	Doc# TST-2017-0176R01-CR_Update_of_TR-0034
Change Request
	[image: image8.png]

	

	CHANGE REQUEST

	Meeting ID:*
	TST#29.1

	Source:*
	Ting Martin MIAO, KETI, martin.miao@keti.re.kr
Kei Harada, NTT, harada.kei@lab.ntt.co.jp
Shane He, Nokia, shane.he@nokia.com

	Date:*
	2017-06-09

	Reason for Change/s:*
	Clarification of Implementation Procedures

	CR against: Release*
	Rel-1

	CR against: WI*
	 FORMCHECKBOX
 Active <Work Item number>

 FORMCHECKBOX
 MNT maintenance / < Work Item number(optional)>
Is this a mirror CR? Yes FORMCHECKBOX
 No FORMCHECKBOX

mirror CR number: (Note to Rapporteur - use latest agreed revision)
 FORMCHECKBOX
 STE Small Technical Enhancements / < Work Item number (optional)>
Only ONE of the above shall be ticked

	CR against: TS/TR*
	TR-0034 v0.2.0

	Clauses *
	

	Type of change: *
	 FORMCHECKBOX
 Editorial change
 FORMCHECKBOX
 Bug Fix or Correction
 Change to existing feature or functionality
 New feature or functionality
Only ONE of the above shall be ticked

	Impacted other TS/TR(s)
	TR-0034

	Post Freeze checking:*
	This CR contains only essential changes and corrections? YES FORMCHECKBOX
 NO FORMCHECKBOX

This CR may break backwards compatibility with the last approved version of the TS? YES FORMCHECKBOX
 NO FORMCHECKBOX

	Template Version: January 2017 (Do not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

GUIDELINES for Change Requests:

Provide an informative introduction containing the problem(s) being solved, and a summary list of proposals.

Each CR should contain changes related to only one particular issue/problem.
In case of a correction, and the change apply to previous releases, a separate “mirror CR” should be posted at the same time of this CR
Mirror CR: applies only when the text, including clause numbering are exactly the same.

Companion CR: applies when the change means the same but the baselines differ in some way (e.g. clause number).
Follow the principle of completeness, where all changes related to the issue or problem within a deliverable are simultaneously proposed to be made E.g. A change impacting 5 tables should not only include a proposal to change only 3 tables. Includes any changes to references, definitions, and acronyms in the same deliverable.
Follow the drafting rules.
All pictures must be editable.
Check spelling and grammar to the extent practicable.
Use Change bars for modifications.
The change should include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change. Additions of complete clauses need not show surrounding clauses as long as the proposed clause number clearly shows where the new clause is proposed to be located.
Multiple changes in a single CR shall be clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.
When subsequent changes are made to content of a CR, then the accepted version should not show changes over changes. The accepted version of the CR should only show changes relative to the baseline approved text.
Introduction
Clarification implementation procedures in TR-0034 user guide.

Changes includes:

· Clarification of the operation procedures and call flows in section 7
· Optimize the API in section 8 including update of
· URI-Host format
· Resource ID format in Location-Path
· Resource ID format in ri and pi attribute
· Resource representation format for discovery operation
· Content-Type option correction
Revision R01 addresses correction of contentInstance creation API in line 431.
-----------------------Start of change 1---
7
Procedures and call flows

7.1
 Overviews

In this scenario, user can use the smartphone application to monitor the temperature data of applications embedded in Sensor#1 and Sensor#2. Furthermore, the actuator application embedded in Actuator#1 also can be managed by the smartphone application. To realize these functions, the deployment of the oneM2M standard in the present use case requires procedures that are classified as follows:

1 Registration: the current procedure contains sensor and actuator applications registration, gateway, and smartphone application registration.

2 Initial resource creation: the current procedure contains container resource creation.

3 Discovery and retrieval: the current procedure contains discovery and retrieval of sensor applications using resource identities through a smartphone application .
In some use cases, if the actuator application embedded in Actuator#1 is non server capable, which means it cannot be notified by the gateway (MN-CSE). oneM2M defines the <pollingChannel> resource which represents a channel that can be used for such situation [i.2]. The clause 7 also provides relevant procedures and call flows using <pollingChannel> resource:

4 PollingChannel resource creation: The current procedure contains pollingChannel resource creation.
5 Actuator switch on/off: the actuator application that is discovered by and connected to the smartphone application is able to be switched via polling channel.

