
	[image: image27.png]

	oneM2M
Technical Report

	Document Number
	oneM2M-TR-0057-V-0.2.0

	Document Name:
	Getting Started with oneM2M

	Date:
	2019-02-26

	Abstract:
	

	Template Version: January 2017 (Do not modify)

The present document is provided for future development work within oneM2M only. The Partners accept no liability for any use of this report.
The present document has not been subject to any approval process by the oneM2M Partners Type 1. Published oneM2M specifications and reports for implementation should be obtained via the oneM2M Partners' Publications Offices.
About oneM2M

The purpose and goal of oneM2M is to develop technical specifications which address the need for a common M2M Service Layer that can be readily embedded within various hardware and software, and relied upon to connect the myriad of devices in the field with M2M application servers worldwide.

More information about oneM2M may be found at: http//www.oneM2M.org

Copyright Notification

© 2019, oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC).

All rights reserved.
The copyright and the foregoing restriction extend to reproduction in all media.

Notice of Disclaimer & Limitation of Liability

The information provided in this document is directed solely to professionals who have the appropriate degree of experience to understand and interpret its contents in accordance with generally accepted engineering or other professional standards and applicable regulations. No recommendation as to products or vendors is made or should be implied.

NO REPRESENTATION OR WARRANTY IS MADE THAT THE INFORMATION IS TECHNICALLY ACCURATE OR SUFFICIENT OR CONFORMS TO ANY STATUTE, GOVERNMENTAL RULE OR REGULATION, AND FURTHER, NO REPRESENTATION OR WARRANTY IS MADE OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. NO oneM2M PARTNER TYPE 1 SHALL BE LIABLE, BEYOND THE AMOUNT OF ANY SUM RECEIVED IN PAYMENT BY THAT PARTNER FOR THIS DOCUMENT, WITH RESPECT TO ANY CLAIM, AND IN NO EVENT SHALL oneM2M BE LIABLE FOR LOST PROFITS OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES. oneM2M EXPRESSLY ADVISES ANY AND ALL USE OF OR RELIANCE UPON THIS INFORMATION PROVIDED IN THIS DOCUMENT IS AT THE RISK OF THE USER.

Contents

3Contents

1
Scope
5
2
References
5
2.1
Normative references
5
2.2
Informative references
5
3
Definitions, symbols and abbreviations
5
3.1
Definitions
5
3.2
Symbols
6
3.3
Abbreviations
6
4
Conventions,
6
5
oneM2M Overview
6
5.1
Introduction
6
5.1.1
oneM2M Service Layer
6
5.1.2
Functional Architecture description
9
5.1.3
Common Service functions
13
5.1.4
Benefits of using oneM2M
13
5.2
REST Architecture
15
5.3
Application Program Interfaces (API)
16
5.3.1
Introduction
16
5.3.2
oneM2M Primitives
16
5.3.2.1
Overview
16
5.3.2.2
Primitive structure
17
5.3.3
oneM2M Resources
19
5.3.3.1
Resource template
19
5.3.3.2
Resource structure
20
5.3.3.3
Resource attributes
21
5.3.3.4
Resource Schema
22
5.3.4
oneM2M Procedures
24
5.3.4.1
Access Resources in Local CSE
24
5.3.4.2
Access Resources in Remote CSE
24
5.3.4.3
CREATE operation
25
5.3.4.4
RETRIEVE operation
26
5.3.4.5
UPDATE operation
26
5.3.4.6
DELETE operation
27
5.2.4.7
NOTIFY operation
27
5.4
Data collection principles
27
5.4.1
Container
27
5.4.2
Access Control Policy
28
5.4.3
Subscription and Notification
30
5.4.4
Discovery
31
5.5
Data collection example
31
6
Core Functionalities
31
6.1
Introduction
31
6.x
Addressing modes
31
6.x
Retargeting
32
6.x
Access Control Policy
32
6.x
Subscription and Notification
32
6.x
Announcement
32
6.x
Block/NB sync/async modes
32
6.x
Long polling Channel
32
6.x
IPE
32
6.x
Group management
32
6.x
App-ID
32
7
Main feature descriptions
32
7.1
Introduction
32
7.2
3GPP Interworking
32
7.2.1
MTC
32
7.2.2
Cellular IoT
32
7.3
FlexContainer
33
7.4
Semantics
33
7.5
Industrial Domain
33
7.5.1
Time Series
33
7.5.2
Transaction
33
7.x
Security
33
7.x
SDT
33
Proforma copyright release text block
33
Annexes
34
Annex <y>: Bibliography
34
History
35

1
Scope

The present document …
EXAMPLE:
The present document provides the necessary adaptions to the endorsed document.

The Scope shall not contain requirements.

2
References

The following text block applies.

References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references,only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

2.1
Normative references

As a Technical Report (TR) is entirely informative it shall not list normative references.
The following referenced documents are necessary for the application of the present document.
Not applicable.

2.2
Informative references
Clause 2.2 shall only contain informative references which are cited in the document itself.

The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
[i.1]
oneM2M Drafting Rules (http://member.onem2m.org/Static_pages/Others/Rules_Pages/oneM2M-Drafting-Rules-V1_0.doc)
3
Definitions, symbols and abbreviations

Delete from the above heading the word(s) which is/are not applicable.
3.1
Definitions

Clause numbering depends on applicability.

· A definition shall not take the form of, or contain, a requirement.

· The form of a definition shall be such that it can replace the term in context. Additional information shall be given only in the form of examples or notes (see below).

· The terms and definitions shall be presented in alphabetical order.
For the purposes of the present document, the [following] terms and definitions [given in ... and the following] apply:

Definition format

<defined term>: <definition>

If a definition is taken from an external source, use the format below where [N] identifies the external document which must be listed in Section 2 References.
<defined term>[N]: <definition>

example 1: text used to clarify abstract rules by applying them literally

NOTE:
This may contain additional information.

3.2
Symbols

Clause numbering depends on applicability.

