
	[image: image19.png]

	oneM2M
Technical Report

	Document Number
	oneM2M-TR-0057-V-0.1.0

	Document Name:
	Getting Started with oneM2M

	Date:
	2018-12-10

	Abstract:
	

	Template Version: January 2017 (Do not modify)

The present document is provided for future development work within oneM2M only. The Partners accept no liability for any use of this report.
The present document has not been subject to any approval process by the oneM2M Partners Type 1. Published oneM2M specifications and reports for implementation should be obtained via the oneM2M Partners' Publications Offices.
About oneM2M

The purpose and goal of oneM2M is to develop technical specifications which address the need for a common M2M Service Layer that can be readily embedded within various hardware and software, and relied upon to connect the myriad of devices in the field with M2M application servers worldwide.

More information about oneM2M may be found at: http//www.oneM2M.org

Copyright Notification

© 2018, oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC).

All rights reserved.
The copyright and the foregoing restriction extend to reproduction in all media.

Notice of Disclaimer & Limitation of Liability

The information provided in this document is directed solely to professionals who have the appropriate degree of experience to understand and interpret its contents in accordance with generally accepted engineering or other professional standards and applicable regulations. No recommendation as to products or vendors is made or should be implied.

NO REPRESENTATION OR WARRANTY IS MADE THAT THE INFORMATION IS TECHNICALLY ACCURATE OR SUFFICIENT OR CONFORMS TO ANY STATUTE, GOVERNMENTAL RULE OR REGULATION, AND FURTHER, NO REPRESENTATION OR WARRANTY IS MADE OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. NO oneM2M PARTNER TYPE 1 SHALL BE LIABLE, BEYOND THE AMOUNT OF ANY SUM RECEIVED IN PAYMENT BY THAT PARTNER FOR THIS DOCUMENT, WITH RESPECT TO ANY CLAIM, AND IN NO EVENT SHALL oneM2M BE LIABLE FOR LOST PROFITS OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES. oneM2M EXPRESSLY ADVISES ANY AND ALL USE OF OR RELIANCE UPON THIS INFORMATION PROVIDED IN THIS DOCUMENT IS AT THE RISK OF THE USER.

Contents

3Contents

1
Scope
5
2
References
5
2.1
Normative references
5
2.2
Informative references
5
3
Definitions, symbols and abbreviations
5
3.1
Definitions
5
3.2
Symbols
6
3.3
Abbreviations
6
4
Conventions,
6
5
oneM2M Overview
6
5.1
Introduction
6
5.1.1
oneM2M Architecture
6
5.2
REST Architecture
7
5.3
Application Program Interfaces (API)
7
5.3.1
Introduction
7
5.3.2
oneM2M Primitives
8
5.3.2.1
Overview
8
5.3.2.2
Primitive structure
9
5.3.3
oneM2M Resources
11
5.3.3.1
Resource template
11
5.3.3.2
Resource structure
12
5.3.3.3
Resource attributes
13
5.3.3.4
Resource Schema
14
5.3.4
oneM2M Procedures
15
5.3.4.1
Access Resources in Local CSE
15
5.3.4.2
Access Resources in Remote CSE
15
5.3.4.3
CREATE operation
16
5.3.4.4
RETRIEVE operation
17
5.3.4.5
UPDATE operation
17
5.3.4.6
DELETE operation
18
5.2.4.7
NOTIFY operation
18
5.4
Data collection principles
18
5.4.1
Container
18
5.4.2
Access Control Policy
19
5.4.3
Subscription and Notification
21
5.4.4
Discovery
22
5.5
Data collection example
22
6
Core Functionalities
22
6.1
Introduction
22
6.x
Addressing modes
22
6.x
Retargeting
23
6.x
Access Control Policy
23
6.x
Subscription and Notification
23
6.x
Announcement
23
6.x
Block/NB sync/async modes
23
6.x
Long polling Channel
23
6.x
IPE
23
6.x
Group management
23
6.x
App-ID
23
7
Main feature descriptions
23
7.1
Introduction
23
7.2
3GPP Interworking
23
7.2.1
MTC
23
7.2.2
Cellular IoT
23
7.3
FlexContainer
24
7.4
Semantics
24
7.5
Industrial Domain
24
7.5.1
Time Series
24
7.5.2
Transaction
24
7.x
Security
24
7.x
SDT
24
Proforma copyright release text block
24
Annexes
25
Annex <y>: Bibliography
25
History
26

1
Scope

The present document …
EXAMPLE:
The present document provides the necessary adaptions to the endorsed document.