7.2
Call flows

7.2.1
Registration

 The first step is sensor and actuator application registration, gateway, and smartphone application registration. Typically, sensors and actuators will register applications with the gateway, and then the gateway will register with the oneM2M service platform. The smartphone applications can register with the oneM2M service platform anytime as needed.
Call flows regarding the registration phase depicted in figure 7.2.1-1 are ordered as follows:
1
Sensor applications (ADN-AE1 and ADN-AE2) register with the gateway (MN-CSE).

2 Actuator applications (ADN-AE3) register with the gateway (MN-CSE).
3 Gateway (MN-CSE) registers with the oneM2M service platform (IN-CSE).

4

Smartphone application (ADN-AE4) registers with the oneM2M service platform (IN-CSE).

[image: image1.emf]ADN-AE1 ADN-AE2 ADN-AE3 MN-CSE IN-CSE

ADN-AE4

①

-1

①

-2

Gateway (MN-CSE)

registers intooneM2M

service platform (IN-

CSE)

③

Sensor application

(ADN-AE2) registers

intothe gateway (MN-

CSE)

Sensor application

(ADN-AE1) registers

intothe gateway (MN-

CSE)

Smartphone

application (ADN-AE4)

registers intooneM2M

service platform (IN-

CSE)

④

Actuatorapplication

(ADN-AE3) registers

intothe gateway (MN-

CSE)

②

Figure 7.2.1-1: Registration phase call flows
After the initial resource creation process, the resource tree of MN-CSE and IN-CSE is depicted in figue 7.2.1-2.

[image: image2.emf]MN-CSE

ADN-AE1

ADN-AE2

ADN-AE3

IN-CSE

MN-CSE

ADN-AE4

Figure 7.2.1-2: Resource tree of MN-CSE and IN-CSE

7.2.2
Initial resource creation

After registration, it is necessary to create container resources to store the data from sensors on the gateway.Call flows regarding the initial resource creation phase depicted in figure 7.2.2-1 are ordered as follows:
1
Two container resources are created in the gateway (MN-CSE) to store the sensor data under the registered sensor application ADN-AE1 and ADN-AE2, respectively.
2 A container resource is created under ADN-AE3 as a repository of work status of the actuator ADN-AE3.

[image: image3.emf]ADN-AE1 ADN-AE2 ADN-AE3 MN-CSE IN-CSE

ADN-AE4

①

-1

①

-2

container resource

creation for

sensor#2

container resource

creation for

sensor#1

container

resource is created

after processing

container

Resource is created

after processing

container resource

creation for

Actuator#1

②

container

resource is created

after processing

Figure 7.2.2-1: Initial resource creation phase call flows
7.2.3
Discovery and retrieval

Call flows regarding the discovery and retrieval of resources depicted in figure 7.2.3-1 are ordered as follows:
1

The smartphone application (ADN-AE4) periodically sends a RETRIEVE request including the parameter filterUsage and specific filter criteria condition(s) as a query string for discovery of resources stored in the MN-CSE of gateway.
2

The gateway (MN-CSE) responds to the smartphone application (ADN-AE4) with URIs of the discovered resources under ADN-AE1, ADN-AE2, if any.
3

The smartphone application (ADN-AE4) sends RETRIEVE requests for retrieval of the latest data from discovered sensor resource, in this example, which is from the container1 of ADN-AE1.

4

The gateway (MN-CSE) responds to the smartphone application (ADN-AE4) with the latest data of sensor#1.

[image: image4.emf]ADN-AE1 ADN-AE2 ADN-AE3 MN-CSE IN-CSE

ADN-AE4

Discover container

resource with filter

criteria

URI of discovered

resources is

responded

(container1)

D

i

s

c

o

v

e

r

y

F

l

o

w

R

e

q

u

e

s

t

/

r

e

s

p

o

n

s

e

f

l

o

w

③

-1

Retrieve latest data

from container1

The latest data of

container1 is

responded

(Temperature data)

①

-2

①

-1

②

-1

②

-2

③

-2

④

-1

④

-2

Figure 7.2.3-1: Discovery and retrieval phase call flows
7.2.4
PollingChannel resource creation
As mentioned in the clause 7.1, in some use cases, the actuator application cannot be notified by the gateway (MN-CSE). oneM2M defines the <pollingChannel> resource which represents a channel that can be used for such situation [i.2]. The clause 7.2.4 povides pollingChannel resource creation, as shown in figure 7.2.4-1:

1 A pollingChannel resources is created in the gateway (MN-CSE) to store the actuator status under the registered actuator application ADN-AE3.
A pollingChannel resource creation request is initialized by ADN-AE3 target to ADN-AE3 in the MN-CSE. As a result, ADN-AE3 can poll any type of request(s) that targets to itself.

