Doc# TST-2015-0134R01-TS-00015-Interop_testing_methodology 

	Input Contribution

	Meeting ID*
	TST18

	Title:*
	Interop testing methodology

	Source:*
	Laurent Velez, ETSI, Laurent.Velez@etsi.org


	Uploaded Date:*
	2015-07-12

	Document(s) 

Impacted*
	TS-0015

	Intended purpose of

document:*
	 FORMCHECKBOX 
 Decision

 FORMCHECKBOX 
 Discussion

 Information

 Other <specify>

	Decision requested or recommendation:*
	The contribution proposes some text on methodology for development of interoperability testing to be included in TS-0015 – Testing Framework.


	Template Version:23 February 2015 (Dot not modify)


oneM2M Notice
The document to which this cover statement is attached is submitted to oneM2M.  Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.
 Header

1.
Introduction

The contribution proposes some text for the clause 7 (Interoperability testing section) of the TS-0015 Testing framework. It provides Interoperability testing methodology steps as the selection of the IUT and the identification of reference points.

2.
Proposal

===== Start of 1st Part: Reference=====

2.2
Informative references

[i.3]
ETSI EG 202 237: "Methods for Testing and Specification (MTS); Internet Protocol Testing (IPT); Generic approach to interoperability testing".
===== End of 1st Part: Reference =====

===== Start of 2nd Part: Interoperability testing =====

7
Interoperability testing
7.1
Introduction
Interoperability testing can demonstrate that a product will work with other like products: it proves that end-to-end functionality between (at least) two devices is as required by the standard(s) on which those devices are based. In that context, the system under test is made of the combination of different devices under test coming from different suppliers. 

The important factors which characterize interoperability testing are:

· interoperability tests are performed at interfaces that offer only normal control and observation (i.e. not at specialized interfaces introduced solely for testing purposes);

· interoperability tests are based on functionality as experienced by a user (i.e. they are not specified at the protocol level). In this context a user may be human or a software application;

· the tests are performed and observed at functional interfaces such as Man-Machine Interfaces (MMIs), protocol service interfaces and Application Programming Interfaces (APIs).

The fact that interoperability tests are performed at the end points and at functional interfaces means that interoperability test cases can only specify functional behaviour. They cannot explicitly cause or test protocol error behaviour.

The present clause provides users with guidelines on the main steps associated with interoperability testing. The intention is that the guidelines should be simple and pragmatic so that the document can be used as a "cook-book" rather than a rigid prescription of how to perform interoperability testing.
The main components of these guidelines are as follows:
· basic concepts definition

· definition of Test architecture

· development of interoperability test specifications, including:

· definition of a generic SUT architecture;
· specification of Test configuration;

· identification of interoperable functions;

· Development of interoperability test descriptions;

· interoperability testing process 

7.2
Testing Architecture

7.2.1
Basic concepts for interoperability testing

There are a number of different terms and concepts that can be used when describing a test methodology. The following sections describe the most important concepts used by these guidelines, which can been categorized either as part of the System Under Test (SUT) or as part of the Test Environment. 

Figure x presents the main concepts used in the context of interoperability testing and described in the following sections


[image: image1.emf] 

DUT n

 

DUT 2

 

DUT 1

 

 

 

System Under Test

 

Test 

Environment

 

Test Drivers

 

Test 

Descriptions 

 

…..

 

Test selection, 

coordination 

logging, 

monitoring, 

reporting…  

  

 

Test Interfaces

 


Figure x: Illustration of basic concepts
7.2.2
System Under Test (SUT)

In the context of interoperability testing, the System Under Test (SUT) is made of a number of Devices Under Test (DUTs) coming from different suppliers. 

Depending on the complexity of the end-to-end system, the overall amount of DUTs under study, and the interactions among them, it might be advisable to define different SUT configuration addressing specific functional areas or groups of tests. 

The first steps towards defining an Interoperability Tests Specification are identifying the Devices Under Test and describing a generic architecture where all the required SUT configurations will fit in.

7.2.2.1
Devices Under Test (DUT)

In the context of oneM2M, a Device Under Test is a combination of software and/or hardware items which implement the functionality of oneM2M and interact with other DUTs via one or more reference points. 