The Scope shall not contain requirements.

2
References

The following text block applies.

References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references,only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

2.1
Normative references

As a Technical Report (TR) is entirely informative it shall not list normative references.
The following referenced documents are necessary for the application of the present document.
Not applicable.

2.2
Informative references
Clause 2.2 shall only contain informative references which are cited in the document itself.

The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
[i.1]
oneM2M Drafting Rules (http://member.onem2m.org/Static_pages/Others/Rules_Pages/oneM2M-Drafting-Rules-V1_0.doc)
3
Definitions, symbols and abbreviations

Delete from the above heading the word(s) which is/are not applicable.
3.1
Definitions

Clause numbering depends on applicability.

· A definition shall not take the form of, or contain, a requirement.

· The form of a definition shall be such that it can replace the term in context. Additional information shall be given only in the form of examples or notes (see below).

· The terms and definitions shall be presented in alphabetical order.
For the purposes of the present document, the [following] terms and definitions [given in ... and the following] apply:

Definition format

<defined term>: <definition>

If a definition is taken from an external source, use the format below where [N] identifies the external document which must be listed in Section 2 References.
<defined term>[N]: <definition>

example 1: text used to clarify abstract rules by applying them literally

NOTE:
This may contain additional information.

3.2
Symbols

Clause numbering depends on applicability.

For the purposes of the present document, the [following] symbols [given in ... and the following] apply:

Symbol format

<symbol>
<Explanation>

<2nd symbol>
<2nd Explanation>

<3rd symbol>
<3rd Explanation>

3.3
Abbreviations

Abbreviations should be ordered alphabetically.

Clause numbering depends on applicability.

For the purposes of the present document, the [following] abbreviations [given in ... and the following] apply:

Abbreviation format

<ABBREVIATION1>
<Explanation>

<ABBREVIATION2>
<Explanation>

<ABBREVIATION3>
<Explanation>

4
Conventions,

The key words “Shall”, ”Shall not”, “May”, ”Need not”, “Should”, ”Should not” in this document are to be interpreted as described in the oneM2M Drafting Rules [i.1]
5
oneM2M Overview
5.1
Introduction
5.1.1
oneM2M Architecture

Editor note: to provide concept behind oneM2M, architecture, high level definition of CSE and AE, Mca/Mcc , etc …
5.2
REST Architecture

Representational State Transfer (REST) is a software architectural style that defines a set of constraints to be used for creating web services.

RESTful services allow the requesting systems to access and manipulate textual representations of resource by using a uniform and predefined set of stateless operations. A stateless protocol operation does not require the server to retain session information or status about each communicating partner for the duration of multiple requests.

REST is not a protocol. It is about manipulating resources, uniquely identified by URIs. A resource is stateful and contains a link pointing to another resource. All the actions on resources are done through a Uniform Interface.
As REST is an architecture style, it can be mapped to multiple protocols such as HTTP, CoAP, etc…

Six guiding constraints define a RESTful system. These constraints restrict the ways that the server can process and respond to client requests
· Client-server: Separation of concerns is the principle behind the client-server constraints.

· Stateless server: request from client to server contains all of the information necessary to understand the request, and cannot take advantage of any stored context on the server.

· Cache: the client can reuse response data, sent by the server, by storing it in a local cache
· Layered system: allows an architecture to be composed of hierarchical layers. It enables to add features like a gateway, a load balancer, or a firewall to accommodate system scaling.
· Code-on-demand: (optional) REST allows client functionality to be extended by downloading and executing code in the form of scripts (e.g. JavaScript).
· Uniform interface

· Identification of resources: resource identifier enables to identify the particular resource involved in an interaction between components.
· Manipulation of resources through representations: resource representations are the state of a resource that is transferred between components.
· Self-descriptive messages: contain metadata to describe the meaning of the message.
· Hypermedia as the engine of application state or HATEOAS: Clients find their way through the API by following links available in the resource representations.
5.3
Application Program Interfaces (API)
5.3.1
Introduction

The oneM2M REST APIs are used to manipulate data generated by Application Entity (AE) to oneM2M Service platform (CSE) as well as data retrieve services. The oneM2M REST APIs are developed for handling CRUD+N (Create, Retrieve, Update, Delete and Notification) operations for oneM2M resources specified in oneM2M standard.

