hosting device application sends the Key ID for the DH key exchange parameters and KIFD to the ASE using the MSE SET command (Key Agreement Template). The key ID has been referenced in a KAT template (tag A6h).
4. The hosting device application retrieves KICC, computed by the ASE as KICC = gy mod p where 1 <= y <= q-1, using GET DATA, and computes KIFD/ICC = KICCx mod p. The ASE computes KICC/IFD = KIFDy mod p and returns KICC. This enables the hosting device application to compute KIFD/ICC = KICC/IFD, constituting a shared secret, allowing both entities to derive two shared session keys for the purpose of encryption and MAC computation.
5. The MSE – SET (DST) command sets the Environment Parameters (EP) to be used by the PSO – VERIFY CERTIFICATE command. PuK.CA.AUT has been referenced in a DST template (tag B6h). The ASE thus selects PuK.CA.AUT.
6. The hosting device application uses the PSO – VERIFY CERTIFICATE command to send its certificate C_CV.IFD.AUT used for asymmetric key mutual authentication. The ASE verifies C_CV.IFD.AUT and retrieves PuK.IFD.AUT, SN.IFD, and the certificate holder authorization CHA from C_CV.IFD.AUT.

7. The MSE – SET (Authentication Template) command referencing the key taken from the hosting device application certificate, C_CV.IFD.AUT, sets the Environment Parameters to be used by the PKDH EXTERNAL AUTHENTICATE command. The ASE selects PuK.IFD.AUT.

8. The hosting device application issues a GET CHALLENGE command to retrieve an 8 bytes CRnd from the ASE. This is used to initialize the Send Sequence Counter and to verify the hash value in the signature.
9. The hosting device application issues aPKDH EXTERNAL AUTHENTICATE command to the ASE with its identifier concatenated with the computed RSA signature using its private key in the command data field. The ASE verifies the signature using PuK.IFD.AUT. At this point, the hosting device application has authenticated itself to the ASE. From now until the end of the authentication process, all commands shall be sent with MAC and ENC secure messaging.
10. The hosting device application reads the ASE certificate using READ BINARY, to extract the ASE identifier and public key. and recognizes that the ASE certificate was issued by the CA. If needed, it first reads the public key from the CA certifying C.ICC.AUT from the ASE through the same process.
11. The MSE – SET (Authentication Template) command referencing the ASE private key, PrK.ICC.AUT, sets the Environment Parameters to be used by the PKDH INTERNAL AUTHENTICATE command. The ASE selects PrK.ICC.AUT.

12. The hosting device application asks the ASE to authenticate itself by issuing aPKDH INTERNAL AUTHENTICATE command to the ASE. To do this, the ASE generates a signature with its private key and returns it with its identifier in the command response field. The hosting device application verifies the signature. At this point, the ASE has authenticated itself to the hosting device application.
 L.12.4
ECC-based mutual authentication

For this process to succeed, the following data shall be provisioned:

· In the ASE:
· PrK.ICC.AUT, the private key used for mutual authentication.

· C.ICC.AUT, the certificate issued for the ASE, containing the ASE public key PuK.ICC.AUT used for asymmetric key mutual authentication.

· ECDH.P, the Diffie-Hellman key exchange parameters p, a, b G and n.

· PuK.CA.AUT, the CA public key.

· SN.ICC, the ASE serial number.
· In the hosting device application:
· PrK.IFD.AUT, the private key of the hosting device used for authentication.

· C_CV.IFD.AUT, the certificate issued for the terminal by the CA, used for asymmetric key mutual authentication and containing the Certificate Holder Authorization.
· PuK.CA.AUT, the CA public key.
· PuK.IFD.AUT, the device public authentication key.
· SN.IFD, the device identifier.

While the certificate C_CV.IFD.AUT, which contains the hosting device public key and a hash, shall be stored in card verifiable format as specified in EN 419 212 [63], the format of C.ICC.AUT is not specified, it can be for example in X.509 format or in the same format as C_CV.IFD.AUT, but the stored format shall be interpretable by the hosting device and contain at least the ASE serial number SN.ICC and the ASE public key used for authentication PuK.ICC.AUT.
The typical command sequence for ECC-based asymmetric key mutual authentication is as follows:

1. If not already known, the hosting device application may optionally retrieve the curve elements p, a, b, G and n via a GET DATA or READ BINARY command on a specified data object.

