

Driving oneM2M Standards Adoption: Unlocking Opportunities in Malaysia's IoT Ecosystem

Dr. Gopinath Rao Sinniah
CTO, Favoriot Sdn Bhd
MTSFB Reference Panel Chair

Key Topics

The Malaysian IoT Landscape

Unlocking
Opportunities with
oneM2M

MTSFB's Role in Standards Adoption

oneM2M and Favoriot: A practical synergy

Malaysia's IoT Journey

~2010 - 2014

Focus: Initial awareness, university projects, early industrial adoption.

Standardisation: No national framework; solutions are proprietary silos.

II: National Strategy

2015 - 2020

Internet of Things (IoT)
Strategic Roadmap (2015),
Industry4WRD (2018),
Malaysian ITS Blueprint (2019),
and Malaysia Smart City
Framework (2019).

Interoperability: Focus is on vision and vertical deployment; the lack of a common service layer limits data sharing.

III: Digital Acceleration

2021 - Present

Launch of MyDIGITAL (2021) and Construction 4.0
Strategic Plan (2021-2025).
Emphasis on digital economy and infrastructure, as reflected in the MyTMAP2030
Strategic Thrusts.

Scale & Efficiency:

Fragmentation increases costs, slows government procurement, and prevents national-scale, cross-sector solutions.

MyTMAP2030 Strategic Thrusts & Key Initiatives

Strategic Thrust	Objectives
Robust and Resilience Communications Infrastructure	Ensure equitable, resilient digital infrastructure for nationwide connectivity and economic growth.
Security, Privacy and Trust for National Sovereignty	Develop standards to protect information, network infrastructure, security, trust, and data privacy.
Innovation through Emerging Technologies	Facilitate industry innovation by leveraging emerging technologies.
Advancing Environmental, Social and Governance (ESG) Goals	Develop standards to encourage the adoption of sustainable technologies to reduce environmental impact.
Regulatory Compliance through Standardisation	Implement robust standards for compliance and quality management to ensure consistent service quality and enhanced user experience.

Emerging Technologies Areas

- Fixed Services
- Mobile Services
- Satellite
- Broadcasting
- Vertical Applications
- Soft Technology

MyTMAP2030

The Strategic Communications and Multimedia Technology Roadmap 2025-2030 ACCELERATING TECHNOLOGY ADOPTION THROUGH STANDARDS

V9

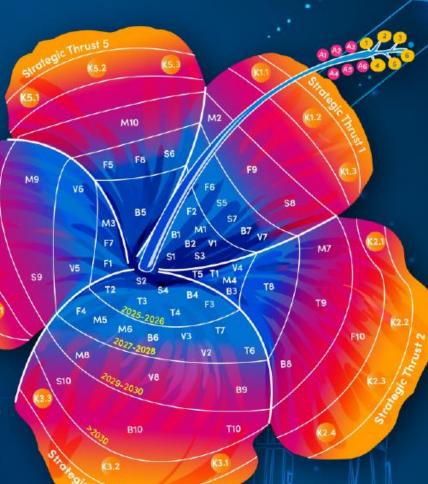
ST1: Robust and Resilience Communications Infrastructure

- K1.1 Facilitate infrastructure deployment in urban and rural areas.
- K1.2 Accelerate technology adoption and enable services across vertical applications.
- K1.3 Enhance connectivity with high-quality and affordable internet access.

ST2: Security, Privacy, and Trust for National Sovereignty

- K2.1 Create comprehensive security and privacy standards aligned with global frameworks.
- K2.2 Safeguard sensitive data and computing capabilities.
- K2.3 Ensure secure and efficient deployment of services and applications.
- K2.4 Enhance competencies and capabilities in security, trust, and privacy.

ST3: Innovation through Emerging Technologies


- K3.1 Establish frameworks for emerging technologies that drive innovation.
- K3.2 Promote cross platform integration for seamless
- K3.3 Facilitate technology adoption through use cases and best practices.

ST4: Advancing Environmental, Social and Governance (ESG) Goals

- K4.1 Improve energy efficiency for communications equipment, system and network.
- K4.2 Encourage use of renewable energy for natural resources
- K4.3 Promote circular economy for sustainable resource management.