For the purposes of the present document, the [following] symbols [given in ... and the following] apply:

Symbol format

<symbol>
<Explanation>

<2nd symbol>
<2nd Explanation>

<3rd symbol>
<3rd Explanation>

3.3
Abbreviations

Abbreviations should be ordered alphabetically.

Clause numbering depends on applicability.

For the purposes of the present document, the [following] abbreviations [given in ... and the following] apply:

Abbreviation format

<ABBREVIATION1>
<Explanation>

<ABBREVIATION2>
<Explanation>

<ABBREVIATION3>
<Explanation>

4
Conventions,

The key words “Shall”, ”Shall not”, “May”, ”Need not”, “Should”, ”Should not” in this document are to be interpreted as described in the oneM2M Drafting Rules [i.1]
5
oneM2M Overview
5.1
Introduction

5.1.1
oneM2M Service Layer

The architecture standardized by oneM2M defines an IoT Service Layer, i.e. a software Middleware sitting between processing / communication hardware and IoT applications providing a rich set of functions needed by many IoT applications. It supports secure end-to-end data/control exchange between IoT devices and custom applications by providing functions for proper identification, authentication, authorization, encryption, remote provisioning & activation, connectivity setup, buffering, scheduling, synchronization, aggregation, group communication and device management, etc.

oneM2M’s Service Layer is typically implemented as a software layer and sits between IoT applications and processing or communication hardware and operating system elements that provide data storage, processing and transport, normally riding on top of IP. However, also non-IP transports are supported via interworking proxies. The oneM2M Service Layer provides commonly needed functions for IoT applications across different industry segments.

· oneM2M defines an horizontal architecture providing common services functions that enable applications in multiple domains, using a common framework and uniform APIs.

Using those standardized APIs make it much simpler for M2M/IoT solution providers to cope with complex and heterogeneous connectivity choices by abstracting out the details of using underlying network technologies, underlying transport protocols and data serialization. This is all handled by the oneM2M Service Layer without a need for the programmer to become an expert in each of these layers. Therefore, the application developer can focus on the process / business logic of the use case to be implemented and does not need to worry about how the underlying layers exactly work. This is very much like writing a file to a file system without worring how hard disks and their interfaces actually work.

Therefore, the IoT Service Layer specified in oneM2M can be understood as a distributed operating system for IoT providing uniform APIs to IoT applications in a similar way as a mobile OS does for the smart phone eco system.

[image: image2.emf]ConnectivityOperating SystemApplications API•Applications control connectivity Layer and built-in sensors via API’s provided by the Operating System=> Applications are becoming portable•Operating System collects data transfer requests from applications. The OS optimizes & controls use the of the network by the device and provides securtiy•Connectivity Layer provides access to the Internet via the wired and wireless networks

 Figure 5.1.1-1: IoT Service layer
For example, the following “vertical” domains are isolated silos which makes it difficult to exchange data between each other. Using an “horizontal” architecture allows to provide a seamless interaction between applications and devices. In the below used case, a security application detects that when noboby is in the building , it triggers to switch off light and stop the air conditioned.

[image: image3.emf]BuildingDedicated devicesSecurityDedicated devicesEnergyDedicated devicesInvert the pipeBuildingIoTdevicesSecurityIoTdevicesEnergyIoTdevicesoneM2M Service LayerWithoutoneM2M•Highly fragmented market with limited vendor-specific applications•Reinventing the wheel: Same services developed again and again•Each silo contains its own technologies without interoperabilityWithoneM2M•End-to-end platform: common service capabilities layer•Interoperability at the level of data and control exchanges via uniform APIs•Seamless interaction between heterogeneous applications and devices

Figure 5.1.1-2: IoT Cross-domain interoperability
· Cloud provider independent : From Fragmentation to Standards (decoupling Device, Cloud, and application by open interfaces

[image: image4.emf]oneM2MIP CommunicationDeviceInfrastructureoneM2MoneM2MoneM2MoneM2MToOpenCloud independentFromProprietaryCloud specificApplicationLayer ConnectivityLayerServiceLayer Cloud ACloud BDeviceInfrastructureIP Communication

Figure 5.1.1-3: Cloud provider independent
· Common IoT Key problems solved by oneM2M

[image: image5.emf]•oneM2M stores data in case of lack of connectivity •oneM2M can controls the devices usage of connectivity (When, how often communication happens)Connectivity•oneM2M provides globally standardized interfaces for the Application developers (device and cloud) •oneM2M enables Application portabilityApplicationarea•oneM2M provides services towards the Application (Application –Registration & -Discovery, Subscription & Notifications Services, Secure Communication, Device Management etc…•oneM2M enables Device portability (a Device can be connected to any Infrastructure solution)Data Interoperability

Figure 5.1.1-4: Common IoT Key problems
· oneM2M in a nutshell:

oneM2M’s Service Layer corresponds to a software “framework”, located between the IoT applications and communication HW/SW that provide storage/connectivity/data transport.

It provides functions that IoT applications across different industry segments commonly need (eg. data transport, security/encryption, scheduling, event notifications, remote software update...)
It supports cooperative intelligence in distributed applications i.e. in devices, gateways and back-end/cloud applications
It supports a selection of underlying transport protocols and serialization formats

It is like an Operating System for the Internet of Things, sitting on field devices/sensors, gateways and in servers.

And it is a standard – not controlled by a single private company.
5.1.2
Functional Architecture description
oneM2M Layered Model comprises three layers:
· the Application Layer,
· the Common Services Layer

· the underlying Network Services Layer.

[image: image6.emf]UnderlyingNetworkUnderlyingNetworkCSEAENSECSENSECSENSENSEApplication Service NodeMiddle NodeInfrastructure NodeMcaMcnMcaMcaMcnMcnMccMccCSEMcc’Inf. NodeAEAEConnectivity LayerService LayerApplication Layer

Figure 5.1.2-1: oneM2M Layered Model

oneM2M entities:

The oneM2M functional architecture comprises the following functions:

1) Application Entity (AE): Application Entity is an entity in the application layer that implements an M2M application service logic. Each application service logic can be resident in a number of M2M nodes and/or more than once on a single M2M node. Each execution instance of an application service logic is termed an "Application Entity" (AE) and is identified with a unique AE-ID.
Examples of the AEs include an instance of a fleet tracking application, a remote blood sugar measuring application, a power metering application, or a pump controlling application.

