	Doc# TST-2017-00xx-Developer's Guide on SDT introduction.doc
Change Request
	[image: image26.png]

	

	CHANGE REQUEST

	Meeting ID:*
	TST#27

	Source:*
	Patricia Martigne, ORANGE, patricia.martigne@orange.com,

Maciej Goluch, ORANGE, maciej.goluch@orange.com
Andreas Kraft, DT, A.Kraft@telekom.de
Laurent Velez, ETSI, Laurent.Velez@etsi.org

	Date:*
	2017-02-13

	Reason for Change/s:*
	Add new sections and update essential content of the document

	CR against: Release*
	Rel-3

	CR against: WI*
	 FORMCHECKBOX
 Active <WI-0054>

 FORMCHECKBOX
 MNT maintenance / < Work Item number(optional)>
Is this a mirror CR? Yes FORMCHECKBOX
 No FORMCHECKBOX

mirror CR number: (Note to Rapporteur - use latest agreed revision)
 FORMCHECKBOX
 STE Small Technical Enhancements / < Work Item number (optional)>
Only ONE of the above shall be ticked

	CR against: TS/TR*
	TR-00xx

	Clauses *
	5, 6, 8, Annex A

	Type of change: *
	 FORMCHECKBOX
 Editorial change
 FORMCHECKBOX
 Bug Fix or Correction
 FORMCHECKBOX
 Change to existing feature or functionality
 FORMCHECKBOX
 New feature or functionality
Only ONE of the above shall be ticked

	Impacted other TS/TR(s)
	

	Post Freeze checking:*
	This CR contains only essential changes and corrections? YES FORMCHECKBOX
 NO FORMCHECKBOX

This CR may break backwards compatibility with the last approved version of the TS? YES
 NO

	Template Version: January 2017 (Do not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

GUIDELINES for Change Requests:

Provide an informative introduction containing the problem(s) being solved, and a summary list of proposals.

Each CR should contain changes related to only one particular issue/problem.
In case of a correction, and the change apply to previous releases, a separate “mirror CR” should be posted at the same time of this CR
Mirror CR: applies only when the text, including clause numbering are exactly the same.

Companion CR: applies when the change means the same but the baselines differ in some way (e.g. clause number).
Follow the principle of completeness, where all changes related to the issue or problem within a deliverable are simultaneously proposed to be made E.g. A change impacting 5 tables should not only include a proposal to change only 3 tables. Includes any changes to references, definitions, and acronyms in the same deliverable.
Follow the drafting rules.
All pictures must be editable.
Check spelling and grammar to the extent practicable.
Use Change bars for modifications.
The change should include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change. Additions of complete clauses need not show surrounding clauses as long as the proposed clause number clearly shows where the new clause is proposed to be located.
Multiple changes in a single CR shall be clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.
When subsequent changes are made to content of a CR, then the accepted version should not show changes over changes. The accepted version of the CR should only show changes relative to the baseline approved text.
Introduction
This document adds “Introduction to SDT” section, update Normative references and provides new figures and initial content in the sections: "Use Case” and “Functional architecture”. It also proposes to add new section: “Annex F: Further readings proposition”.
-----------------------Start of change 1---
2.1
Normative references

The following referenced documents are necessary for the application of the present document.

[1]
oneM2M TS-0023: "Home Appliances Information Model and Mapping".
-----------------------End of change 1---
-----------------------Start of change 2---
5
Use Case
This section describes use case which helps to understand the idea of devices abstraction layer.
5.1
Abstraction description via the coffee machine example
An application on Gateway, Cloud/Server, or Smartphone want to manage and control coffee machines from different vendors. Due to the abstraction layer it is possible independently from underlying protocols.
[image: image1.png]Cloud/Server

Coffee maker #1
Vendor: A

Gateway

Smartphone

Coffee maker #2
Vendor: B

Figure 5.1-1: Overview of the coffee machine use case
6
Introduction to SDT
6.1
Introduction
The SDT (SmartHome Device Template) is an initiative to find consensus amongst various SDOs and industry alliances to derive a common approach for device modelling. The approach is to agree on a set of automation commands following a common syntax which are sufficient to model most home appliance functions. The key goals of the SDT are:

1) keep it simple, especially for manufacturers to contribute device information;

2) modularity for functions and device types;

3) make it easy for developers to create unified APIs;

4) be independent of underlying home-area network technologies;

5) enable extendibility of the system in place without service interruption;

6) allow a pass-through mechanism to enable use of proprietary or technology-specific functions.