The oneM2M API includes the following components:
· Primitives

· Resources + Attributes

· Data Types

· Protocol Bindings

· Procedures (CRUD+N)

The oneM2M API is used by CSEs and AEs to communicate with one another. The communication can be originated from an AE or CSE depending on the operation.
Communication is done via the exchange of oneM2M primitives across the oneM2M defined reference points (Mca/Mcc/Mcc’).
Primitives are used to perform CRUD+N operations on resources hosted by CSEs or send notifications to AEs. Each CRUD+N operation is comprised of a pair of Request and Response primitives.
Access and manipulation of the resources is subject to access control privileges.

5.3.2 oneM2M Primitives
5.3.2.1
Overview
Primitives are service layer messages transmitted over the Mca/Mcc/Mcc’ reference points.
Originators send requests to Receivers via primitives. Originator and Receiver can be an AE or a CSE.
Each CRUD+N operation consists of one request and one response primitive.

[image: image2.emf]Originator (AE or CSE)Receiver(AE or CSE)

1. Request Primitive2. Response PrimitiveMca/Mcc/Mcc’

Figure 5.3.2.1-1: General primitives flow
Primitives are binded to underlying transport layer protocols such as HTTP, CoAP , MQTT or WebSocket. Primitives are generic with respect to underlying network transport protocols. Each primitive is binded to zero or more messages in the transport layer.

[image: image3.emf]

Binding Function

Receiver

Underlying networks

Response

Originator

Request

Application/Service layer

Transport layer

Primitives

Request Response

Transport Messages

Primitives

Binding Function

Transport Messages

Figure 5.3.2.1-2: oneM2M Communications
5.3.2.2
Primitive structure
A primitive consists of two parts; control and content.

· The control part: contains parameters required for the processing of the primitive itself (e.g. request or response parameters).
· The content part is optional based on the type of primitive and contains the representation of the resource consisting of all or a subset of the resource attributes.

[image: image4.emf]oneM2M PrimitiveContent Part(Resource Representation/Attributes)Control Part(Request or Response Parameters)

Figure 5.3.2.2-1: Primitive structure
Primitives are encoded and serialized based on the particular oneM2M protocol binding being used.
The originator and receiver of each primitive use the same binding, and thus use compatible forms of encoding/ decoding and serialization/de-serialization.
During transfer, the control part is encoded based on the protocol binding being used and the content portion is serialized using XML, JSON and CBOR.

	oneM2M Request Primitive: oneM2M short names
HTTP/1.1

Method: POST

(op : Operation
URI: m2msp1.com/CSE01Base

(to : To
URI Query String: ?rcn=1

 (rcn : Result content
From: ae01.com

(fr : From
X-M2M-RI:0001

(rqi : Request identifier
X-M2M-RVI: 2a

(rvi : Release Version Indicator
Content: <AE> representation

(pc: primitive content
oneM2M Response Primitive:
Status: Created

(rsc :Response Status Code
Location: http//m2msp1.com/CSE01Base/ae01
(uri : URI

X-M2M-RI:0001

(rqi : Request identifier
Content: <AE> representation created
 (pc: primitive content

Figure 5.3.2.2-2: Example of Control part binded to HTTP
The Content part of a primitive contains serialized representation of a resource. oneM2M supports XML, JSON or CBOR serializations of resources.
This is an example of a oneM2M <container> resource representation in JSON format.
[image: image1.png]

This is an example of a oneM2M <container> resource representation in XML format.
<?xml version="1.0" encoding="UTF-8"?>

<m2m:cnt xmlns:m2m="http://www.onem2m.org/xml/protocols" rn="cont_temp">

 <ty>3</ty>

 <ri>server/cnt-2951972863155866584</ri>

 <pi>server</pi>

 <ct>20181114T145000</ct>

 <lt>20181114T145000</lt>

 <et>20181114T145000</et>

 <st>0</st>

 <mni>10000</mni>

 <mbs>0</mbs>

 <mia>0</mia>

 <cni>0</cni>

 <cbs>0</cbs>

</m2m:cnt>
5.3.3 oneM2M Resources
5.3.3.1 Resource template

All entities in the oneM2M System, such as AEs, CSEs, application data representing sensors, commands,, etc. are represented as resources into the CSE. Each resource having its own specific type.