2) Common Services Entity (CSE): A Common Services Entity represents an instantiation of a set of "common service functions" of the oneM2M Service Layer. A CSE is actually the entiy that contains the collection of oneM2M-specified common service functions that AEs are able to use. Such service functions are exposed to other entities through the Mca (exposure to AEs) and Mcc (exposure to other CSEs) reference points. Reference point Mcn is used for accessing services provided by the underlying Network Service Entities such as waking up a sleeping device. Each Common Service Entity is identified with a unique CSE-ID.

Examples of service functions offered by CSE include: Data storage & sharing with access control and authorization, event detection and notification, group communication, scheduling of data exchanges, device management, and location services.

3) Underlying Network Services Entity (NSE): A Network Services Entity provides services from the underlying network to the CSEs.
Examples of such services include location services, device triggering, certain sleep modes like PSM in 3GPP based networks or long sleep cycles.
oneM2M Reference Points:

[image: image7.emf]AEAE

McaMcaMca

Mcc

McnMcn

CSECSE

NSENSE

Field DomainInfrastructure Domain

To Infrastructure

Domain of other

Service Provider

Mcc’

Figure 5.1.2-2: oneM2M Functional Architecture

The oneM2M functional architecture defines the following reference points:
· Mca reference point : Communication flows between an Application Entity (AE) and a Common Services Entity (CSE) cross the Mca reference point. These flows enable the AE to use the services supported by the CSE, and for the CSE to communicate with the AE. The AE and the CSE may or may not be co-located within the same physical entity.
· Mcc Reference point : Communication flows between two Common Services Entities (CSEs) cross the Mcc reference point. These flows enable a CSE to use the services supported by another CSE.

· Mcn Reference point : Communication flows between a Common Services Entity (CSE) and the Network Services Entity (NSE) cross the Mcn reference point. These flows enable a CSE to use the supported services provided by the NSE. While the oneM2M Service Layer is in general independent of the underlying network – as long as it supports IP transport – it leverages specific M2M/IoT optimization such as 3GPP’s eMTC features (e.g. device triggering, power saving mode, long sleep cycles, etc).
· Mcc’ Reference point : Communication flows between two Common Services Entities (CSEs) in Infrastructure Nodes (IN) that are oneM2M compliant and that resides in different M2M Service Provider domains cross the Mcc' reference point.

· Additional reference points are defined in oneM2M for specific purposes like enrolment functions etc. and are not detailed in this overview
oneM2M Nodes:

oneM2M has defined a set of Nodes that are logical entities identifiable in the oneM2M System. oneM2M Nodes typically contain CSEs and/or AEs. For the definition of Node types, oneM2M distinguishes between Nodes in the “Field Domain” – i.e. the domain in which sensors / actors / aggregators / gateways are deployed – and the “Infrastructure Domain” – i.e. the domain in which servers and applications on larger computers reside.

[image: image8]
Figure 5.1.2-3: oneM2M node topology
Nodes could be of the following types:
· Application Dedicated Node (ADN): a Node that contains at least one AE and does not contain a CSE. It is located in the Field Domain. An ADN would typically be implemented on a rather resource constraint device that may not have access to rich storage or processing resources and – therefore – may be limited to only host a oneM2M AE and not a CSE. Examples for devices that would be represented by ADNs: Simple sensor or actor devices.

· Application Service Node (ASN): a Node that contains one CSE and contains at least one Application Entity (AE), located in the Field Domain. An ASN could be implemented on a range of different devices ranging from rather resource constraint devices up to much richer HW. Examples for devices that would be represented by ASNs: Data collection devices, more capable sensors and actors including simple server functions.
· Middle Node (MN): a Node that contains one CSE and could contain AEs. MNs are located in the Field Domain. There could be several MNs in the Field Domain of the oneM2M System. Typically a MN would reside in an M2M Gateway. MNs would be used to establish a logical tree structure of oneM2M nodes, e.g. for hierarchically aggregate data of buildings / neighborhoods / cities / counties / states etc.
· Infrastructure Node (IN): a Node that contains one CSE and could contain AEs. There is exactly one IN in the Infrastructure Domain per oneM2M Service Provider. As example of physical mapping, an IN could reside in an M2M Service Enablement Infrastructure.

· Non-oneM2M Node (NoDN): This Node type is not shown in the figure above. oneM2M specifications also define a Node Type for non-oneM2M Nodes which are Nodes that does not contain oneM2M Entities (neither AEs nor CSEs). Typically such Nodes would host some non-oneM2M IoT implementations or legacy technology which can be connected to the oneM2M system via interworking proxies.
5.1.3
Common Service functions

As a horizontal architecture providing a common framework for IoT, oneM2M has identified a set of common functionnalities, that are applicable to all the IoT domains. Think of these functions as a large toolbox with special tools to solve a number of IoT problems across many different domains. Very much like a screw driver can be used to fasten screws in a car as well as in a plane, the oneM2M CSFs are applicable to different IoT use cases in different industry domains. In its first phase, oneM2M went through a large number of IoT use cases and identified a set of common requirements which resulted in the design of this set of tools termed Common Service Functions. Furthermore, oneM2M has standardized how these functions are being executed, i.e. is has defined uniform APIs to access these functions. Figure 5.3.1-1 is showing a grouping of these functions into a few different scopes.

[image: image9.emf]RegistrationGroup ManagementSecurityDiscovery & AnnouncementData Management & Repository Application & Service ManagementDevice ManagementSubscription & NotificationCommunication ManagementService Charging & AccountingLocationNetwork Service ExposureSemanticsInterworking

Figure 5.1.3-1: Common Service Functions

Such services reside within a CSE and are referred to as Common Services Functions (CSFs). The CSFs provide services to the AEs via the Mca reference point and to other CSEs via the Mcc reference point.
All these services are not specific to any IoT domain in particular. It enables each domain to build on the top of this service layer and really focus on its specific industrial needs. This is similar to functions of a generic operating system (OS) exposed to applications running on that OS. For instance many applications read and write to files. File I/O is typically provided by the OS. oneM2M’s Service Layer provides similar functions in a generic way to many different IoT Applications.