The SDT approach is to define re-usable basic functions (or services) (labelled "ModuleClass" in Figure 6.1-1) which can represent the typical functions found, for example, in many home automation systems, such as "on/off", "dim a lamp", "receive events from binary sensor", "read data from sensor", etc. Each ModuleClass is composed of a (small) number of actions, datapoint read/write operations, or asynchronous events. For example, an "on/off" ModuleClass would consist perhaps of just one Action, but a "ReadKeypad" Action might have a number of possible events, each with some data value and (usually) a sequence-ID or timestamp start/stop to indicate when and how long each key was pressed.

[image: image2.emf]C

B

A

Figure 6.1-1: SmartHome Device Template (XSD) for a generic device

The SDT represents the device models introduced in figure 5.1.3.1-1 by using an XSD schema to allow formal checking of compliance for XML device descriptions of specific appliances. The modularity goal in the XSD schema is achieved with re-usable XSD fragments ("ModuleClass" in Figure 6.1-1).

Complex devices or appliances can then be described by an appropriate set or collection of the agreed XSD fragments (ModuleClasses), as indicated in Figure 6.1-1 which also shows an optional DeviceInfo XSD fragment to allow recording of static information such as device manufacturer name, device firmware version, etc.

The SDT supports the use of a set of templates for generic devices or appliances (e.g. for a dimmable lamp, a basic washing machine, etc, which would be specific instances of the "Device" object shown in figure 6.1-2) which form the basis of APIs used by application developers. These templates can also be referenced by manufacturers creating XML documents to describe their specific products. For example, the SDT enables specification of a generic washing machine template, with on/off, set-wash-temperature, pause and a few other commands, which could be referenced by a manufacturer as the schema for a XML description of a basic model washing machine. The SDT allows for vendor-specific additional commands (ModuleClasses) to suit specific product types.

An example of how three different generic devices/appliances might be modelled using 4 different ModuleClasses is shown in figure 6.1-2. Data values (DataPoints) which might need to be read/written during operation of the devices are shown as the lowest grouping in the figure (DataPoints/Characteristics).

[image: image3.png]Device Dimmable Lamp Window Sensor Thermometer
ModuleClasses BooleanActor PercentageActor BooleanSensor NumericSensor
-setOn -setPercentageValue -getValue -getValue
-setOff —-getPercentageValue [BooleanEvent] —-getMin
—-toggle -getMax
—-getState
DataPoints -switch:boolean —-sensorSwitch:boolean —temperature:float
Characteristics

—-lightLevel:integer

Figure 6.1-2: SmartHome Template for 3 examples of generic devices

6.2
Availability

The SDT is available under Apache License 2 at oneM2M’s GitLab: https://git.onem2m.org/MAS/SDT

6.3
Definitions

This clause provides an overview about the SDT 3.0 definitions and element hierarchy. Terms to be described in detail in this clause are:

Table 6.3-1: Definitions of SDT Elements

	Term
	Definition

	Domain
	Unique name, or "wrapper" which acts like a namespace, set by the organization creating the SDT, allowing reference to a package of definitions for the contained ModuleClasses and device definitions. Can be referenced when extending ModuleClasses. It has two possible uses: to select the scope of a technology domain, or to set the scope of a use case domain (like Home, SmartGrid, etc.).

	Device
	Physical, addressable, identifiable appliance/sensor/actuator.

	Sub-Device
	A device (usually one of several) which may be embedded in a Device and/or is addressed via another Device.

	ModuleClass
	Specification of a single service with one or more service methods, the involved abstracted data model and related events. The expectation is that each separate service which may be used in many kinds of Devices (like PowerON/OFF, Open/Close, etc.) will be described by a ModuleClass which can be re-used in many Device definitions.

	Module
	Instantiation of a ModuleClass for a specific Device or SubDevice.