Note: When using Interoperability Test Specifications in a certification scheme, the notion of Qualified Equipment (QE) or Qualified Device (QD) applies. A QD is a DUT that has successfully been tested with other QDs. The usage of interoperability Test Specifications in a certification scheme is out of the scope of this document. Further details on this topic can be found at [i.3]
7.2.2.2
Test interfaces
The interfaces that are made available by the SUT to enable the testing are usually known as the test interfaces. These interfaces are accessed by the test drivers to trigger and verify the test behaviour, Other interfaces offered by the SUT can be used for monitoring, log analysis, etc..
In the simplest case, the test interfaces will be the normal user interfaces offered by some of the DUTs (command line, GUI, web interface…). In other cases, DUTs may offer APIs over which interoperability testing can be performed either manually using a dedicated application, or automatically using a programmable test device.  In some cases, observing and verifying the functional behaviour or responses of one DUT may require to analyse its logs or records. 

Additionally, while in the context of interoperability testing interfaces between the DUTs are not considered to be test interfaces, combining interoperability testing with conformance checks may require to monitor those interfaces to assess the conformance of the exchanged information or messages.

7.2.3
Test Environment

Interoperability testing involves control and observation at the functional (rather than protocol) level. The Test Environment is the combination of equipment and procedures enabling testing the interoperability of the DUTs. Entities in the test environment access the different Devices Under Test via the Test Interfaces offered by the SUT. These entities ensure the selection, interpretation and execution of the test descriptions, coordination and synchronisation of the actions on the test interfaces, and provide mechanisms for logging, reporting, monitoring and observing the interactions among the DUTs, etc… 

The main entities in the test environment are described in the following sections.

7.2.3.1
Test Descriptions
A test description provides the detailed set of instructions (or steps) that need to be followed in order to perform a test. Most often, interoperability tests are described in terms of actions that can be performed by the user(s) of the endpoint device(s). 
In the case where the test is executed by a human operator, test will be described in natural language. In the case where the tests are automated, a programming or test language will be used to implement the test descriptions. 

The steps in the test description can be of different nature, depending on the kind of action required: trigger a behaviour on one DUT, verify the functional response on another DUT, configure the SUT (add/remove a DUT), check a log…. Each step should clearly identify the DUT and/or interface targeted by the action.

7.2.3.2
Test drivers
The test driver realizes the steps specified in a test description at one specific test interface. Testing efficiency and consistency can be improved by implementing the role of the test driver via an automatic device programmed to carry out the specified test steps. This approach may require standardized test interfaces in the DUTs.
In any given instance of testing, there may be more than one test interface over which the tests will be executed. In that case, coordination among the different test drivers and synchronization of the actions performed by them will be required. This test coordination role can be played by one of the test drivers, or by and additional entity in the test environment.

7.3
Development of Interoperability Test Specifications

7.3.1
Overview

The main steps involved in the process of developing an interoperability test specification are as follows:

-
describing a generic architecture for the System Under Test

-
identifying the test architecture
-
collecting requirements in the Interoperable Features Statement (IFS);

- 
defining a structure for the Test Specification

-        writing a Test Descriptions (TDs) for each item in the IFS


[image: image2.emf] 

Base 

Standards 

 

Industry 

practise

 

 

 

 

 

 

 

 

 

 

Test Specifications

 

SUT 

Configurations

 

Test Suite 

Structure

 

Test 

Descriptions

 

IFS 

Collect IOP 

Requirements  

Define SUT 

Architecture 

 

 

 

 

 

 

 

 

 

 

 

Generic SUT 

Architecture 

 


Figure x: Interoperability Test Specification Development process

7.3.2
Generic SUT Architecture

A generic SUT architecture provides an abstract framework within which any specific SUT configuration should fit in. The starting point for defining a generic SUT architecture is most often the functional architecture described in the base standards, in combination with pragmatic input on how the industry and open source projects are actually implementing these functional blocks (grouping, bundling, etc…). 

As described in the previous sections, in a complex system, it may be required to define several SUT configurations to cover all the specified groups of tests. Defining the generic architecture and identifying the SUT configurations at an early stage helps to provide a structure for the test descriptions later. The generic test architecture is usually specified as a diagram and should clearly identify:

-
the Devices Under Test, and the functional blocks implemented by them
-
the communications paths between the DUTs;

-
if required, the protocols, APIs and/or data models to be used for communication between the DUTs.
7.3.3
Test architecture and Interfaces

A test architecture is an abstract description of logical entities as well as their interfaces and communication links involved in a test. It describes all implementation (DUTs) involved in the interoperability tests, together with the set of equipment and procedures required to enable implementations to execute the tests.

This test architecture is mainly composed of several functional entities:

· SUT: It is composed of a set of DUTs (oneM2M nodes). It is supposed that the DUTs are equipped with all the devices (sensors, etc.) needed to perform the tests.