[image: image5.emf]ADN-AE1 ADN-AE2 ADN-AE3 MN-CSE IN-CSE

ADN-AE4

pollingChannel

resource creation

for actuator#1

①

pollingChannel

resource is created

on the ADN-AE3

after processing

Figure 7.2.4-1: Initial resource creation phase call flows
It is assumped that applications of sensor#1 and sensor#2 are registered with MN-CSE via the process in clause 7.2.2. So after the pollingChannel resource creation process, the resource tree of MN-CSE is depicted in figue 7.2.4-2.

[image: image6.emf]MN-CSE

ADN-AE1

cont_monitor01

ADN-AE2

cont_monitor02

ADN-AE3

cont_actuator_status

pollingChannel

pollingChannelURI

Figure 7.2.4-2: Resource tree of MN-CSE

7.2.5 Actuator switch via polling channel
So far, user can monitor temperature data of sensor#1 and sensor#2 by the procedures in clause 7.2.1, 7.2.2, and 7.2.3. If the data of any temperature sensor is above the threshold, which may indicate the possibility of fire disaster, then the actuator is able to be controlled remotely through the smartphone application accessing the oneM2M service platform and the gateway, in order to achieve some safety management. In the clasue 7.2.4, the actuator applications are registered with the gateway (MN-CSE), the smartphone application can discover the actuator application though the same process in the clause 7.2.3. This clause provides the switch process via polling channel.
A call flow for remote control is depicted in Figure 7.2.5-1 and the steps are ordered as follows:

1

The ADN-AE3 sends RETRIEVE request periodically to the gateway in order to retrieve requests, which is marked as REQ1.

2 When the user updates the actuator state on the smartphone, the ADN-AE4 generates a contentInstance create request representing an updated state of actuator ADN-AE3 to the container of ADN-AE3, which is marked as REQ2.

3 The gateway (MN-CSE) internaly processes RETRIEVE request and response to the ADN-AE3 with the REQ2 in content parameter.

4 After processing, e.g. turning on the water spray, then the ADN-AE3 sends NOTIFY request REQ3 to the gateway (MN-CSE) carrying the UPDATE response “RESP2” in the content parameter, to indicate the switching request had been successfully performed.

5

The gateway (MN-CSE) sends UPDATE response to the smartphone application (ADN-AE4), to indicate that the status of actuator is successfully updated.

6 The gateway (MN-CSE) sends NOTIFY response to the actuator application (ADN-AE3), to indicate that the response is successfully sent.

[image: image7.emf]ADN-AE1 ADN-AE2 ADN-AE3 MN-CSE IN-CSE

ADN-AE4

REQ2:contentInstance

create request

representing an

updated state to

ADN-AE3

REQ1: retrieve

request to

polllingChannelURI

resource

Internal

processing for

polling channel

RESP1: carrying

“REQ2” in

content param

②

-1

②

-2

①

③

REQ3: notify request to

polllingChannelURI

resource, carrying

“RESP2” in content

param

④

⑤

-1

⑥

RESP2: update

successfully

RESP3 to ADN-

AE3

Internal

processing for

updateing

status

<pollingChannelURI>

Hosting CSE

⑤

-2

Figure 7.2.5-1: Actuator remote control phase call flows
-----------------------End of change 1---

-----------------------Start of change 2---

8
Implementation

8.1
Implementation assumption

Assumptions are presented as below in order to ensure the use case can be correctly implemented.

· Security is not considered in the current use case;

· CoAP binding of oneM2M primitives is used in the current use case, required features according to [i.4];
· JSON serializations of oneM2M primitives is used in the current use case;
· Short names for the representation of the resources and attributes are used in the current use case;

Each oneM2M entity including AE and CSE are addressable with correct host address that can be IP addresses or FQDN addresses resolved to IP addresses by DNS network services according to addressing rules specified in oneM2M standards.

The IN-CSE and MN-CSE entities presented in this use case are addressable with the following identifiers, using SP-relative structured format.