6.4
Overview

Various details about recommended structure for SDTs are described in the next clauses. The key point to keep in mind is that the SDT sought a compromise between, at the one extreme, complete flexibility (which could describe any device, of any complexity) and, at the other extreme, a rigid structure which could be 100 % validated and lead to validated software APIs.

A major decision, facilitating validation of code and signalling, was to describe services (functionality) of devices in terms of ModuleClasses made up of combinations of three kinds of elements:

a) DataPoints which can be read/written;

b) Actions which consist of more complex sequences of operations;

c) Events which can be signalled ("published") by devices asynchronously.

This structure shown in figure 6.4-1and is given in more detail in figure 6.4-1.

[image: image4.png]ModuleClass

@ name: text
@ optional : boolean = false
- Doc: Doc
- extends
@domain : IDRF
@class : text
* Property : Properties
* Actions : Action
* Data : DataPoint
* Events : Event

Figure 6.4-1: Diagram describing device functionality in terms of Actions, DataPoints, Events

6.5
Structure

The following UML diagram presents an overview of the structure (elements) of every SDT which is conformant with these guidelines. As implied in the above descriptions, there can be many different choices of the details of a SDT, each one optimized for a particular market segment and the types of devices used in that market segment. Obviously an unnecessary proliferation is counter-productive, but as long as each SDT conforms to the structure shown below then it will be possible with little or modest effort for software applications to be adapted accordingly.

The UML diagram below is in a sense the meta-format for different possible Smart Device Templates (XSDs) for device descriptions (XMLs) of real devices - sorry about that.

[image: image5.png]Domain

* Modules : ModuleClass
* Devices : Device

ModuleClass
@id: 1D @ name : text
= Doc : Doc @ optional : boolean = false
* imports

Device

@id : Name

- Doc: Doc

* Property : Properties

* Modules : Module

* SubDevices : SubDevice

SubDevice
@id : Name
- Doc : Doc

* Property : Properties
* Modules : Module

- Doc : Doc

- extends
@domain : IDRF
@class : text

* Property : Properties

* Actions : Action

* Data : DataPoint

* Events : Event

=2 Action

=2 DataPoint

> Module

>f Property

@ name : text

@ optional : boolean = false
@ value : text

- Doc : Doc

- DataType : SimpleType

> Event
@ name : text
@ optional : boolean = false

@ name: text

@ optional : boolean = false
- Doc: Doc

- DataType : DataType

* Args : Arg

@ name : text

@ optional boolean = false
@writable : boolean
@ readable : boolean
@ eventable : boolean
- Doc : Doc

- DataType : DataType

- Doc : Doc
* Data : DataPoint

(B9

>f Arg

@ name ; text

- Doc : Doc

- DataType : DataType

Doc

Figure 6.5-1: UML Diagram providing an overview of the SDT

[image: image6.png]@ optional elementAttribute
@ optional elementAttribute = default value

@ mandatoryElementAttribute

~ mandatory element : Subclass (exact one)

- optionalElement - SubClass (zero or one)
* optionalElement - SubClass (zero or many)

Depends" Relation
and Cardinality

Subclassing

Cardinalities:
0.1 : zero or one

1" exactone

0. zero or many

1. -at least one or many

Figure 6.5-2: Annotations for UML Diagrams in SDT

Several constraints or design decisions were involved in creating the above template, which are describe below at the appropriate Element.

6.5.1
"Domain" element

[image: image7.png]Domain

@id: 1D

- Doc : Doc

imports

Modules : ModuleClass
Devices : Device

Figure 6.5.1-1
The "Domain" element allows labeling of different SDT templates for different technologies and/or industry segments ("verticals"): for example eHealth and Building Management might prefer quite different detailed structures/templates. This also helps keep information in human-friendly and manageable blocks. It is assumed that there will be multiple "SDT Templates" and some of them may be completely proprietary.

It can also be used to collect all specified ModuleClasses and Devices in one referencable logical group.