· Test bed control module: This entity manages the whole test bed. It is considered to be the core of the test bed. This module synchronizes, configures, controls and runs the other entities and even the SUT. In addition, this entity gathers all the information generated by each entity in term of traces with the aim of having a global overview of the execution of the tests. Depending of the implementation of the test bed, this module might also assign the test verdicts.

· Test stimulation environment: This entity is in charge of stimulating the SUT for a specific test conditions, 

· Monitor: This entity checks and gathers messages on relevant communication links.
· oneM2M architecture element: It provides oneM2M applications for some use cases.

· Networks: the test bed identifies two types of network depending on the type of information which is going to be carried out. One of the networks is used for carrying out data, and the other one is used for control
NOTE :
The definition of the test bed architecture should be done simultaneously with the test description specification.

The test bed classifies the interfaces in three groups:

· Data: this group contains the interfaces where data is exchanged. Depending on the type of data being exchanged, the interfaces are classified into three categories:

· Stimulating: this interface carries information generated by the test bed in order to stimulate the DUTs for a specific behaviour.

· Monitoring: this interface carries the protocol message exchanged between the DUTs during the execution of the tests.

· Tracing: this interface carries information about the status of the execution of the DUTs and the test bed entities in order to be able to analyze as much as possible the execution of a test.

· Control: this group is used to configure and control the various entities in the test bed, and even the DUTs, by passing necessary parameters.

· Test Operator: this group provides the capability of controlling the test bed control module. Through this interface, a test operator would be able to select the test to be executed, to configure the different entities involved in the tests and to analyse the results obtained during the test execution.

Figure x illustrates interfaces involved in the test bed.

 SHAPE  \* MERGEFORMAT 



Figure x: Interfaces of a test architecture

7.3.4
Interoperable Functions Statement (IFS)

An "Interoperable Functions Statement" (IFS) identifies standardised functions that an DUT shall support. These functions are either mandatory, optional or conditional (depending on other functions). 

In addition, the IFS can be used as a proforma by a manufacturer to identify the functions an DUT will support when interoperating with corresponding equipment from other manufacturers.

The ideal starting point in the development of an IFS is the "Implementation Conformance Statement" (ICS) which should clearly identify the tested protocol's options and conditions. Like the ICS, the IFS should be considered part of the base protocol specification and not a testing document.

The guidance to produce IFS proforma is provided in EG 202 237 [i.3] and no extra guidance is required for the context of oneM2M.

7.3.5
Test Descriptions (TD)

A "Test Description" (TD) is a well detailed description of a process that pretends to test one or more functionalities of an implementation. Applying to interoperability testing, these testing objectives address the interoperable functionalities between two or more vendor implementations.

In order to ensure the correct execution of an interoperability test, the following information should be provided by the test description:

· The proper configuration of the vendor implementations.

· The availability of additional equipment (protocol monitors, functional equipment, …) requires to achieve the correct behaviour of the vendor implementations. 

· The correct initial conditions.

· The correct sequence of the test events and test results.

TDs are based on the test scenarios.

In order to facilitate the specification of test cases an interoperability test description should include as a minimum the items of the table x.
Table x: Interoperability test description

	Identifier
	a unique test description ID

	Objective
	a concise summary of the test which should reflect the purpose of the test and enable readers to easily distinguish this test from any other test in the document

	References
	a list of references to the base specification section(s), use case(s), requirement(s), TP(s) which are either used in the test or define the functionality being tested

	Applicability
	a list of features and capabilities which are required to be supported by the SUT in order to execute this test (e.g. if this list contains an optional feature to be supported, then the test is optional)

	Configuration or Architecture
	a list of all required equipment for testing and possibly also including a (reference to) an illustration of a test architecture or test configuration

	Pre-Test Conditions
	a list of test specific pre-conditions that need to be met by the SUT including information about equipment configuration, i.e. precise description of the initial state of the SUT required to start executing the test sequence

	Test Sequence
	an ordered list of equipment operation and observations. In case of a conformance test description the test sequence contains also the conformance checks as part of the observations


The TDs play a similar role as TPs for conformance testing.
Editor’ note: the following table is for example. It may be replaced by proper example later.