5.1.4
Benefits of using oneM2M

· Service Layer on top of transport network supporting a choice of transport protocols and serializations of data/messages
· Flexibility: It can be deployed on all domains, not tied to a particular protocol technology
· IP based: Relies on known existing APIs to handle IP communications
· Aware of optimizations if underlying network is 3GPP-based: Can make use of policy-based scheduling, power saving mode, triggering /wakeup of devices, non-IP data transport, etc without need for the developer to be aware of these terms.
· Enhances data sharing efficiency: Communications over an underlying network are policed by provisioned policies that govern the use of network resources based on configurable categories of events/messages. Avoids storm of low-value messages in netoworks with costly resources. Lowers Opex.
· For example in use cases with need for fast & compact message exchanges one may want to rely on TCP sockets (opened via web sockets) and use binary serialization (e.g. CBOR) where in other cases a combination of HTTPS/JSON may be preferable for simpler debugging.
· Evolution: Supported transport protocols and/or message serialization can evolve while the oneM2M code will not change. This allows for easy adaptation to future transport technologies.
· Horizontal platform provides common service functions that enable multiple IoT domains
· One investment/deployment serves multiple domains, do not re-invent the wheel. Lowers Capex.
· No need to maintain domain-specific platforms, reduction in Capex
· Cross-domain service/application innovation with a common framework and uniform APIs, allows for sharing of information and processes across domains that were isolated so far (e.g. home security system versus heating system), Supports new business opportunities.
· Re-use of the code whatever the domain was. Increases reusability / lowers Capex.
· Easy interworking/integration with existing & evolving deployments paves the way to long term evolution and sustainable economy
· Do not disrupt existing “vertical deployment”, but evolve. Supports interworking with legacy technology.
· Interworking with a rich set of proximal IoT technologies, embracing different ecosystems
· Take advantage of the operators’ network capabilities and existing management technologies
· Data sharing and semantic interoperability brings the real value
· data oriented RESTful API design
· semantic data annotation, discover and reasoning facilitates intelligent analytics and service mashups
· security protection at both channel and object level, with static and dynamic access control
· Open standards to avoid lock-in to a platform or a cloud provider
· No single party or company controls the technology / features
· Several open source implementations available (CSE or AE)
· oneM2M is an international standard
· Developed using standardization methodology that has insured successful interoperability in many technical domains, same process as in 3GPP
· Developed by many companies based on consensus: It does not depend on a single or a small number of companies; not using a closed proprietary technology.
· It is an open standard: Transparent development process & open access to all deliverables; all the specifications, even the drafts are available at http://www.onem2m.org/technical/latest-drafts
In summary, the oneM2M initiative has the vision to remove fragmentation of the IoT world . Because it is independent of the access or protocol technology that is used for transport, it is designed to be a long term solution for IoT deployment.
5.2
REST Architecture

Representational State Transfer (REST) is a software architectural style that defines a set of constraints to be used for creating web services.

RESTful services allow the requesting systems to access and manipulate textual representations of resource by using a uniform and predefined set of stateless operations. A stateless protocol operation does not require the server to retain session information or status about each communicating partner for the duration of multiple requests.

REST is not a protocol. It is about manipulating resources, uniquely identified by URIs. A resource is stateful and contains a link pointing to another resource. All the actions on resources are done through a Uniform Interface.
As REST is an architecture style, it can be mapped to multiple protocols such as HTTP, CoAP, etc…

Six guiding constraints define a RESTful system. These constraints restrict the ways that the server can process and respond to client requests
· Client-server: Separation of concerns is the principle behind the client-server constraints.

· Stateless server: request from client to server contains all of the information necessary to understand the request, and cannot take advantage of any stored context on the server.

· Cache: the client can reuse response data, sent by the server, by storing it in a local cache
· Layered system: allows an architecture to be composed of hierarchical layers. It enables to add features like a gateway, a load balancer, or a firewall to accommodate system scaling.
· Code-on-demand: (optional) REST allows client functionality to be extended by downloading and executing code in the form of scripts (e.g. JavaScript).
· Uniform interface

· Identification of resources: resource identifier enables to identify the particular resource involved in an interaction between components.
· Manipulation of resources through representations: resource representations are the state of a resource that is transferred between components.
· Self-descriptive messages: contain metadata to describe the meaning of the message.
· Hypermedia as the engine of application state or HATEOAS: Clients find their way through the API by following links available in the resource representations.
5.3
Application Program Interfaces (API)
5.3.1
Introduction

The oneM2M REST APIs are used to manipulate data generated by Application Entity (AE) to oneM2M Service platform (CSE) as well as data retrieve services. The oneM2M REST APIs are developed for handling CRUD+N (Create, Retrieve, Update, Delete and Notification) operations for oneM2M resources specified in oneM2M standard.

The oneM2M API includes the following components:
· Primitives

· Resources + Attributes

· Data Types

· Protocol Bindings

· Procedures (CRUD+N)

The oneM2M API is used by CSEs and AEs to communicate with one another. The communication can be originated from an AE or CSE depending on the operation.
Communication is done via the exchange of oneM2M primitives across the oneM2M defined reference points (Mca/Mcc/Mcc’).
Primitives are used to perform CRUD+N operations on resources hosted by CSEs or send notifications to AEs. Each CRUD+N operation is comprised of a pair of Request and Response primitives.
Access and manipulation of the resources is subject to access control privileges.

5.3.2 oneM2M Primitives
5.3.2.1
Overview
Primitives are service layer messages transmitted over the Mca/Mcc/Mcc’ reference points.
Originators send requests to Receivers via primitives. Originator and Receiver can be an AE or a CSE.
Each CRUD+N operation consists of one request and one response primitive.