6.5.2
"Device" and "SubDevice" element

[image: image8.png]Device

@id : Name

- Doc: Doc

* Property : Properties

* Modules : Module

* SubDevices : SubDevice

[image: image9.png]SubDevice

@id : Name

- Doc : Doc
Property : Properties
Modules : Module

Figure 6.5.2-1
The "Device" was initially thought of as the representation of "the basic things we are trying to model" and can still be considered so. However, after discussion with various SDOs, it was decided to add also "sub-devices". That is, there is one level of hierarchy to allow modeling of e.g. a set of independent energy monitoring plugs in a single addressable power-extension-block. (Other SDOs might consider it more appropriate to use a recursive sub-sub-sub ... device definition). Note that all the different devices which one needs to model within a Domain are composed of one or more Modules.

6.5.3
"Module" element(s)

"Module" elements are basically constraints or templates for how to model functionality of real things/appliances/devices within the Domain. There could be an infinite number of possible functionalities, however it is recommended to identify a not-too-large selection of them as generic examples (called "ModuleClasses", see clause 6.9 „ModuleClass“) and allow for additional proprietary extensions. In a particular Domain there will be one Module for each of the agreed ModuleClasses plus additional ones for each extension of a ModuleClass.

The advantage of identifying a subset of generic "ModuleClasses" is that any suitable high-level software would then be able to "parse" the generic functionality for all compliant appliances, even if the proprietary parts could not be interpreted by the software.

Every "Device" can then be described by a collection of "Modules" (functionality). In the simplest examples, where there are no extensions needed, each ModuleClass has exactly one "child" Module ... in such cases the software developer can consider the two terms to be the same.

The relationship between a ModuleClass and a Module is very similar to the specification of a class and an instantiated object in an object oriented programming language.

6.5.4
"ModuleClass" element(s)

[image: image10.png]ModuleClass

@ name: text
@ optional : boolean = false
- Doc: Doc
- extends
@domain : IDRF
@class : text
* Property : Properties
* Actions : Action
* Data : DataPoint
* Events : Event

Figure 6.5.4-1
The set of "ModuleClasses" is defined at the "Domain" level. Each one describes some functionality (services). In principle there could be an infinite number of ModuleClasses (as noted above), for every kind of functionality found in UPnP, ZigBee and all the other automation protocols ... However that would not simplify the job of software developers at all! Therefore, it is recommended that a finite and convenient number of prototypical ModuleClasses are re-used as much as possible (within a Domain at least).

Typical ModuleClasses might be equivalent to "power ON/OFF", "Open/Close", "PanUP/DOWN", "ReadTemperature", etc. Those examples make it apparent that various read/write usage of parameters, invoking of actions and waiting for events might be needed in the different ModuleClasses, and a guideline for those structures is explained in the next clauses.

6.5.4.1
"Property" Elements

[image: image11.png]Property

@ name : text

@ optional : boolean = false
@ value : text

- Doc : Doc

- DataType : SimpleType

Figure 6.5.4.1-1
"Property" elements are used to append to Devices and ModuleClass elements with arbitrary additional information. For Devices it would be very common for a manufacturer to want to add into the XML file which is describing the device such information as Manufacturing Site, Date of Manufacture, Certification Code, Energy Label Code, compatible LAN technology, URL for the device handbook, physical limits of operation environments, etc. Some of that information might in some devices be available by reading a specific device DataPoint, however even if it cannot be read from the device then at least it can be noted in the device's XML description. Examples for organizations that specify these kind of added "Property" information are eCl@ss and UNSPSC (United Nations Standard Products and Services Code).

Since the Properties are highly varied, depending on industry segment, no attempt is made in the SDT to constrain the options: however it is highly recommended to provide software-developer-friendly information in the DOC field of each Property.

6.5.4.2
"ModuleClass" - "DataPoint" element

[image: image12.png]DataPoint

@ name : text

@ optional : boolean
@writable : boolean
@ readable : boolean
@ eventable : boolean
- Doc : Doc

- DataType : DataType

= false

Figure 6.5.4.2-1
A "DataPoint" element represents an aspect of a Device which can be read/written to, and forms part of a device's data model. Manipulating DataPoints is the most common way of controlling Devices. Each DataPoint has an associated "type" (e.g. simple integer/real numbers, string of text, struct, or arrays thereof) which facillitates data integrity. Note that all RESTful systems (e.g. CoAP) only use DataPoint operations, so the mapping of a data models using an SDT into RESTful applications is easy.