Table x: Example of Test Description
	Interoperability Test Description

	Identifier:
	TD_M2M_NH_02

	Objective:
	AE registers to its registrar CSE via an AE Create Request

	Configuration:
	M2M_CFG_01

	References:
	[1] 10.2.1.1 

[2] 7.3.5.2.1

	

	Pre-test conditions:
	·  CSEBase resource has been created in CSE with name {CSEBaseName}

· AE does not have an AE-ID, i.e. it registers from scratch

	Test Sequence

	Step
	RP
	Type
	Description

	1
	
	Stimulus
	AE  is requested to send a AE Create request to register to the Registrar CSE

	2
	Mca
	PRO Check Primitive 
	· Operation (op) = 1 (Create)

· To (to) = Resource-ID of <CSEBase> resource of the registrar CSE
· From (from) = empty

· Request Identifier (rqi) = (token-string)

· Resource Type (ty) = 2 (AE)

Content (pc) = Serialized Representation of applicable <AE> resource attributes

	
	
	PRO Check HTTP 


	Sent POST request contains

· Request method = POST

· Request-Target:{CSEBaseName}
· Host: Host Address of Registrar CSE
· X-M2M-RI:  value of rqi primitive parameter

· X-M2M-Origin:  empty
· Content-Type:  application/vnd.onem2m-res+xml; ty=2   or  application/vnd.onem2m-res+json; ty=2

· Content-Length: size of payload in the message body in bytes
· Payload: Serialized Representation of applicable attributes of <AE> resource 

	
	
	PRO Check CoAP
	Sent POST request contains

· Method: 0.02 (POST)
· Uri-Host: Registrar CSE host

· Uri-Port: Registrar CSE port
· Uri-Path: <CSEBase>

· Uri-Query: rty=2

· Payload: <AE> resource to be created

	
	
	PRO Check MQTT
	Sent a MQTT PUBLISH protocol packet to the request topic “/oneM2M/req/<SP-Relative-AE-ID>/<Registrar CSE-ID>”
· Payload: 


op = 1

to = <CSEBase>

fr = <AE-ID>

rqi = <Request ID>


ty = 2


pc = <Content>

	3
	
	IOP Check
	Check if possible that the <AE> resource is created in registrar CSE.

	4
	Mca
	PRO Check Primitive
	· Response Status Code (rsc) = 2001 (CREATED)

· Request Identifier (rqi) = same string as received in request message

· Content (pc) = Serialized Representation of <AE> resource

	
	
	PRO Check HTTP


	Registrar CSE sends response containing:
· Status Code = 200 (OK)
· X-M2M-RSC: 2001 
· X-M2M-RI:  value of rqi primitive parameter

· Content-Location:   hierarchical URI of created <AE> resource as given in the @resourceName attribute included in Content primitive parameter
· Content-Type:  application/vnd.onem2m-res+xml  or application/vnd.onem2m-res+json
· Content-Length: size of payload in the message body in bytes
· Payload: Serialized Representation of the created <AE> resource

	
	
	PRO Check CoAP
	
Registrar sends response containing:

· Response Code = 2.01 
· Location-Path: <CSEBase>

· Location-Path: <AE>

	
	
	PRO Check MQTT
	Sent a MQTT PUBLISH protocol packet to the response topic “/oneM2M/resp/<SP-Relative-AE-ID>/<Registrar CSE-ID>”
· Payload: 


to = <SP-Relative-AE-ID>

fr = <Registrar CSE-ID>

rqi = <Request ID>


rsc = <Response Status Code(2001)>

pc = <Content(created <AE> resource representation)>

	5
	
	IOP Check
	AE indicates successful operation

	IOP Verdict
	

	PRO Verdict
	


Types of events:

· A stimulus corresponds to an event that enforces an DUT to proceed with a specific protocol action, like sending a message for instance.

· A configure corresponds to an action to modify the DUT configuration.
· An IOP check consists of observing that one DUT behaves as described in the standard: i.e. resource creation, update, deletion, etc… For each IOP check in the Test Sequence, a result can be recorded. The overall IOP Verdict will be considered OK if all the IOP checks in the sequence are OK.
· In the context of Interoperability Testing with Conformance Checks, an additional step type, PRO checks can be used to verify the appropriate sequence and contents of protocol messages, helpful for debugging purpose. PRO Verdict will be PASS if all the PRO checks are PASS.



===== End of 2nd Part: Interoperability testing =====

SUT





oneM2M Architecture Element





Test bed control module





Test stimulation environment





Protocol analyser





Test operator





Configuration / control interface





Stimulating interface





Monitoring interface





Tracing interface





Test Operator interface








© 2015 oneM2M Partners 

Page 10 of 10


DUT n

DUT 2

DUT 1



System Under Test

Test
Environment

Test Drivers

T
est
Descriptions

…..

Test selection,
coordination
logging,
monitoring,
reporting…




Test Interfaces





Base
Standards


Industry
practise










Test Specifications

SUT
Configurations

Test Suite
Structure

Test
Descriptions

IFS

Collect IOP
Requirements

Define SUT
Architecture











Generic SUT
Architecture




