Doc# SDS-2019-0214R02-TR-0053_Primitive_Profile

	Input Contribution

	Meeting ID*
	SDS 41

	Title:*
	Primitive Profile

	Source:*
	Dale Seed, Convida, Seed.Dale@convidawireless.com
Chonggang Wang, Wang.Chonggang@convidawireless.com

	Date:*
	2019-07-01

	Input related to*
	WI-0076

	Intended purpose of

document:*
	 FORMCHECKBOX
 Decision

 FORMCHECKBOX
 Discussion

 Information

 Other <specify>

	Impacted other TS/TR(s)
	TR-0053 V0_3_0

	Decision requested or recommendation:*
	Approval of solutions on using a primitive profile to add/remove parameters and/or attributes to/from oneM2M request and response primitives such that the size and overhead of oneM2M primitives can be reduced and optimized.

	Template Version: January 2017 (Do not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

Introduction
Scenario

The figure below shows an example where a sensor (AE) periodically creates <contentInstance> child resources of a parent <container> resource hosted by the oneM2M Service Layer (CSE). Each <contentInstance> CREATE request includes the contentInfo (cnf) attribute. However the value of this attribute is constant and is repeated within every <contentInstance> CREATE request. The size of the request primitive is increased because of the need to specify the same information along with each sensor value. Likewise the response primitive contains a lot of data that this particular sensor application is not interested in, however oneM2M does not support a mechanism to filter this information in the response. Therefore both the request and response in this example contains extra overhead and is inefficient.

[image: image1.emf]Overhead in the

request and

response

primitives

Sensor

(AE)

M2M Service Layer

(CSE)

Request

POST /URI_of_container

<m2m:contentInstance>

<contentInfo>application/text:0</contentInfo>

<content>occupied</content>

</m2m:contentInstance>

Create <contentInstance>

Figure 1 – Overhead information in the oneM2M request and response primitives
Proposed Solution
In order to reduce the size of request/response primitives, this contribution proposes a <primitiveProfile> resource described as follows:

· <primitiveProfile> resources are created by AEs and hosted by CSEs.

· Each <primitiveProfile> resource specifies attributes that are to be included or excluded within an applicable request primitive that is processed by a CSE or an applicable response that is generated by a CSE.

· Each <primitiveProfile> can be applied to different primitives that originate from specified AEs and CSEs that target specified resources, and that perform specified operations on these targeted resources.

· When a CSE receives a request primitive, it will first identify any applicable <primitiveProfile> resources and use the information contained within the <primitiveProfile> resources to process the request primitive as well as to generate an appropriate response primitive. The objective is to reduce the size of request and response primitives.

R01:
· Remove nameChanges

· Editorial Changes
R02:

· Indicate applicability of each row in table to requests and responses
· Add examples to each row of table.

--------------------Start of change 1--
1.1.1 Potential Solutions

Editor’s Note: The section describes potential solutions related to optimizing/enhancing the oneM2M function to address the identified limitations and requirements.

6.1.4.X Solution X: Primitive Profile

6.1.4.X.1 Introduction

oneM2M has defined various types of resources. Each oneM2M resource has attributes or metadata that describe the resource. The oneM2M service layer also defines message primitives that are used to access these resources.

Clause 6.1.2 identifies some issues related to the size and overhead of oneM2M message primitives. For example, the resource representation in the “Content” parameter may contain some extra attributes which are not required by the requestor. In order to solve this issue, this solution defines a mechanism to define attributes of a resource that are of interest and not of interest to the Originator of a request. The mechanism is based on defining a <primitiveProfile> resource, which can be regarded as a message template with the following capabilities.

· <primitiveProfile> resources are created by AEs and hosted by CSEs.

· Each <primitiveProfile> resource specifies attributes that are to be included or excluded within an applicable request primitive that is processed by a CSE or an applicable response that is generated by a CSE.

· Each <primitiveProfile> resource can be applied to different primitives that originate from specified AEs and CSEs that target specified resources, and that perform specified operations on these targeted resources.

· When a CSE receives a request primitive, it will first identify any applicable <primitiveProfile> resources and use the information contained within the <primitiveProfile> resources to process the request primitive as well as to generate an appropriate response primitive. The objective is to reduce the size of request and response primitives.
The proposed <primitiveProfile> resource enables the following new functionalities at a CSE.

· First, the CSE may store one or more <primitiveProfile> resources. Each <primitiveProfile> resource comprises one or more values of parameters and attributes associated with a respective type of primitive (i.e., oneM2M request or response message) that may be received by the CSE from one or more other oneM2M entities (AEs or other CSEs). Each <primitiveProfile> resource has an associated primitive profile identifier that uniquely identifies the <primitiveProfile> resource.

· The CSE receives a request primitive from an Originator (e.g., an AE hosted on a device). The request primitive may comprise a <primitiveProfile> resource identifier.