However, DataPoints are not the only way of controlling devices or reading information from devices, so further "Actions" and "Events are described next.

6.5.4.3
"ModuleClass" - "Actions" element

[image: image13.png]Action

@ name: text

@ optional : boolean = false
- Doc: Doc

- DataType : DataType

* Args : Arg

Figure 6.5.4.3-1
"Action" elements are an efficient way of describing arbitrary sequences of operations/methods; these are very common in automation. Typical example include "FactoryReset", and "AutoCalibrate". Actions preserve transaction integrity by putting together all the parameters ("args", see next clause) with the method which checks and executes them, in one step.

Note that systems which rely on RESTful operations need to carry out such complex setup-parameters-then-do-action by first using (several) DataPoint operations to "load" the parameters to the device and then do a DataPoint operation to manipulate the "start operation NOW" action.

6.5.4.3.1
"Module Class" - "Action" - "Args"

[image: image14.png]Arg

@ name ; text
- Doc : Doc
- DataType : DataType

Figure 6.5.4.3.1-1
The "Args" element represents the parameter information which a device needs to carry out a required "Action".

6.5.4.4
"ModuleClass" - "Event" element

[image: image15.png]Event

@ name : text
@ optional : boolean = false
- Doc : Doc

Data : DataPoint

Figure 6.5.4.4-1
"Event" elements are needed for automation protocols which "push" information, instead of relying on polling by the software application. A typical example would be a "SensorAlert" where a window sensor immediately transmits a change of its state from "closed" to "open", which could be used in a burglar alarm application, needs to be ready to accept such information immediately, and not wait for a regular polling of the device.

6.5.5
"Doc" element

[image: image16.png]Doc

Figure 6.5.5-1
"Doc" elements (for all the above Elements) are very important to help understand the software-readable information for specific devices and services. They contain the human-readable information. Many automation protocols describe every possible operation in a comprehensive specification, however SDT is designed to include the relevant information at the "point of use" for the software developer, inside the SDT (and XML files based on it).

The text inside the Doc element can be structure using a very limited subset of HTML elements. The structuring is defined in EBNF as follows:

Doc = "<Doc>" docContent "</Doc" ;

docContent = docText | { paragraph | image } ;

docText = { text | emphasizedText | boldText | monotypeText } ;

emphasizedText = "" text "" ;

boldText = "" text "" ;

monotypeText = "<tt>" text "</tt>" ;

paragraph = "<p>" docText "</p>" ;

image = "" "<caption>" text "</caption>" "" ;

url = "\"" (* valid URL *) "\"" ;

text = (* XML text element *) ;
6.5.6
"DataType" element

The DataType can be simple integers or string text, or rather complex, as shown in figure 6.11-1.

[image: image17.png]DataType

«enumeration»

@ name text
@ unitOfMeasure : text
- Doc: Doc

- TypeChoice

* Constraints : Constraint

StructType

«enumeration»
BasicType

~ DataType : DataType

boolean

SimpleType : SimpleType

byte

Struct : StructType
Array : ArrayType

ArrayType

integer

~ DataType : DataType

float

I

SimpleType

1 string
enum
date

@ type : BasicType

time
M| datetime

= Constraint

blob
uri

@name: text

@ type : BasicType
@value : text

- Doc : Doc

I

Figure 6.5.6-1
6.5.6.1
"DataType" - "unitOfMeasure"

[image: image18.png]DataType

@ name text

@ unitOfMeasure : text
- Doc: Doc

- TypeChoice

* Constraints : Constraint

Figure 6.5.6.1-1
Before considering the type of data in detail, there is the option to label the data with the units of measurement. A "Temperature" measurement is meaningless until the units Kelvin, Celcius, Fahrenheit etc are known. Because of the extreme variety of units, a string field is the default annotation method, although of course a SDO could decide to reference a standardized list of units.

Two organizations that provide good definitions for the unit of measure are the "UCUM organization"
 and "QUDT - Quantities, Units, Dimensions and Data Types Ontologies"
.