· IN-CSE:

· CSE-ID: /in-cse
· Resource ID: cse127865gu57fa

· resourceName of IN-CSE’s CSEBase resource: server
· MN-CSE:

· CSE-ID: /mn-cse
· Resource ID: cse463432er91er

· ResourceName of CSEBase resource: gateway

8.2
Roles of entities

8.2.1
oneM2M service platform (IN-CSE)
The oneM2M service platform is modelled as an IN-CSE and is responsible for

· handling the requests from smartphone ADN-AE4 and gateway MN-CSE

8.2.2
Sensor applications (ADN-AE1 and ADN-AE2)
Each of the sensor applications are modelled as an ADN-AE and are responsible for

· initializing the device,

· registering with the MN-CSE,

· creating container resources in the MN-CSE,
· creating content resources under containers sensor1 and sensor2 with data.
8.2.3
Actuator application (ADN-AE3)
The actuator application is modelled as an ADN-AE3 and are responsible for

· initializing the device,

· registering with the MN-CSE,

· creating polling channel resource in the MN-CSE,
8.2.4
Smartphone application (ADN-AE4)
The smartphone application is modelled as ADN-AE4, which directly communicates with the oneM2M service platform IN-CSE and is responsible for

· initializing the monitor and control application,

· registering the smartphone application with the IN-CSE,

· discovering and displaying,

· accepting and executing the actuator contol commands.

8.3
Procedures

8.3.1 Registration and resource creation
The following example shows an sensor application ADN-AE1 registration request and response in clase 7.2.1 using CoAP with JSON serialization.

CoAP Request:

Method: 0.02(POST)
Uri-Host: mn.provider.com:5683

Uri-Path: ~

Uri-Path: mn-cse

Uri-Path: gateway

Content-Type: application/vnd.onem2m-res+json
oneM2M-TY: 2

oneM2M-FR: C
oneM2M-RQI: 0001

{

"m2m:ae":

{
 "rn": "adn-ae1",

"api": "001.com.company.temsensor",

"rr": true

 }

}
CoAP Response:
2.01 Created
oneM2M-RSC: 2001

oneM2M-RQI: 0002
Location-Path: /mn-cse/ae137849axcfrd
{

"m2m:ae":

{

 "ty": 2,
 "ri": "ae23456789hgfga",
 "pi": "cse127865gu57fa",
"ct": "20170327T31415",

"lt": "20170327T31415",

"et": "20170927T66666",

"aei": "CAE23456789"
 }

}
Then thefollowing example shows a container create request and response in the procedure of clause 7.2.2 using CoAP with JSON serialization. Result content parameter rcn is used and set to 0 to indicate no response is preferred for the CREATE request.
CoAP Request:
Method: 0.02(POST)
Uri-Host: mn.provider.com:5683

Uri-Path: ~
Uri-Path: mn-cse

Uri-Path: gateway

Uri-Path: adn-ae1

Content-Type: application/vnd.onem2m-res+json
oneM2M-TY:3

oneM2M-FR: Cadn-ae1

oneM2M-RQI:0002
Uri-Query: rcn=0
{

"m2m:cnt":

{
 "rn": "container1"
 }

}
CoAP Response:
2.01 Created
oneM2M-RSC: 2001

oneM2M-RQI: 0002
Location-Path: /mn-cse/cont1895qpzlj

Then the creation of a content instance resource under the container of ADN-AE1 with initial content is shown in the following procedure. The following example shows a contentInstance create request and response using CoAP with JSON serialization.:
CoAP Request:
Method: 0.02(POST)
Uri-Host: mn.provider.com:5683

Uri-Path: ~

Uri-Path: mn-cse

Uri-Path: gateway

Uri-Path: adn-ae1
Uri-Path: container1

Content-Type: application/vnd.onem2m-res+json
oneM2M-TY: 4

oneM2M-FR: Cadn-ae1
oneM2M-RQI: 0003

{

"m2m:cin":

{
 "cnf": "text/plains:0",

"con": "23"

 }

}
CoAP Response:
2.01 Created
oneM2M-RSC: 2001

oneM2M-RQI: 0003
Location-Path: /mn-cse/cin1232gtpaea

{

"m2m:cin":

{

"ty": 4,

"ri": "cin03243dsfas",

"pi": "cont1895qpzlj",

"ct": "20170327T31415",

"lt": "20170327T31415",

"et": "20170927T66666",

"st": 1,
"cs": 2
 }
}
According to similar procedures, ADN-AE2, ADN-AE3 and necessary resources can register with the gateway as well. Then the gateway can register with the oneM2M service platform. The smartphone applications can register with the oneM2M service platform anytime as needed. Following such resource creation procedures, ADN-AE3 creates a <container> (cont_actuator_status) as its direct child as well as a <subscription> resource is created under the <container> resource (cont_actuator_status).
8.3.2 Discovery and Retrieve