ST5: Regulatory Compliance through Standardisation

- K5.1 Enable safety, interoperability, and compatibility of equipment and network facilities.
- K5.2 Facilitate compliance to regulatory requirements such as EMF emission, QoS, and QoE.
- K5.3 Strengthen governance through documented use cases and best practice.

A4: Broadcasting

Delivery

B7 5G Broadcast

B1 UHD Broadcasting

B2 5G New Radio for Broadcasting

B6 Real-time Disaster Broadcasting

B3 Cloud-Based Broadcasting

B4 Personalized Content

B5 AR/VR Broadcasting

B8 Blockshain for Content

Rights Management

B9 Al-Generated Content

B10 Quantum-Enhanced

A5: Vertical Application

V2 Remote Factory Automation

V5 Secure Micro ePayment

V4 Smart Farming and Aquaculture

V6 Al Supported Grid Monitoring

V8 Interligent Transport System

V10 Geo-Targeted Advertisement

Broadcasting

V1 Automotive V2X

V3 Telemedicine

- 1. Ministries & Agencies
- 2. Regulatory Bodies
- 3. Academia, Associations & Professional Bodies
- 4. Service & Solutions Providers
- 5. Vendors & Manufacturers
- 6. Public & Consumers

A1: Fixed Services

F1 Co-Packaged Optics

F2 Wi-Fi Enhanced FWA

F3 XGS PON F4 Edge Computing

F5 Autonomous Software Defined Network

F6 All-Optical Switching

F7 Energy Efficient Networks

F8 Gigabit-Speed Li-Fi Networks

F9 Space Division Multiplexing F10 Quantum Key Distribution

A2: Mobile Services M1 Private Network M2 Al-Based Energy-Efficient

Network

M3 AI/ML for Network

M4 5G-RedCap M5 Cross-layer Collaboration

Technology for XR

M6 Sidelink Positioning & Ranging V7 Smart City Public Surveillance M7 Uncrewed Aircraft Systems

M8 Integrated Sensing &

Communications M9 Ambient IoT

M10 Terahertz Communications

A3: Satellite

S1 Low Latency & VHTS S2 NTN - loT and M2M

Communications

53 Small Satellite Specification 54 Al Assisted Satellite System 55 Satellite FSO Communications

S6 NTN - Direct to Devices 57 Multi-orbit Satellites

S8 VHF Data Exchange System 59 Life Extension and In-orbit

Servicing 510 Quantum Communications

A6: Soft Technology

V9 XR Entertainment

T1 Security and Privacy T2 Generative Al

T3 Big Data

T4 Ubiquitous loT Adoption

T5 Blockchain Interoperabilit

T6 Spatial Computing

T7 Digital Twin

T8 Zero Trust Network Access

T9 Quantum Computing

MyTMAP2030 - IoT Related

Edge Computing

Edge computing processes data locally, near the user, to significantly reduce latency, making real-time applications (like autonomous vehicles and IoT) faster and more effective.

Ambient IoT

Ambient IoT leverages the capabilities of 5GA and 6G to seamlessly integrate battery-less sensors into the environment, enabling constant, context-aware data collection for intelligent systems that autonomously respond to human needs and environmental changes.

Non-Terrestrial Networks Enabled IoT and M2M Communications

NTN-loT and M2M communications use Non-Terrestrial Networks (like satellites) to provide a reliable connection for remote loT devices and sensors in areas without traditional network coverage, expanding the reach of smart solutions across sectors like logistics and agriculture.

Ubiquitous IoT Adoption

Widespread, seamless integration of interconnected IoT devices into all everyday environments, leveraging technologies like 5G, edge computing, and AI to enable real-time data exchange for personalized services and optimized resource management across sectors like smart cities and healthcare.

Digital Twin

A Digital Twin is a dynamic, real-time virtual model of a physical asset or system that uses IoT and AI to monitor, simulate, and analyze operations, helping industries predict issues and optimize outcomes across sectors like manufacturing and smart cities.