6.5.6.2
"DataType" - "TypeChoice" Element

[image: image19.png]«enumeration»
TypeChoice

SimpleType : SimpleType
Struct : StructType
Array : ArrayType

Figure 6.5.6.2-1
The "TypeChoice" element is required for syntactic reasons in the UML diagram and the choice from the enumerated list simply designates the complexity of the following DataType.

6.5.6.3
"DataType" - "SimpleType" Element

[image: image20.png]«enumeration»
BasicType

SimpleType

@ type : BasicType

boolean
byte
integer
float
string
enum
date
time
datetime
blob

uri

Figure 6.5.6.3-1
The "SimpleType" element is required in order for software to understand the format of the associated data, e.g. are the bytes an integer or real value? HGI decided based on practical experience to include some specific types which are slightly more complex:

7) the (technically redundant) options of "date" and "time"- to avoid problems which can arise interpreting a datetime value;

8) "url" because it is expected to become extremely common to provide links to other data sources;

9) the "blob" type to represent binary data of arbitrary structure.

6.5.6.4
"DataType" - "Constraint" Element

[image: image21.png]Constraint

@name: text

@ type : BasicType
@value : text

- Doc : Doc

Figure 6.5.6.4-1
The "Constraint" element is an optional element allowing the manufacturer to provide constraints on the permitted values of measured data or input parameters. It can significantly improve the reliability of software and validation of transmitted data.

6.5.6.5
"DataType" - "Array" Element

[image: image22.png]ArrayType

~ DataType : DataType

Figure 6.5.6.5-1
The "Array" element is provided for defining lists of data; the definition is recursive so that multi-dimensional arrays can be described. Note that a Constraint can be used to provide limits on Array size.

6.5.6.6
"DataType" - "StructType" Element

[image: image23.png]StructType

~ DataType : DataType

Figure 6.5.6.6-1
The "StructType" element can be used to represent an ordered list of diverse DataTypes, which are represented by the Name attribute of each DataType, and can be used recursively.

6.6
A very simple SDT example

In order to show the appoach, this clause will create a few example ModuleClasses based on oneM2M’s TS-0023 („Home Automation Information Model“. The task is to define a definition for a „Light“ device and its ModuleClasses.

Table 6.12-1
	Functionality
	Refr
	Washing Machine

	operationStatus
	operates on/off
	operates on/off

	measuredCumulativePowerConsumption
	the cumulative power consumption
	the cumulative power consumption

	installationLocation
	this sets/reads a string text describing the location (room) of the air-conditioner.
	this sets/reads a string text describing the location (room) of the washing machine.

	onTimerSetting
	This sets/reads the on/off timer
	This sets/reads the on/off timer

	statusDoor
	(This function is not applicable)
	This reads whether the door of the washing machine is open or closed.

<?xml version="1.0" encoding="UTF-8"?>

<Domain xmlns=http://homegatewayinitiative.org/xml/dal/3.0
 id="Example1.xml">

 <Modules>

 <ModuleClass name="binarySwitch">

 <Doc>This ModuleClass provides capabilities to control and monitor the state of power.</Doc>

 <Actions>

 <Action name="toggle" optional="true">

 <Doc>Toggle the switch.</Doc>

 </Action>

 </Actions>

 <Data>

 <DataPoint name="powerState" readable="true" writable="true" eventable="true"

 optional="false">

 <Doc>The current status of the binarySwitch. "True" indicates turned-on, and "False" indicates turned-off.</Doc>

 <DataType>

 <SimpleType type="boolean" />

 </DataType>

 </DataPoint>

 </Data>

 </ModuleClass>

 <ModuleClass name="brightness">

 <Doc>This ModuleClass describes the brightness of a light, e.g. from a lamp. Brightness is scaled as a percentage. A lamp or a monitor can be adjusted to a level of light between very dim (0% is the minimum brightness) and very bright (100% is the maximum brightness).</Doc>