[image: image10.emf]Originator (AE or CSE)Receiver(AE or CSE)

1. Request Primitive2. Response PrimitiveMca/Mcc/Mcc’

Figure 5.3.2.1-1: General primitives flow
Primitives are binded to underlying transport layer protocols such as HTTP, CoAP , MQTT or WebSocket. Primitives are generic with respect to underlying network transport protocols. Each primitive is binded to zero or more messages in the transport layer.

[image: image11.emf]

Binding Function

Receiver

Underlying networks

Response

Originator

Request

Application/Service layer

Transport layer

Primitives

Request Response

Transport Messages

Primitives

Binding Function

Transport Messages

Figure 5.3.2.1-2: oneM2M Communications
5.3.2.2
Primitive structure
A primitive consists of two parts; control and content.

· The control part: contains parameters required for the processing of the primitive itself (e.g. request or response parameters).
· The content part is optional based on the type of primitive and contains the representation of the resource consisting of all or a subset of the resource attributes.

[image: image12.emf]oneM2M PrimitiveContent Part(Resource Representation/Attributes)Control Part(Request or Response Parameters)

Figure 5.3.2.2-1: Primitive structure
Primitives are encoded and serialized based on the particular oneM2M protocol binding being used.
The originator and receiver of each primitive use the same binding, and thus use compatible forms of encoding/ decoding and serialization/de-serialization.
During transfer, the control part is encoded based on the protocol binding being used and the content portion is serialized using XML, JSON and CBOR.

	oneM2M Request Primitive: oneM2M short names
HTTP/1.1

Method: POST

(op : Operation
URI: m2msp1.com/CSE01Base

(to : To
URI Query String: ?rcn=1

 (rcn : Result content
From: ae01.com

(fr : From
X-M2M-RI:0001

(rqi : Request identifier
X-M2M-RVI: 2a

(rvi : Release Version Indicator
Content: <AE> representation

(pc: primitive content
oneM2M Response Primitive:
Status: Created

(rsc :Response Status Code
Location: http//m2msp1.com/CSE01Base/ae01
(uri : URI

X-M2M-RI:0001

(rqi : Request identifier
Content: <AE> representation created
 (pc: primitive content

Figure 5.3.2.2-2: Example of Control part binded to HTTP
The Content part of a primitive contains serialized representation of a resource. oneM2M supports XML, JSON or CBOR serializations of resources.
This is an example of a oneM2M <container> resource representation in JSON format.
[image: image1.png]

This is an example of a oneM2M <container> resource representation in XML format.
<?xml version="1.0" encoding="UTF-8"?>

<m2m:cnt xmlns:m2m="http://www.onem2m.org/xml/protocols" rn="cont_temp">

 <ty>3</ty>

 <ri>server/cnt-2951972863155866584</ri>

 <pi>server</pi>

 <ct>20181114T145000</ct>

 <lt>20181114T145000</lt>

 <et>20181114T145000</et>

 <st>0</st>

 <mni>10000</mni>

 <mbs>0</mbs>

 <mia>0</mia>

 <cni>0</cni>

 <cbs>0</cbs>

</m2m:cnt>
5.3.3 oneM2M Resources
5.3.3.1 Resource template

All entities in the oneM2M System, such as AEs, CSEs, application data representing sensors, commands,, etc. are represented as resources into the CSE. Each resource having its own specific type.

Each resource type has a defined set of mandatory and optional attributes as well as child resources.

A resource can contain child resources.
Each resource is addressable and can be the target of CRUD operations specified in oneM2M primitives.

[image: image13.emf]Resource AttributeN<resourceType>childResource1childResourceNResource Attribute10..n0..n0..n0..n

Figure 5.3.3.1-1 : Resource template

	Resource Type
	Short Description

	 accessControlPolicy
	Controls "who" is allowed to do "what" and the context in which it can be used for accessing the resources

	 AE
	Stores information about the AE. It is created as a result of successful registration of an AE with the registrar CSE

	 container
	Used to shares data instances among entities

	 contentInstance
	Represents a data instance in the <container> resource.

	 CSEBase
	The structural root for all the resources that are residing on a CSE. It stores information about the CSE itself

	 delivery
	Forwards requests from CSE to CSE

	 eventConfig
	Defines events that trigger statistics collection

	 execInstance
	The Execution Instance resource contains all execution instances of the same management command mgmtCmd

	 fanOutPoint
	Used for addressing bulk operations to all the resources that belong to a group.

	 group
	Stores information about resources of the same type that need to be addressed as a Group.

	 locationPolicy
	Includes information to obtain and manage geographical location.

	 mgmtCmd
	Represents a method to execute management procedures required by existing management protocols

	 mgmtObj
	Represents management functions that provides an abstraction to be mapped to external management technology.

	 node
	Represents specific Node information

	 pollingChannel
	Represent a channel that can be used for a request-unreachable entity

	 remoteCSE
	Represents a remote CSE for which there has been a registration procedure with the registrar CSE

	 schedule
	Contains scheduling information for delivery of messages

	 statsCollect
	Defines triggers for the IN-CSE to collect statistics for applications

	 statsConfig
	Stores configuration of statistics for applications

	 subscription
	Represents subscription information related to a resource.

Table 5.3.3.1-1 : Resource type examples

5.3.3.2
Resource structure
The root of the oneM2M resource structure is <CSEBase>.

The <CSEBase> is assigned an absolute address. All other child resources are addressed relative to <CSEBase>.
Depending on the type of child resource it is instantiated 0..n times.