The National Challenge

A fragmented IoT landscape of vertical silos prevents interoperability, increases costs, and limits national-scale solutions

The Problem: Fragmentation

Siloed System

Smart city, energy, and logistics systems are built in isolation. They cannot 'talk' to each other, creating data islands

Vendor Lock-In

Companies are tied to a single vendor's proprietary technology, stifling innovation and increasing long-term costs.

High Complexity

Developing new cross-domain applications (e.g., parking + traffic + pollution) is slow, expensive, and difficult to scale, stifle innovation

The Solution – oneM2M

oneM2M is the Android/iOS of IoT. It doesn't care if you're using Zigbee or LoRaWAN; it makes sure all apps speak the same language.

Core Benefits for Malaysia

Breaks Vendor Lock-in

Enables true interoperability. Any oneM2M-compliant device can work with any oneM2M-compliant application, regardless of the vendor.

Accelerate Innovation

Frees developers to build valuable applications, not costly, custom integrations. This lowers the barrier to entry for local technopreneurs.

Aligns with National Goals

Directly supports the National IoT Roadmap's goal for a "Regional Hub" by establishing the framework for "interoperability testing."

Cost Reduction & Reusability

Reuse common services. Stop reinventing device management and security for every single project.

MTSFB: The Key Enabler

The Malaysian Technical Standards Forum and Body (MTSFB) is positioned to lead the charge from recognition to regulation.

MTSFB's Strategic Actions

Formal National Standardisation

 Take the international oneM2M technical specifications (which are already recognised by ITU-T) and formally adopt them

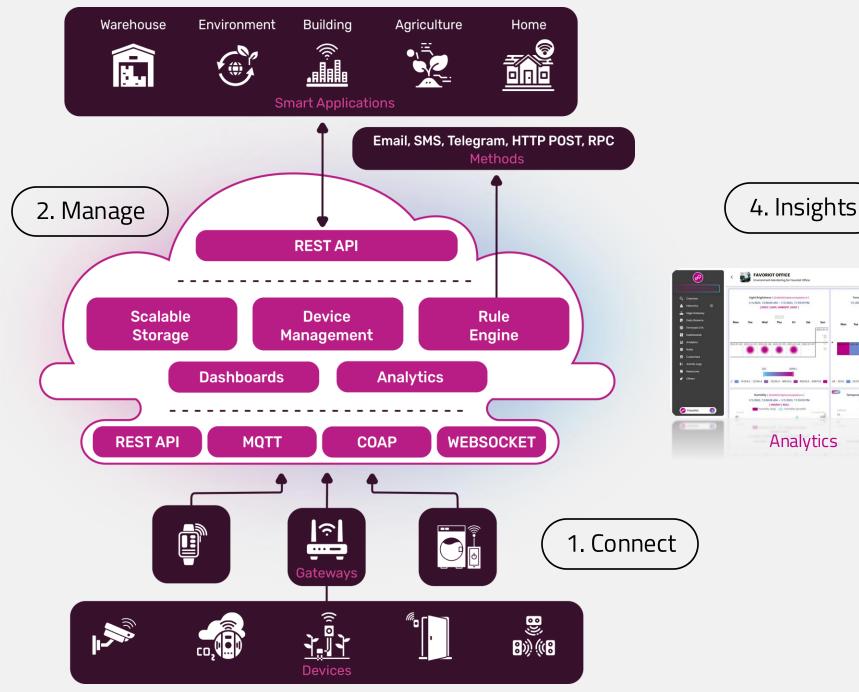
Certification and Compliance Program

 Establish a local certification scheme with local partner and research institutions