 <Data>

 <DataPoint name="brightness" readable="true" writable="true" eventable="true"

 optional="false">

 <Doc>The status of brightness level in percentage.</Doc>

 <DataType>

 <SimpleType type="integer" />

 </DataType>

 </DataPoint>

 </Data>

 </ModuleClass>

 <ModuleClass name="colour">

 <Doc>This ModuleClass provides the capabilities to set the value of Red, Green, Blue for the color device.</Doc>

 <Data>

 <DataPoint name="red" readable="true" writable="true" eventable="true"

 optional="false">

 <Doc>The R value of RGB; the range is [0,255].</Doc>

 <DataType>

 <SimpleType type="integer" />

 </DataType>

 <DataPoint>

 <DataPoint name="green" readable="true" writable="true" eventable="true"

 optional="false">

 <Doc>The G value of RGB; the range is [0,255].</Doc>

 <DataType>

 <SimpleType type="integer" />

 </DataType>

 </DataPoint>

 <DataPoint name="blue" readable="true" writable="true" eventable="true"

 optional="false">

 <Doc>The B value of RGB; the range is [0,255].</Doc>

 <DataType>

 <SimpleType type="integer" />

 </DataType>

 </DataPoint>

 </Data>

 </ModuleClass>

 <ModuleClass name="colourSaturation">

 <Doc>This ModuleClass describes a colour saturation value. The value is an integer. A colourSaturation has a range of [0,100]. A colourSaturation value of 0 means producing black and white images. A colourSaturation value of 50 means producing device specific normal colour images. A colourSaturation value of 100 means producing device very colourfull images.</Doc>

 <Data>

 <DataPoint name="colourSaturation" readable="true" writable="true"

 eventable="true" optional="false">

 <Doc>The status of colour saturation level.</Doc>

 <DataType>

 <SimpleType type="integer" />

 </DataType>

 </DataPoint>

 </Data>

 </ModuleClass>

 <ModuleClass name="faultDetection">

 <Doc>This ModuleClass provides the information about whether a fault has occurred in the actual device.</Doc>

 <Data>

 <DataPoint name="status" readable="true" writable="false" eventable="true"

 optional="false">

 <Doc>Status of fault detection.</Doc>

 <DataType>

 <SimpleType type="boolean" />

 </DataType>

 </DataPoint>

 <DataPoint name="code" readable="true" writable="false" eventable="true"

 optional="true">

 <Doc>Code of the fault.</Doc>

 <DataType>

 <SimpleType type="integer" />

 </DataType>

 </DataPoint>

 <DataPoint name="description" readable="true" writable="false"

 eventable="true" optional="true">

 <Doc>Message of the fault.</Doc>

 <DataType>

 <SimpleType type="string" />

 </DataType>

 </DataPoint>

 </Data>

 </ModuleClass>

 <ModuleClass name="runMode">

 <Doc>This ModuleClasses provides capabilities to control and monitor the operational modes of appliances.</Doc>

 <Data>

 <DataPoint name="operationMode" readable="true" writable="true"

 eventable="true" optional="false">

 <Doc>Currently active mode(s).</Doc>

 <DataType>

 <SimpleType type="hd:supportedModes" />

 </DataType>

 </DataPoint>

 <DataPoint name="supportedModes" readable="true" writable="true"

 eventable="true" optional="false">

 <Doc>List of possible modes the device supports (see 5.5.7).</Doc>

 <DataType>

 <Array>

 <DataType>

 <SimpleType type="hd:supportedModes" />

 </DataType>

 </Array>

 </DataType>

 </DataPoint>

 </Data>

 </ModuleClass>

 </Modules>

</Domain>

The Example1.xml now looks like this:

	Example1.xml

	
	Namespace information

	
	Modules (contains ModuleClasses)

· faultDetection

· binarySwitch

· runMode

· colour

· colourSaturation

· brightness

A manufacturer could now describe the behaviour of a specific device called "Light" by the following XML file referencing the Example1.xml:

<?xml version="1.0" encoding="UTF-8"?>

<Domain xmlns:xi="http://www.w3.org/2001/XInclude"

 xmlns="http://homegatewayinitiative.org/xml/dal/3.0"

 id="example2.xml">

 <Imports>

 <xi:include href="./Example1.xml" parse="xml" />

 </Imports>

 <Device id="deviceLight">

 <Doc>A light is a device that is used to control the state of an illumination device.</Doc>