[image: image14.emf]<CSEBase>“attribute”n0..n<remoteCSE><node><AE><container><group><accessControlPolicy><subscription><mgmtCmd><locationPolicy><statsConfig><statsCollect><request><delivery><schedule>0..n0..n0..n0..n0..n0..n0..n0..n0..n0..n0..n0..n0..1

Figure 5.3.3.2-1 : <CSEBase> Resource example

5.3.3.3
Resource attributes
Each resource contains attributes that store information pertaining to the resource itself.
The attributes are :

· Universal Attributes : which appear in all resources

· Common Attributes : which appear in more than one resource and have the same meaning whenever they do appear.
· Resource-specific attributes

[image: image15.emf]<AE>Universal Attributes: resourceType resourceID parentID lastModifiedTime creationTime resourceNameCommon Attributes: accessControlPolicyIDs expirationTime stateTag announceTo announcedAttribute Labels Etc ...<AE> Specific Attributes: appName App-ID AE-ID pointOfAccess ontologyRef nodeLink Etc ...“attribute”n0..n<subscription>0..n<container>0..n<group>0..n<accessControlPolicy>0..n<pollingChannel>

Figure 5.3.3.3-1: <AE> Resource example
	Universal Attribute
	Description

	resourceType
	Identifies the type of resource

	parentID
	resourceID of the parent of this resource.

	creationTime
	Time/date of creation of the resource.

	lastModifiedTime
	Last modification time/date of the resource.

	resourceID
	Identifier for resource.

	resourceName
	Name of the resource

Table 5.3.3.3-1 : Universal resource attributes
5.3.3.4
Resource Schema

oneM2M defines XML, JSON and CBOR schemas which define the attributes of each resource type.
Schemas bind oneM2M attributes to well-known data types defined by XML Schema definitions (e.g. xs:string, xs:anyURI, etc …).

Schemas also bind oneM2M attributes to oneM2M defined data types (e.g. m2m:id, m2m:stringList, etc ...).

<xs:schema xmlns="http://www.w3.org/2001/XMLSchema" targetNamespace="http://www.onem2m.org/xml/protocols"

xmlns:m2m="http://www.onem2m.org/xml/protocols" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

elementFormDefault="unqualified" xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:include schemaLocation="CDT-commonTypes-v3_8_0.xsd" />

<xs:include schemaLocation="CDT-subscription-v3_8_0.xsd" />

<xs:element name="request" substitutionGroup="m2m:sg_regularResource">

<xs:complexType>

<xs:complexContent>

<!-- Inherit common attributes -->

<xs:extension base="m2m:regularResource">

<xs:sequence>

<!-- Common Attribute, specific to <container>, <contentInstance>, <request> and <delivery> resources -->

<xs:element name="stateTag" type="xs:nonNegativeInteger" />

<!-- Resource Specific Attributes -->

<xs:element name="operation" type="m2m:operation" />

<xs:element name="target" type="xs:anyURI" />

<xs:element name="originator" type="m2m:ID" />

<xs:element name="requestID" type="m2m:requestID" />

<xs:element name="metaInformation" type="m2m:metaInformation" />

<xs:element name="primitiveContent" type="m2m:primitiveContent" minOccurs="0" />

<xs:element name="requestStatus" type="m2m:requestStatus" />

<xs:element name="operationResult" type="m2m:operationResult" />

<!-- Child Resources -->

<xs:choice minOccurs="0" maxOccurs="1">

<xs:element name="childResource" type="m2m:childResourceRef" minOccurs="1" maxOccurs="unbounded" />

<xs:choice minOccurs="1" maxOccurs="unbounded">

<xs:element ref="m2m:subscription"></xs:element>

</xs:choice>

</xs:choice>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

</xs:element>

</xs:schema>

Figure 5.3.3.4-1: Example of schema
5.3.4
oneM2M Procedures
5.3.4.1
Access Resources in Local CSE

[image: image16.emf]Originator(AE or CSE)(Registrar CSE = Hosting CSE) The addressed resource is stored here.Request (access resource)CSE verifies Access RightsIf permitted, the CSE accesses the resouces and responds with a Success or Failure ResponseResponse

Figure 5.3.4.1-1 : Access Resources in Local CSE
5.3.4.2
Access Resources in Remote CSE

[image: image17.emf]Originator(AE/CSE)Registrar CSE = Transit CSEHosting CSE The addressed resource is stored here.Request (access resource)Registrar CSE does not have the addressed resourceHosting CSE verifies Access RightsIf permitted, the Hosting CSE accesses the resource and responds with Success or Failure ResponseRequest (access resource)ResponseResponseForward the Request to its registered CSE, which is the Hosting CSE

Figure 5.3.4.2-1 : Access Resources in Remote CSE
5.3.4.3
CREATE operation

[image: image18.emf]001: CREATE RequestOriginator requests creation of a Resource003: CREATE ResponseReceiver responds to creation RequestOriginator(CSE or AE)Receiver(Hosting CSE)002: Receiver Processing

Figure 5.3.4.3-1 : CREATE operation
5.3.4.4
RETRIEVE operation

[image: image19.emf]001: RETRIEVE RequestOriginator requests retrieval of a Resource003: RETRIEVE ResponseReceiver responds to retrieval RequestOriginator(CSE or AE)Receiver (Hosting CSE)002: Receiver Processing

Figure 5.3.4.4-1 : RETRIEVE operation

5.3.4.5
UPDATE operation

[image: image20.emf]001: UPDATE RequestOriginator requests update of a Resource or create/delete attributes of a Resource003: UPDATE ResponseReceiver responds to update requestOriginator(CSE or AE)Receiver (Hosting CSE)002: Receiver Processing

Figure 5.3.4.5-1 : UPDATE operation

5.3.4.6
DELETE operation

[image: image21.emf]001: DELETE RequestOriginator requests deletion of a Resource003: DELETE ResponseReceiver responds to deletion RequestOriginator(CSE or AE)Receiver (Hosting CSE)002: Receiver Processing

Figure 5.3.4.6-1 : DELETE operation

5.2.4.7
NOTIFY operation

[image: image22.emf]002: NOTIFY Request003: NOTIFY ResponseOriginator(CSE)Receiver(Hosting CSE or AE)001: Local Processing(Notification Triggered)

Figure 5.3.4.7-1 : NOTIFY operation

5.4
Data collection principles

5.4.1
Container
· Container for data instances is represented by <container> resource.
· Data storage used to share information with other entities and track data.
· <container> resource has no associated content.
· Only attributes and child resources are available.
· Actual data/content is stored in <contentInstance> child resource.
· <container> is the only resource allowed to have recursive child resources.
· <container> resource can have other <container> as a child resource.
· useful for representing hierarchical data structure.