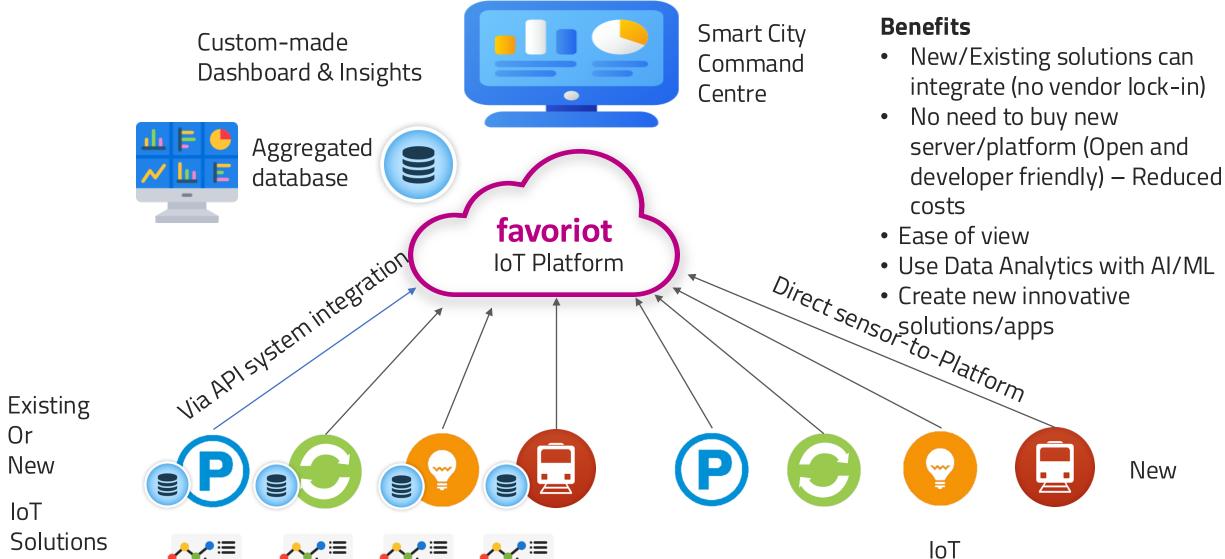
Localising Interworking Guidelines

 Publish specific national guidelines on how to implement the Interworking Proxy Entity (IPE)

The Industry Champion: Favoriot


How a leading local platform like Favoriot can integrate oneM2M and champion a national standard.

3. Visualise



Sensors/Gateways

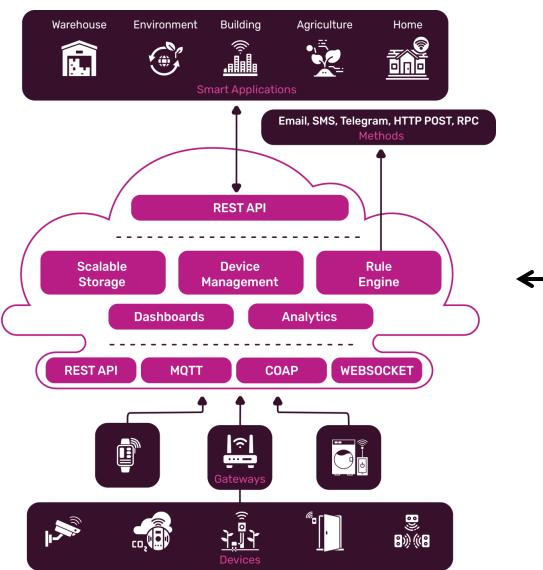
(End-to-End)

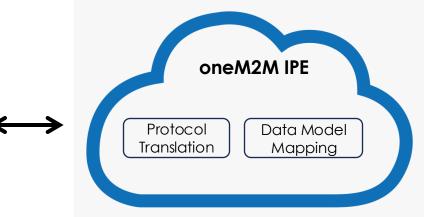
Smart City IoT Platform Using favoriot

Favoriot's Technical Path – Integration via Interworking Proxy (IPE)

Favoriot's existing RESTful API architecture is highly compatible with oneM2M's service-based design.

The IPE acts as a powerful "translator" or "adapter"


It maps Favoriot's specific API and data models to the oneM2M standard resource structure.



This allows Favoriot-managed devices to be discovered and used by any other one M2M-compliant application in the ecosystem.

Integration via Interworking Proxy (IPE)

IPE acts as a gateway, translating the oneM2M standard data models and procedures (like Create, Retrieve, Update, Delete operations on resources) into the format that FAVORIOT accepts

Interoperability is Now

"Standardisation is the bridge from a fragmented present to a unified, intelligent, and efficient IoT ecosystem for Malaysia."