Each resource type has a defined set of mandatory and optional attributes as well as child resources.

A resource can contain child resources.
Each resource is addressable and can be the target of CRUD operations specified in oneM2M primitives.

[image: image5.emf]Resource AttributeN<resourceType>childResource1childResourceNResource Attribute10..n0..n0..n0..n

Figure 5.3.3.1-1 : Resource template

	Resource Type
	Short Description

	 accessControlPolicy
	Controls "who" is allowed to do "what" and the context in which it can be used for accessing the resources

	 AE
	Stores information about the AE. It is created as a result of successful registration of an AE with the registrar CSE

	 container
	Used to shares data instances among entities

	 contentInstance
	Represents a data instance in the <container> resource.

	 CSEBase
	The structural root for all the resources that are residing on a CSE. It stores information about the CSE itself

	 delivery
	Forwards requests from CSE to CSE

	 eventConfig
	Defines events that trigger statistics collection

	 execInstance
	The Execution Instance resource contains all execution instances of the same management command mgmtCmd

	 fanOutPoint
	Used for addressing bulk operations to all the resources that belong to a group.

	 group
	Stores information about resources of the same type that need to be addressed as a Group.

	 locationPolicy
	Includes information to obtain and manage geographical location.

	 mgmtCmd
	Represents a method to execute management procedures required by existing management protocols

	 mgmtObj
	Represents management functions that provides an abstraction to be mapped to external management technology.

	 node
	Represents specific Node information

	 pollingChannel
	Represent a channel that can be used for a request-unreachable entity

	 remoteCSE
	Represents a remote CSE for which there has been a registration procedure with the registrar CSE

	 schedule
	Contains scheduling information for delivery of messages

	 statsCollect
	Defines triggers for the IN-CSE to collect statistics for applications

	 statsConfig
	Stores configuration of statistics for applications

	 subscription
	Represents subscription information related to a resource.

Table 5.3.3.1-1 : Resource type examples

5.3.3.2
Resource structure
The root of the oneM2M resource structure is <CSEBase>.

The <CSEBase> is assigned an absolute address. All other child resources are addressed relative to <CSEBase>.
Depending on the type of child resource it is instantiated 0..n times.

[image: image6.emf]<CSEBase>“attribute”n0..n<remoteCSE><node><AE><container><group><accessControlPolicy><subscription><mgmtCmd><locationPolicy><statsConfig><statsCollect><request><delivery><schedule>0..n0..n0..n0..n0..n0..n0..n0..n0..n0..n0..n0..n0..1

Figure 5.3.3.2-1 : <CSEBase> Resource example

5.3.3.3
Resource attributes
Each resource contains attributes that store information pertaining to the resource itself.
The attributes are :

· Universal Attributes : which appear in all resources

· Common Attributes : which appear in more than one resource and have the same meaning whenever they do appear.
· Resource-specific attributes

[image: image7.emf]<AE>Universal Attributes: resourceType resourceID parentID lastModifiedTime creationTime resourceNameCommon Attributes: accessControlPolicyIDs expirationTime stateTag announceTo announcedAttribute Labels Etc ...<AE> Specific Attributes: appName App-ID AE-ID pointOfAccess ontologyRef nodeLink Etc ...“attribute”n0..n<subscription>0..n<container>0..n<group>0..n<accessControlPolicy>0..n<pollingChannel>

Figure 5.3.3.3-1: <AE> Resource example
	Universal Attribute
	Description

	resourceType
	Identifies the type of resource

	parentID
	resourceID of the parent of this resource.

	creationTime
	Time/date of creation of the resource.

	lastModifiedTime
	Last modification time/date of the resource.

	resourceID
	Identifier for resource.

	resourceName
	Name of the resource

Table 5.3.3.3-1 : Universal resource attributes
5.3.3.4
Resource Schema

oneM2M defines XML, JSON and CBOR schemas which define the attributes of each resource type.
Schemas bind oneM2M attributes to well-known data types defined by XML Schema definitions (e.g. xs:string, xs:anyURI, etc …).

Schemas also bind oneM2M attributes to oneM2M defined data types (e.g. m2m:id, m2m:stringList, etc ...).