[image: image23.emf]Room2Home2CSE1BaseHome1Room1TemperatureresourceType = <CSEBase>resourceType = <container>resourceType= <container>resourceType = <contentInstance>content = 19°resourceType = <container>resourceType= <container>

Figure 5.4.1-1: Example of resources tree
5.4.2
Access Control Policy

· Access Control Policies (ACPs) are used by the CSE to control access to the resources.
· The resources are always linked with Access Control Policies . ACPs are shared between several resources
· Access Control Policies contain the rules (Privileges) defining
· WHO can access the Resource (e.g. Identifiers of authorized AE/CSE)
· For WHAT operation (CREATE / RETRIEVE / UPDATE / DELETE…)
· Under WHICH contextual circumstances (Time, Location, IP address)
· ACPs are represented by <accessControlPolicy> resources.
· Comprised of attributes privileges and selfPrivileges that represent a set of access control rules for entities.
<accessControlPolicy> resource content :

<m2m:acp xmlns:m2m="…" rn="">

<pv>

<acr>

<acor></acor>

<acop></acop>

</acr>

</pv>

<pvs>

<acr>

<acor></acor>

<acop></acop>

</acr>

</pvs>

</m2m:acp>
Signification

· acr = « Access Control Rule »

· acor = « Access Control Originators »

· acop = « Access Control Operations »
Operation Code
· CREATE

1

· RETRIEVE

2

· UPDATE

4

· DELETE

8

· NOTIFY

16

· DISCOVERY
32
Example:

<pv>

<acr>

<acor>admin</acor>

<acop>63</acop>

</acr>
</pv>
<pvs>

<acr>

<acor>guest</acor>

<acop>34</acop>

</acr>

<pvs>

· Common attribute accessControlPolicyIDs links resources that are not <accessControlPolicy> resources to <accessControlPolicy> resources.
· All resources are accessible only if the privileges from the ACP grants it.
· All resources have an associated accessControlPolicyIDs attribute, either explicitly or implicitly.

[image: image24.emf]resourceType = <CSEBase>resourceType = <container>accessControlPolicyIDsCSE1BaseCRUD Requestarriving at CSE hostingtarget resource“cse1base/container1”resourceType = <accessControlPolicy>privilegesselfPrivilegesContainer1ACP1ID or URI to <accessControlPolicy> resourceaccess control rules that define which AE/CSEis allowed for which operationset of access control rules for the <accessControlPolicy> resource itself Response to originatorafter policy/rights check

Figure 5.4.2-1 : Access control policy verification example
5.4.3
Subscription and Notification

· Events generated by resources can be received using the <subscription> resource.
· The <subscription> resource contains subscription information for its "subscribed-to" resource.
· <subscription> resource is a child resource of the "subscribed-to" resource.
· The originator (resource subscriber) has RETRIEVE privilege to the "subscribed-to" resource in order to create the <subscription> resource.
· Notification policies specified in the attributes can be applied to the <subscription>.
· Specify which, when, and how notifications are sent.
· Example: batchNotify – receive batches of notification rather than one at a time.

[image: image25.emf]resourceType = <CSEBase>resourceType = <container>“subscribed-to” resourcecurrentNrOfInstances= 1 → 3CSE1BaseresourceType = <subscription>notificationContentType= modified attributes onlyContainer1Notification viaURI specified innotificationURIcurrentNrOfInstances= 3Originator(AE1)Resource Subscriberto“cse1base/container1”Receiver(CSE1)Subscription1Change in resource attributetriggers event notification

Figure 5.4.3-1 : Subcription and notification example

5.4.4
Discovery

· Resource Discovery Capabilities
· Under the RESTful architecture, Resource Discovery can be accomplished using RETRIEVE operation by an Originator.
· The use of the filterCriteria parameter allows limiting the scope of the results.
· Type, Labels, Content Size and so on can be configured in the parameter.

[image: image26]

Figure 5.4.4-1 : Discovery example
5.5
Data collection example

Editor note: to provide a basic example scenario using data collection + Subscription/Notification
6
Core Functionalities

6.1
Introduction

 Editor notes: here are examples clauses that could be addressed to simply describe Core Fonctionalities. It is here for information and the list could be revised.
6.x
Addressing modes

6.x
Retargeting

6.x
Access Control Policy

6.x
Subscription and Notification

6.x
Announcement

6.x
Block/NB sync/async modes
6.x
Long polling Channel
6.x
IPE

6.x
Group management

6.x
App-ID
7
Main feature descriptions
7.1
Introduction

7.2
3GPP Interworking

7.2.1
MTC

7.2.2
Cellular IoT

7.3
FlexContainer
7.4
Semantics
7.5
Industrial Domain

7.5.1
Time Series

7.5.2
Transaction

7.x
Security

· 7.x.1 Introduction

· Dynamic Authorization
· Distributed Authorization

· End to end

7.x
SDT
Proforma copyright release text block

This text box shall immediately follow after the heading of an element (i.e. clause or annex) containing a proforma or template which is intended to be copied by the user. Such an element shall always start on a new page.

Notwithstanding the provisions of the copyright clause related to the text of the present document, oneM2M grants that users of the present document may freely reproduce the <proformatype> proforma in this {clause|annex} so that it can be used for its intended purposes and may further publish the completed <proformatype>.

<PAGE BREAK>

Annexes

Each annex shall start on a new page (insert a page break between annexes A and B, annexes B and C, etc.).

Use the Heading 9 style for the title and the Normal style for the text.
Annex <A>:
Title of annex (style H9)
<Text>

<PAGE BREAK>

Annex :
Title of annex (style H9)
<Text>

B.1
First clause of the annex (style H1)
<Text>

B.1.1
First subdivided clause of the annex (style H2)
<Text>

<PAGE BREAK>
Annex <y>:
Bibliography

The annex entitled "Bibliography" is optional.

It shall contain a list of standards, books, articles, or other sources on a particular subject which are not mentioned in the document itself.