· If the request primitive does not contain a <primitiveProfile> resource identifier, the CSE performs the following

· determines a list of <primitiveProfile> resource to apply to the request primitive;

· applies the list of <primitiveProfile> resource to the request primitive to modify it; and

· processes the primitive according to existing oneM2M procedure for processing a request primitive.
· If the request primitive contains a <primitiveProfile> resource identifier, the CSE performs the following

·
retrieves a stored <primitiveProfile> resource having an associated primitive profile identifier that matches the primitive profile identifier in the request primitive received from the originator;

·
To combine the information in the received primitive with the parameter and/or attribute values in the retrieved <primitiveProfile> resource to form a modified primitive; and

· To process the modified primitive according to existing oneM2M procedure for processing a request primitive.

6.1.4.X.2 <primitiveProfile> Resource Definition

A <primitiveProfile> resource can support criteria which define the scope of applicability of the primitive profile. For example:

· A <primitiveProfile> resource can be defined to apply to primitives from specific Originators.

· A <primitiveProfile> resource can be defined to apply to all primitives targeting specific type(s) of resources.

· A <primitiveProfile> resource can be defined to apply to all primitives with specified operation(s).

· A <primitiveProfile> resource can be defined to apply to primitives targeting specific resource instances.

· A <primitiveProfile> resource can be defined to apply to all primitives of a specified oneM2M release version.
For this purpose, the <primitiveProfile> resource has some new attributes in addition to the existing oneM2M universal and common attributes defined (see Table 6.1.4.X.2-1).
· The IDList, resourceTypes, operations, resourceIDs and releaseVersions attributes indicate the target that the <primitiveProfile> resource applies to. A <primitiveProfile> resource can be applied to any entity/resource/operation as indicated by these attributes and/or a combination of them, e.g. CREATE <contentInstance> at /targetUri -from App01 using Release2.

· The other attributes of a <primitiveProfile> resource specify what actions to apply to oneM2M primitives. For example, the <primitiveProfile> could specify to add an expirationTime attribute to the resource payload and modify the requestExpirationTime parameter of a request primitive.
NOTE: A <primitiveProfile> resource can have applicability to request and/or response primitives. Applicability is configurable via the applicability attribute.
Table 6.1.4.X.2-1 : <primitiveProfile> resource attributes

	Attributes of <primitiveProfle>
	Multiplicity
	RW/

RO/
WO
	Description
	<primitiveProfileAnnc> Attributes

	IDList
	1 (L)
	RW
	List of identifiers of the entities that the profile applies to. Wildcards can also be used (e.g. “*”, “AE*”).

Example values of this attribute can be: “CSE01/Cae01”. In this case, this <primitiveProfile> will be only applied to requests received from Cae01 and/or responses sent to Cae01.
	OA

	resourceTypes
	0..1(L)
	RW
	List of resource types that the profile applies to.
Example values of this attribute can be: <flexContainer>, or <flexContainer> and <container>
	OA

	operations
	0..1 (L)
	RW
	List of operations and/or its corresponding responses that the profile applies to.
Example values of this attribute can be: RETRIEVE, or RETRIEVE and UPDATE.
	OA

	resourceIDs
	0..1 (L)
	RW
	List of targeted Resource-IDs that the profile applies to. Wildcards can also be used (e.g. “CSE01/AE01/*”).
Example values of this attribute can be: “CSE01/Cae01/flexContainer01”
	OA

	releaseVersions
	0..1 (L)
	WO
	List of release version indicators that the profile applies to.
Example values of this attribute can be: “Rel-3”, or “Rel-2 & Rel-3”
	OA

	additions
	0..1 (L)
	RW
	A list of attribute or parameter names with optional values. The name is the attribute or parameter that is added to the primitive. The optional value is the value that is configured within the attribute or parameter. For RETRIEVE cases, only the name is included for attributes to indicate only the attributes listed are to be returned.
Example values of this attribute can be: “containerDefinition”. In this case, when a RETRIEVE is issued to a <flexContainer> resource with its resource ID (e.g. “CSE01/Cae01/flexContainer01”) included in resourceIDs attribute of this <primitiveProfile> resource, this <primitiveProfile> resource will be applied to the RETRIEVE and accordingly the response message will only contain the “containerDefinition” attribute representation.
	OA

	deletions
	0..1 (L)
	RW
	A list of attribute and parameter names that indicates the attributes and parameter that are to be removed from the primitive.
Example value of this attribute can be: “creationTime”. In this case, when a RETRIEVE is issued to a <flexContainer> resource with its resource ID (e.g. “CSE01/Cae01/flexContainer01”) included in resourceIDs attribute of this <primitiveProfile> resource, this <primitiveProfile> resource will be applied to the RETRIEVE and accordingly the “creationTime” attribute representation will be removed from the response message.
	OA

	modifications
	0..1 (L)
	RW
	A list of attribute and parameter names and values that indicate the attributes and parameter that are to have their values replaced with the value specified within this attribute.
Example value of this attribute can be: “ontologyRef = sensorOntology”. In this case, when an UPDATE is issued to a <flexContainer> resource with its resource ID (e.g. “CSE01/Cae01/flexContainer01”) included in resourceIDs attribute of this <primitiveProfile> resource, this <primitiveProfile> resource will be applied to the UPDATE and accordingly the “ontologyRef” attribute of the flexContainer01 resource will always be set to “sensorOntology” even if the UPDATE contains a different value for the “ontologyRef” attribute.
	OA