<xs:schema xmlns="http://www.w3.org/2001/XMLSchema" targetNamespace="http://www.onem2m.org/xml/protocols"

xmlns:m2m="http://www.onem2m.org/xml/protocols" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

elementFormDefault="unqualified" xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:include schemaLocation="CDT-commonTypes-v3_8_0.xsd" />

<xs:include schemaLocation="CDT-subscription-v3_8_0.xsd" />

<xs:element name="request" substitutionGroup="m2m:sg_regularResource">

<xs:complexType>

<xs:complexContent>

<!-- Inherit common attributes -->

<xs:extension base="m2m:regularResource">

<xs:sequence>

<!-- Common Attribute, specific to <container>, <contentInstance>, <request> and <delivery> resources -->

<xs:element name="stateTag" type="xs:nonNegativeInteger" />

<!-- Resource Specific Attributes -->

<xs:element name="operation" type="m2m:operation" />

<xs:element name="target" type="xs:anyURI" />

<xs:element name="originator" type="m2m:ID" />

<xs:element name="requestID" type="m2m:requestID" />

<xs:element name="metaInformation" type="m2m:metaInformation" />

<xs:element name="primitiveContent" type="m2m:primitiveContent" minOccurs="0" />

<xs:element name="requestStatus" type="m2m:requestStatus" />

<xs:element name="operationResult" type="m2m:operationResult" />

<!-- Child Resources -->

<xs:choice minOccurs="0" maxOccurs="1">

<xs:element name="childResource" type="m2m:childResourceRef" minOccurs="1" maxOccurs="unbounded" />

<xs:choice minOccurs="1" maxOccurs="unbounded">

<xs:element ref="m2m:subscription"></xs:element>

</xs:choice>

</xs:choice>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

</xs:element>

</xs:schema>

Figure 5.3.3.4-1: Example of schema
5.3.4
oneM2M Procedures
5.3.4.1
Access Resources in Local CSE

[image: image8.emf]Originator(AE or CSE)(Registrar CSE = Hosting CSE) The addressed resource is stored here.Request (access resource)CSE verifies Access RightsIf permitted, the CSE accesses the resouces and responds with a Success or Failure ResponseResponse

Figure 5.3.4.1-1 : Access Resources in Local CSE
5.3.4.2
Access Resources in Remote CSE

[image: image9.emf]Originator(AE/CSE)Registrar CSE = Transit CSEHosting CSE The addressed resource is stored here.Request (access resource)Registrar CSE does not have the addressed resourceHosting CSE verifies Access RightsIf permitted, the Hosting CSE accesses the resource and responds with Success or Failure ResponseRequest (access resource)ResponseResponseForward the Request to its registered CSE, which is the Hosting CSE

Figure 5.3.4.2-1 : Access Resources in Remote CSE
5.3.4.3
CREATE operation

[image: image10.emf]001: CREATE RequestOriginator requests creation of a Resource003: CREATE ResponseReceiver responds to creation RequestOriginator(CSE or AE)Receiver(Hosting CSE)002: Receiver Processing

Figure 5.3.4.3-1 : CREATE operation
5.3.4.4
RETRIEVE operation

[image: image11.emf]001: RETRIEVE RequestOriginator requests retrieval of a Resource003: RETRIEVE ResponseReceiver responds to retrieval RequestOriginator(CSE or AE)Receiver (Hosting CSE)002: Receiver Processing

Figure 5.3.4.4-1 : RETRIEVE operation

5.3.4.5
UPDATE operation

[image: image12.emf]001: UPDATE RequestOriginator requests update of a Resource or create/delete attributes of a Resource003: UPDATE ResponseReceiver responds to update requestOriginator(CSE or AE)Receiver (Hosting CSE)002: Receiver Processing

Figure 5.3.4.5-1 : UPDATE operation

5.3.4.6
DELETE operation

[image: image13.emf]001: DELETE RequestOriginator requests deletion of a Resource003: DELETE ResponseReceiver responds to deletion RequestOriginator(CSE or AE)Receiver (Hosting CSE)002: Receiver Processing

Figure 5.3.4.6-1 : DELETE operation

5.2.4.7
NOTIFY operation

[image: image14.emf]002: NOTIFY Request003: NOTIFY ResponseOriginator(CSE)Receiver(Hosting CSE or AE)001: Local Processing(Notification Triggered)

Figure 5.3.4.7-1 : NOTIFY operation

5.4
Data collection principles

5.4.1
Container
· Container for data instances is represented by <container> resource.
· Data storage used to share information with other entities and track data.
· <container> resource has no associated content.
· Only attributes and child resources are available.
· Actual data/content is stored in <contentInstance> child resource.
· <container> is the only resource allowed to have recursive child resources.
· <container> resource can have other <container> as a child resource.
· useful for representing hierarchical data structure.