2. The hosting device application sets the algorithm to be used for the elliptic curve by issuing an MSE SET command with an Authetication Template (AT, tag A4h) referencing the key ID.
3. The hosting device application computes KIFD = TRnd x G and sends the Key ID and KIFD, and optionally the curve parameters ECDH.P, to the ASE using the GENERAL AUTHENTICATE command. The Send Sequence Counter is initialized to 1. The ASE computes KICC = CRnd x G and KICC/IFD = Comp (CRnd * KIFD) and returns KICC to the hosting device, which computes KIFD/ICC = Comp (TRnd x KICC).
4. Secure messaging keys for MAC and encryption are derived on both sides, and AES secure messaging (encryption + MAC) is applied from that point on to the exchanges with the ASE.
5. Assuming PuK.CA.AUT is known to the ASE, the MSE – SET (DST) command sets the Environment Parameters (EP) to be used by the PSO – VERIFY CERTIFICATE command, where PuK.CA.AUT is referenced in a DST template (tag B6h). The ASE thus selects PuK.CA.AUT. If the optional algorithm ID is absent from the selected Environment Parameters, the certificate is considered to be signed by an ECC key of the same length as the referenced key.
6. The hosting device application uses the PSO – VERIFY CERTIFICATE command to send its certificate C_CV.IFD.AUT used for asymmetric key mutual authentication. The ASE verifies C_CV.IFD.AUT and retrieves PuK.IFD.AUT, SN.IFD, and the certificate holder authorization CHA from C_CV.IFD.AUT.

7. The MSE – SET (Authentication Template) command referencing the key taken from the hosting device application certificate, C_CV.IFD.AUT, sets the Environment Parameters to be used by the ECDH EXTERNAL AUTHENTICATE command, selecting the hosting device application public key and the elliptic curve DH parameters. The ASE selects PuK.IFD.AUT.

8. The hosting device application issues a GET CHALLENGE command to retrieve an 8 bytes CRnd from the ASE. This is used in the ECDSA computation.

9. The hosting device application issues an ECDH EXTERNAL AUTHENTICATE command to the ASE with its identifier concatenated with the computed ECDSA signature using its private key in the command data field. The ASE verifies the signature using PuK.IFD.AUT. At this point, the hosting device application has authenticated itself to the ASE. From now until the end of the authentication process, all commands shall be sent with MAC and ENC secure messaging.

10. The hosting device application reads the ASE certificate using READ BINARY, to extract the ASE identifier and public key. and recognizes that the ASE certificate was issued by the CA. If needed, it first reads the public key from the CA certifying C.ICC.AUT from the ASE through the same process.

11. The MSE – SET (Authentication Template) command referencing the ASE private key, PrK.ICC.AUT, sets the Environment Parameters to be used by the ECDH INTERNAL AUTHENTICATE command. If the Algorithm ID is absent, it is assumed to be SHA-XX where XX is equal to the key size. The ASE selects PrK.ICC.AUT.

12. The hosting device application asks the ASE to authenticate itself by issuing an ECDH INTERNAL AUTHENTICATE command to the ASE with TRnd in the command data field. The ASE generates a signature with its private key and returns it with its identifier in the command response field. The hosting device application verifies the signature, implicitly verifying the ASE identity as known from the certificate C.ICC.AUT. At this point, the ASE has authenticated itself to the hosting device application.

-----------------------End of change 1---

-----------------------Start of change 2 (References etc.) -------------------------

2
References

2.1
Normative references

References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references, only the cited version applies. For non-specific references, the latest version of the reference document (including any amendments) applies.

The following referenced documents are necessary for the application of the present document.

[1]
oneM2M TS-0001: "Functional Architecture".

[…]
2.2
Informative references

References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references, only the cited version applies. For non-specific references, the latest version of the reference document (including any amendments) applies.

The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
[i.1]
oneM2M Drafting Rules.

NOTE:
Available at http://www.onem2m.org/images/files/oneM2M-Drafting-Rules.pdf.

[…]
3
Definitions, symbols and abbreviations

3.1
Definitions

For the purposes of the present document, the terms and definitions given in oneM2M TS-0011 [2] and the following apply:

additional authenticated data [14]: refers to data that is authenticated, but not encrypted by an authenticated encryption with associated data algorithm.

[…]
3.2
Symbols

For the purposes of the present document, the following symbols apply:

||
Concatenation

3.3
Abbreviations

For the purposes of the present document, the abbreviations given in oneM2M TR-0004 [i.2] and the following abbreviations apply:

© oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC)
Page 36 of 36
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