As mentioned in clause 7.2.3, the smartphone application (ADN-AE4) periodically sends a RETRIEVE request including the parameter filterUsage and specific filter criteria condition(s) as a query string for discovery of resources stored in the MN-CSE of gateway. It is assumed that the <Container1> resource with label "temp1" is created on MN CSE.
The discovery of containers for each sensors registered with the MN-CSE by the smartphone AE is shown in the following procedure.
CoAP Request:
Method: 0.01(GET)
Uri-Host: in.provider.com:5683
Uri-Path: ~
Uri-Path: in-cse

Uri-path: server

Uri-path: gateway

Content-Format: 50(application/json)
oneM2M-FR: Cadn-ae4

oneM2M-RQI: 0004

Uri-Query: fu=1
Uri-Query: ty=3
Uri-Query: lbl="temp1"
CoAP Response:
2.05 OK
oneM2M-RSC: 2000
oneM2M-RQI: 0004

{

"m2m:uril":

[

"gateway/adn-ae1/container1"

]

}

The smartphone application retrieves URI representing containers registered with MN-CSE from the response message, e.g. gateway/adn-ae1/container1 which is the CSE-Relative structured resource URI format of container.
The smartphone application can retrieve the sensor data from ADN-AE1. If the response is preferred to be returned with a JSON representation, the following is a CoAP request message example:
CoAP Request:
Method: 0.01(GET)
Uri-Host: in.provider.com:5683

Uri-Path: ~
Uri-Path: in-cse
Uri-Path: server
Uri-Path: gateway

Uri-Path: adn-ae1

Uri-Path: container1
Content-Format: 50(application/json)
oneM2M-FR: Cadn-ae4

oneM2M-RQI:0005

CoAP Response:
2.05 OK
oneM2M-RSC: 2000
oneM2M-RQI: 0005
Content-format: application/vnd.onem2m-res+json
{

"m2m:cin":

{

"ty": 4,

"ri": "cin0276fd56fd",

"pi": "cont1895qpzlj",

"ct": "20170327T31415",

"lt": "20170327T31415",

"et": "20170927T66666",

"st": 1,
"cnf": "text/plain:0",
"cs" : 2,
 "con": "23"
}
}
8.3.3 Long Polling

As mentioned in clause 7.2.4, for using long polling procedures, ADN-AE3 creates <pollingChannel> resource under its <AE> resource on MN-CSE. <pollingChannelURI> is a virtual resource and made automatically by Hosting CSE during creating parent <pollingChannel>. The following example shows <pollingChannel> resource create request and response using HTTP with JSON serialization.
HTTP Request:

POST /~/mn-cse/gateway/adn-ae3?rcn=0 HTTP/1.1
Host: mn.provider.com:8080
X-M2M-Origin: Cadn-ae3
Content-Type: application/vnd.onem2m-res+json;ty=15

X-M2M-RI: mncse-12345

{

"m2m:pch":

{

"rn":"pch_actuator01"

}
}

HTTP Response:
201 Created
X-M2M-RSC: 2001
X-M2M-RI: mncse-12345

Content-Location: /mn-cse/pch7890afer34

ADN-AE3 also generates a container resource under the ADN-AE3 to store the work status of the actuator ADN-AE3, following the similar procedure in 8.3.1. It is assumed that a subscription to this container resource has been created where a notificationURI attribute is set to the resource identifier of <pollingChannel>.
Then users can subscribe or make a change of the actuator state on the gateway. When users make a change to the actuator state via the smartphone user interface, the smartphone application (ADN-AE4) performs a new contentInstance creation procedure carrying the new state in request and targeting to the ADN-AE3.

If the contentInstance create request body is represented in JSON, the following is a HTTP request message example:

HTTP Request:
POST /~/mn-cse/gateway/adn-ae3/cont_actuator_status?rcn=0 HTTP/1.1
Host: mn.provider.com:8080
X-M2M-Origin: Cadn-ae4
Content-Type: application/vnd.onem2m-res+json;ty=4
X-M2M-RI: mncse-11123

{

"m2m:cin":

{

"cnf": "text/plains:0",
 "con": "ON"
 }

}
HTTP Response:
201 Created

X-M2M-RSC: 2001

X-M2M-RI: mncse-11123

Content-Location: /mn-cse/cin7893setj34
Then the gateway will generate a notification based on the notification event criteria that is a new contentInstance creation under the subscribed container resource (cont_actuator_status). Usually the actuator (ADN-AE3) sends periodically a Retrieve request to the <pollingChannelURI> resource on the gateway in order to retrieve the notification target to itself.
If the request body is represented in JSON, the following is a HTTP request message example:

HTTP Request:
GET /~/mn-cse/gateway/adn-ae3/pch_actuator01/pcu HTTP/1.1
Host: mn.provider.com:8080
X-M2M-Origin: Cadn-ae3

X-M2M-RI: mncse-11223

HTTP Response:

200 OK
X-M2M-RSC : 2000

X-M2M-RI : mncse-11223

{

"m2m:sgn":

{

"nev":{

"rep":

{

"cin":

{

"cnf": "text/plain:0"
,

"con": "ON"
}
},

"net": [3]

},

"sur":"/mn-cse/sub856463ahyvc28"

}

}

After retrieved the notification, the states of actuator (ADN-AE3) can be updated automatically. Then the ADN-AE3 sends NOTIFY request to the gateway to indicate the previous notification had been successfully performed.
-----------------------End of change 2---

CHECK LIST

· Does this Change Request include an informative introduction containing the problem(s) being solved, and a summary list of proposals.?
· Does this CR contain changes related to only one particular issue/problem?
· Have any mirror CRs been posted?
· Does this Change Request make all the changes necessary to address the issue or problem? E.g. A change impacting 5 tables should not include a proposal to change only 3 tables?Does this Change Request follow the drafting rules?
· Are all pictures editable?
· Have you checked the spelling and grammar?
· Have you used change bars for all modifications?
· Does the change include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change? (Additions of complete clauses need not show surrounding clauses as long as the proposed clause number clearly shows where the new clause is proposed to be located.)
· Are multiple changes in this CR clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.?
© 2017 oneM2M Partners
 Page 16 (of 16)

[image: image8.png]_1548742019.vsd
MN-CSE

ADN-AE1

ADN-AE2

ADN-AE3

IN-CSE

MN-CSE

ADN-AE4

_1558252594.vsd
ADN-AE1

ADN-AE2

ADN-AE3

MN-CSE

IN-CSE

ADN-AE4

①-1

①-2

container resource creation for sensor#2

container resource creation for sensor#1

container
resource is created after processing

container
Resource is created after processing

container resource creation for Actuator#1

②

container
resource is created after processing

_1558526011.vsd
MN-CSE

ADN-AE1

cont_monitor01

ADN-AE2

cont_monitor02

ADN-AE3

cont_actuator_status

pollingChannel

pollingChannelURI

_1557916207.vsd
ADN-AE1

ADN-AE2

ADN-AE3

MN-CSE

IN-CSE

ADN-AE4

pollingChannel resource creation for actuator#1

①

pollingChannel
resource is created on the ADN-AE3 after processing

_1558252329.vsd
ADN-AE1

ADN-AE2

ADN-AE3

MN-CSE

IN-CSE

ADN-AE4

Internal processing for updateing status

<pollingChannelURI>
Hosting CSE

Internal processing for polling channel

REQ2:contentInstance create request representing an updated state to ADN-AE3

RESP1: carrying “REQ2” in content param

REQ1: retrieve request to polllingChannelURI resource

①

②-1

②-2

③

REQ3: notify request to polllingChannelURI resource, carrying “RESP2” in content param

④

⑤-1

⑥

RESP2: update successfully

RESP3 to ADN-AE3

⑤-2

_1548740685.vsd
ADN-AE1

ADN-AE2

ADN-AE3

MN-CSE

IN-CSE

ADN-AE4

③

①-1

①-2

Gateway (MN-CSE) registers into oneM2M service platform (IN-CSE)

Sensor application (ADN-AE2) registers into the gateway (MN-CSE)

Sensor application (ADN-AE1) registers into the gateway (MN-CSE)

Smartphone application (ADN-AE4) registers into oneM2M service platform (IN-CSE)

④

Actuator application (ADN-AE3) registers into the gateway (MN-CSE)

②

_1548741712.vsd
ADN-AE1

ADN-AE2

ADN-AE3

MN-CSE

IN-CSE

ADN-AE4

①-2

Discover container resource with filter criteria

③-1

URI of discovered resources is responded (container1)

Retrieve latest data from container1

The latest data of container1 is responded (Temperature data)

①-1

②-1

②-2

Discovery
Flow

Request/response flow

④-1

④-2

③-2