[image: image15.emf]Room2Home2CSE1BaseHome1Room1TemperatureresourceType = <CSEBase>resourceType = <container>resourceType= <container>resourceType = <contentInstance>content = 19°resourceType = <container>resourceType= <container>

Figure 5.4.1-1: Example of resources tree
5.4.2
Access Control Policy

· Access Control Policies (ACPs) are used by the CSE to control access to the resources.
· The resources are always linked with Access Control Policies . ACPs are shared between several resources
· Access Control Policies contain the rules (Privileges) defining
· WHO can access the Resource (e.g. Identifiers of authorized AE/CSE)
· For WHAT operation (CREATE / RETRIEVE / UPDATE / DELETE…)
· Under WHICH contextual circumstances (Time, Location, IP address)
· ACPs are represented by <accessControlPolicy> resources.
· Comprised of attributes privileges and selfPrivileges that represent a set of access control rules for entities.
<accessControlPolicy> resource content :

<m2m:acp xmlns:m2m="…" rn="">

<pv>

<acr>

<acor></acor>

<acop></acop>

</acr>

</pv>

<pvs>

<acr>

<acor></acor>

<acop></acop>

</acr>

</pvs>

</m2m:acp>
Signification

· acr = « Access Control Rule »

· acor = « Access Control Originators »

· acop = « Access Control Operations »
Operation Code
· CREATE

1

· RETRIEVE

2

· UPDATE

4

· DELETE

8

· NOTIFY

16

· DISCOVERY
32
Example:

<pv>

<acr>

<acor>admin</acor>

<acop>63</acop>

</acr>
</pv>
<pvs>

<acr>

<acor>guest</acor>

<acop>34</acop>

</acr>

<pvs>

· Common attribute accessControlPolicyIDs links resources that are not <accessControlPolicy> resources to <accessControlPolicy> resources.
· All resources are accessible only if the privileges from the ACP grants it.
· All resources have an associated accessControlPolicyIDs attribute, either explicitly or implicitly.

[image: image16.emf]resourceType = <CSEBase>resourceType = <container>accessControlPolicyIDsCSE1BaseCRUD Requestarriving at CSE hostingtarget resource“cse1base/container1”resourceType = <accessControlPolicy>privilegesselfPrivilegesContainer1ACP1ID or URI to <accessControlPolicy> resourceaccess control rules that define which AE/CSEis allowed for which operationset of access control rules for the <accessControlPolicy> resource itself Response to originatorafter policy/rights check

Figure 5.4.2-1 : Access control policy verification example
5.4.3
Subscription and Notification

· Events generated by resources can be received using the <subscription> resource.
· The <subscription> resource contains subscription information for its "subscribed-to" resource.
· <subscription> resource is a child resource of the "subscribed-to" resource.
· The originator (resource subscriber) has RETRIEVE privilege to the "subscribed-to" resource in order to create the <subscription> resource.
· Notification policies specified in the attributes can be applied to the <subscription>.
· Specify which, when, and how notifications are sent.
· Example: batchNotify – receive batches of notification rather than one at a time.

[image: image17.emf]resourceType = <CSEBase>resourceType = <container>“subscribed-to” resourcecurrentNrOfInstances= 1 → 3CSE1BaseresourceType = <subscription>notificationContentType= modified attributes onlyContainer1Notification viaURI specified innotificationURIcurrentNrOfInstances= 3Originator(AE1)Resource Subscriberto“cse1base/container1”Receiver(CSE1)Subscription1Change in resource attributetriggers event notification

Figure 5.4.3-1 : Subcription and notification example

5.4.4
Discovery

· Resource Discovery Capabilities
· Under the RESTful architecture, Resource Discovery can be accomplished using RETRIEVE operation by an Originator.
· The use of the filterCriteria parameter allows limiting the scope of the results.
· Type, Labels, Content Size and so on can be configured in the parameter.