It shall not include references mentioned in the document.

Use the Heading 9 style for the title and B1+ or Normal for the text.

· <Publication>: "<Title>".

OR

<Publication>: "<Title>".

<PAGE BREAK>

History

This clause shall be the last one in the document and list the main phases (all additional information will be removed at the publication stage).
	Publication history

	V1.1.1
	<yyyy-mm-dd>
	<Milestone>

	
	
	

	
	
	

	
	
	

	
	
	

	Draft history (to be removed on publication)

	V0.0.1
	2018-11-10
	Initial draft

	V0.1.0
	2018-12-10
	Implemented contribution agreed at ARC#38

ARC-2018-0317R01-TR-0057-oneM2M-overview_clause_5

	V0.2.0
	2019-02-26
	Implemented contribution agreed at SDS#39

SDS-2019-0110R03-TR-0057_oneM2M_overview

	
	
	

	
	
	

Application�Service�Node

Application�Dedicated�Node

Application�Dedicated�Node

Application�Dedicated�Node

Middle Node

Middle Node

Middle Node

Infrastructure Node

AE

AE

AE

AE

AE

CSE

CSE

CSE

AE

CSE

AE

AE

CSE

CSE

{

"m2m:cnt": {

"cbs": 0,

"cni": 0,

 "ct": "20180406T085712",

"et": "99991231T235959",

"lt": "20180406T085712",

"mbs": 60000000,	

"mia": 1600,

"mni": 10000,

"pi": "CAE0120180406T084680_cse01",

ri": "cnt20180406T08571214_cse01",

"rn": "cont_temp",	

"st": 0,	

"ty": 3

}

}

cnt : container

cbs : currentByteSize

cni : currentNrOfInstances

ct : creationTime

et : expirationTime

lt : lastModifiedTime

mbs : maxByteSize

mia : maxInstanceAge

mni : maxNrOfInstance

pi : parentID

ri : resourceID

rn :resourceName

st : stateTag

ty : resourceType

Privileges:

Manage the right for resources of this ACP

Self-privileges:

Manage the right to access or modify this resource. It defines who can set an Access Control Policy

Combinations of these values are specified by adding them together. For example the value 5 is interpreted as "CREATE and UPDATE".

63 grants all rights

34 grants Retrieve and Dicovery rights

© oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC)
Page 2 of 35
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

_1603202710.vsd

 Underlying
 Network

 Underlying
 Network

CSE

AE

NSE

CSE

NSE

CSE

NSE

NSE

Application Service Node

Middle Node

Infrastructure Node

Mca

Mcn

Mca

Mca

Mcn

Mcn

Mcc

Mcc

CSE

Mcc’

Inf. Node

AE

AE

Connectivity Layer

Service Layer

Application Layer

Building

 Dedicated
devices

Security

 Dedicated
devices

Energy

 Dedicated
devices

Invert the pipe

Building

IoT

devices

Security

IoT

devices

Energy

IoT

devices

oneM2M Service Layer

Without oneM2M

Highly fragmented market with limited vendor-specific applications

Reinventing the wheel: Same services developed again and again

Each silo contains its own technologies without interoperability

With oneM2M

End-to-end platform: common service capabilities layer

Interoperability at the level of data and control exchanges via uniform APIs

Seamless interaction between heterogeneous applications and devices

The following figure illustrates very well the current situation of M2M and where we want to move.

As you can see on the left, each M2M domain is a kind of silo containing its own applications and dedicated devices without interop. The same service capabilities are developed again and again.

We want to invert the pipe and move to a more horizontal approach.

The idea here is to provide an end-to-end service platform offering common service capabilities. This will not only enables reusability of the platform but also sharing data and services between actors of different domains paving the way to new innovatives scenarios and new possibilities.

We studied different studies coming from standards and research projects and compared based on their architecture, extensibility, semantic and self-management capabilities and so on.

We found that there no complete solution. Horizontality requires by definition a global agreement that’s why it requires standards.

OneM2M is a globally agreed standard however it is very recent release in January 2015.

We finally adopted ETSI SmartM2M the most mature one. ETSI M2M will be used as starting point and extend with new capabilities to overcome targeted challenges.

So now let’s take a closer to SmartM2M architecture and data model.

image2.png

image3.png

image4.png

Connectivity

Operating System

Applications

API

Applications control connectivity Layer and built-in sensors via API’s provided by the Operating System
=> Applications are becoming portable

Operating System collects data transfer requests from applications. The OS optimizes & controls use the of the network by the device and provides securtiy

Connectivity Layer provides access to the Internet via the wired and wireless networks

image3.emf

image1.png

oneM2M stores data in case of lack of connectivity

oneM2M can controls the devices usage of connectivity (When, how often communication happens)

Connectivity

oneM2M provides globally standardized interfaces for the Application developers (device and cloud)

oneM2M enables Application portability

Application
area

oneM2M provides services towards the Application (Application –Registration & -Discovery, Subscription & Notifications Services, Secure Communication, Device Management etc…

oneM2M enables Device portability (a Device can be connected to any Infrastructure solution)

Data Interoperability

Registration

Group Management

Security

Discovery & Announcement

Data Management & Repository

Application & Service Management

Device Management

Subscription & Notification

Communication Management

Service Charging & Accounting

Location

Network Service Exposure

Semantics

Interworking

image1.png

_1611574059.vsd

To
Open
Cloud  independent
From
Proprietary
Cloud specific

_1603202276.vsd

_1603202656.vsd

_1603202325.vsd

_1603113821.doc

Binding Function

Receiver

Underlying networks

Response

Request

Request

Response

Originator

Primitives

Application/Service layer

Transport layer

Primitives

Transport Messages

Binding Function

Transport Messages

_1603114207.vsd
oneM2M Primitive

Content Part
(Resource Representation/Attributes)

Control Part
(Request or Response Parameters)

_1603112990.vsd
Originator (AE or CSE)

Receiver
(AE or CSE)

1. Request Primitive

2. Response Primitive

Mca/Mcc/Mcc’