 <Modules>

 <Module name="faultDetection" optional="false">

 <extends domain="org.onem2m.home.moduleclass"

class="faultDetection"/>

 <Doc>See clause 5.3.16</Doc>

 </Module>

 <Module name="binarySwitch" optional="false">

 <extends domain="org.onem2m.home.moduleclass" class="binarySwitch"/>

 <Doc>See clause 5.3.5</Doc>

 </Module>

 <Module name="runMode" optional="false">

 <extends domain="org.onem2m.home.moduleclass" class="runMode"/>

 <Doc>See clause 5.3.28</Doc>

 </Module>

 <Module name="colour" optional="true">

 <extends domain="org.onem2m.home.moduleclass" class="colour"/>

 <Doc>See clause 5.3.10</Doc>

 </Module>

 <Module name="colourSaturation" optional="true">

 <extends domain="org.onem2m.home.moduleclass" class="colourSaturation"/>

 <Doc>See clause 5.3.11</Doc>

 </Module>

 <Module name="brightness" optional="true">

 <extends domain="org.onem2m.home.moduleclass" class="brightness"/>

 <Doc>See clause 5.3.8</Doc>

 </Module>

 </Modules>

</Device>

</Domain>

7
Functional architecture
[image: image24.png]Cloud/Server

Mca
ADN-AE-1 Mca

Mee

Coffee maker #1
Vendor: A

1 I Gateway

ADN-AE-2

Mca

Coffee maker #2
Vendor: B

Figure 7-1: oneM2M functional architecture of coffee machine use case
7.1
SDT in oneM2M tree
In reference to oneM2M terminology SDT is a kind of common Resources mapping. When new device is discovered the CSE shall register it according to the rules defined in TS-0023 [1]. Today there are not many oneM2M enabled commercial devices exist in the market. To allow non-oneM2M device (Non-oneM2M Device Node) to connect to oneM2M system the specification provides “Interworking/Integration of non-oneM2M solutions and protocols” section (Annex F in [1]). The Figure 7.1-1 shows SDT in oneM2M architecture.
[image: image25.png]SN ot

Uiy Application

[

e

e

he—]

Uity Appiication

Uity Appiication | —tca

e

i

AE

Inter-working Proxy

(soT mapping nside]

A&
Inter-working Proxy
50T mapping nside]

Wi Bluetooth
Coffee Maker A Coffee Maker B
NoDN NoDN

ST Data madel
L hvareness

/7 SpecificData model
v

{7 vareness

\

\

st

o]

AE
Inter-working Proxy
(50T mapping nsde)

REST A

Coffee Maker C

NoDN

Figure 7.1-1: Translation of non-oneM2M Data Model to SDT Data Model
8
Procedures and call flows

<Text>

9
Implementation

 This section provides implementation examples from two different pesrpectives: developer of an utility application and developer of a device adapter (AE: Inter-working Proxy).
10
Conclusion

<Text>

-----------------------End of change 2---
-----------------------Start of change 3---
Annex A:

Further readings proposition

-----------------------End of change 3---
CHECK LIST

· Does this Change Request include an informative introduction containing the problem(s) being solved, and a summary list of proposals.?
· Does this CR contain changes related to only one particular issue/problem?
· Have any mirror CRs been posted?
· Does this Change Request make all the changes necessary to address the issue or problem? E.g. A change impacting 5 tables should not include a proposal to change only 3 tables?Does this Change Request follow the drafting rules?
· Are all pictures editable?
· Have you checked the spelling and grammar?
· Have you used change bars for all modifications?
· Does the change include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change? (Additions of complete clauses need not show surrounding clauses as long as the proposed clause number clearly shows where the new clause is proposed to be located.)
· Are multiple changes in this CR clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.?
� http://unitsofmeasure.org

� http://www.qudt.org

�Perhaps for the annex

© 2017 oneM2M Partners
 Page 3 (of 22)

[image: image26.png]

C

B

A

image1.png

Devicelnfo

image2.png

Device

image3.png

ModuleClass

image4.png

Action

image5.png

Data

image6.png

Event

=