[image: image18]

Figure 5.4.4-1 : Discovery example
5.5
Data collection example

Editor note: to provide a basic example scenario using data collection + Subscription/Notification
6
Core Functionalities

6.1
Introduction

 Editor notes: here are examples clauses that could be addressed to simply describe Core Fonctionalities. It is here for information and the list could be revised.
6.x
Addressing modes

6.x
Retargeting

6.x
Access Control Policy

6.x
Subscription and Notification

6.x
Announcement

6.x
Block/NB sync/async modes
6.x
Long polling Channel
6.x
IPE

6.x
Group management

6.x
App-ID
7
Main feature descriptions
7.1
Introduction

7.2
3GPP Interworking

7.2.1
MTC

7.2.2
Cellular IoT

7.3
FlexContainer
7.4
Semantics
7.5
Industrial Domain

7.5.1
Time Series

7.5.2
Transaction

7.x
Security

· 7.x.1 Introduction

· Dynamic Authorization
· Distributed Authorization

· End to end

7.x
SDT
Proforma copyright release text block

This text box shall immediately follow after the heading of an element (i.e. clause or annex) containing a proforma or template which is intended to be copied by the user. Such an element shall always start on a new page.

Notwithstanding the provisions of the copyright clause related to the text of the present document, oneM2M grants that users of the present document may freely reproduce the <proformatype> proforma in this {clause|annex} so that it can be used for its intended purposes and may further publish the completed <proformatype>.

<PAGE BREAK>

Annexes

Each annex shall start on a new page (insert a page break between annexes A and B, annexes B and C, etc.).

Use the Heading 9 style for the title and the Normal style for the text.
Annex <A>:
Title of annex (style H9)
<Text>

<PAGE BREAK>

Annex :
Title of annex (style H9)
<Text>

B.1
First clause of the annex (style H1)
<Text>

B.1.1
First subdivided clause of the annex (style H2)
<Text>

<PAGE BREAK>
Annex <y>:
Bibliography

The annex entitled "Bibliography" is optional.

It shall contain a list of standards, books, articles, or other sources on a particular subject which are not mentioned in the document itself.

It shall not include references mentioned in the document.

Use the Heading 9 style for the title and B1+ or Normal for the text.

· <Publication>: "<Title>".

OR

<Publication>: "<Title>".

<PAGE BREAK>

History

This clause shall be the last one in the document and list the main phases (all additional information will be removed at the publication stage).
	Publication history

	V1.1.1
	<yyyy-mm-dd>
	<Milestone>

	
	
	

	
	
	

	
	
	

	
	
	

	Draft history (to be removed on publication)

	V0.0.1
	2018-11-10
	Initial draft

	V0.1.0
	2018-12-10
	Implemented contribution agreed at ARC#38
ARC-2018-0317R01-TR-0057-oneM2M-overview_clause_5

	
	
	

	
	
	

	
	
	

{

"m2m:cnt": {

"cbs": 0,

"cni": 0,

 "ct": "20180406T085712",

"et": "99991231T235959",

"lt": "20180406T085712",

"mbs": 60000000,	

"mia": 1600,

"mni": 10000,

"pi": "CAE0120180406T084680_cse01",

ri": "cnt20180406T08571214_cse01",

"rn": "cont_temp",	

"st": 0,	

"ty": 3

}

}

cnt : container

cbs : currentByteSize

cni : currentNrOfInstances

ct : creationTime

et : expirationTime

lt : lastModifiedTime

mbs : maxByteSize

mia : maxInstanceAge

mni : maxNrOfInstance

pi : parentID

ri : resourceID

rn :resourceName

st : stateTag

ty : resourceType

Privileges:

Manage the right for resources of this ACP

Self-privileges:

Manage the right to access or modify this resource. It defines who can set an Access Control Policy

Combinations of these values are specified by adding them together. For example the value 5 is interpreted as "CREATE and UPDATE".

63 grants all rights

34 grants Retrieve and Dicovery rights

© oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC)
Page 3 of 26
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

_1603202276.vsd

_1603202710.vsd

_1603202656.vsd

_1603202325.vsd

_1603113821.doc

Binding Function

Receiver

Underlying networks

Response

Request

Request

Response

Originator

Primitives

Application/Service layer

Transport layer

Primitives

Transport Messages

Binding Function

Transport Messages

_1603114207.vsd
oneM2M Primitive

Content Part
(Resource Representation/Attributes)

Control Part
(Request or Response Parameters)

_1603112990.vsd
Originator (AE or CSE)

Receiver
(AE or CSE)

1. Request Primitive

2. Response Primitive

Mca/Mcc/Mcc’