	
	
	
	
	

	applicability
	1
	RO
	Determines whether the profile is applicable to request primitives, response primitives or both.
Example values of this attribute can be: “REQUEST”, “RESPONSE”, or “REQUEST and RESPONSE”.
	OA

6.1.4.X.3 <primitiveProfile> Resource Provisioning
A <primitiveProfile> resource can be provisioned to a CSE by an administration application.
Figure 6.1.4.X.3-1 illustrates a <primitiveProfile> resource example in which an AE only wishes to receive back the resourceID attribute in the response to a <contentInstance> resource CREATE.
· The IDList attribute is configured with a value of “AE001”
· The resourceTypes attribute is configured with a value of “4” (i.e. <contentInstance> resource type)

· The operations attribute is configured with a value of “1” (i.e. CREATE operation)

· The deletions attribute is configured to remove all attributes from the <contentInstance> CREATE response except the resourceID attribute which the AE is interested in.

[image: image2.emf]<IDList>AE001</IDList>

<resourceTypes>4<resourceTypes>

<operations>1<operations>

<deletions>resourceType resourceName parentID creationTime lastModifiedTime

expirationTime stateTag contentSize</deletions>

<applicability>RESPONSE</applicability>

Figure 6.1.4.X.3-1: Example <primitiveProfile>

6.1.4.X.4 Applying a <primitiveProfile> Resource
When a oneM2M request primitive arrives at a Hosting CSE, the Hosting CSE has two approaches to apply a <primitiveProfile> resource to the request primitive, dependent on if an arriving message contains a <primitiveProfile> resource identifier or not as described in Clause 6.1.4.X.1. If a <primitiveProfile> resource identifier is contained in the request primitive, the Hosting CSE simply retrieves the corresponding <primitiveProfile> resource and uses any parameters/attributes contained in the <primitiveProfile> resource to modify the request primitive and then processes the modified request primitive according to existing oneM2M procedures. To support this scenario, a new oneM2M request parameter (referred to as primitiveProfileIdentifier) is proposed to explicitly indicate any applicable <primitiveProfle> resources for a request primitive.
When a <primitiveProfile> resource identifier is not contained in a received request primitive, the Hosting CSE searches for applicable <primitiveProfile> resources to apply to the request before processing it as well as to the response primitive before returning it to the Originator (see Figure 6.1.4.X.4-1).

[image: image3.emf]Originator

(AE or CSE)

CSE

A Request Message

<primitiveProfile> Request Handling Procedures

Existing oneM2M Procedures for

Processing a Request

<primitiveProfile> Response Handling Procedures

A Response Message

Step 1 –�Find <primitiveProfile> resources

Step 2 –�Match <primitiveProfile> resources

Step 3 –�check <primitiveProfile> permissions

Step 4 –�consistency check

Step 5 –�Apply <primitiveProfile>

Step 6 –�Apply <primitiveProfile>

Existing oneM2M Procedures for

Generating a Response

Figure 6.1.4.X.4-1: Procedures for applying a <primitiveProfile>
Steps in <primitiveProfile> resource procedures as illustrated on Figure 6.1.4.X.4-1 are described below:
Step 1: <primitiveProfile> resources are retrieved or searched to find any that are applicable to the request. The first search needs to capture all of the profiles that can apply to the primitive received. An example search, using SQL type language is

SELECT all primitive profiles WHERE IDList contains Originator OR resourceIDs contains To OR resourceTypes contains type OR operations contains operation OR releaseNumber equals release version indicator.

This generates a candidate list of primitive profiles that may apply to the received primitive.

Step 2: Each selected <primitiveProfile> resource is checked for a match. A match occurs if and only if all of the criteria specified within a <primitiveProfile> resource match. This can generate multiple matches. The CSE can support multiple matches as a long as <primitiveProfile> resources do not conflict with one another (see Step 4).

Step 3: Each matched <primitiveProfile> resource is checked to see if the “creator” of the <primitiveProfile> resource has permissions to modify the request and response primitive. How a CSE makes this determines is based on local CSE policy. For example, a CSE can restrict creators of <primitiveProfile> resources to modify only requests that they originate themselves. Alternatively, a CSE can give privileges to certain creators to modify the request and response primitives of other Originators.
Step 4: This step describes the case where multiple matches occurs. In this case a consistency check can optionally be applied to ensure that the changes described by the primitive profiles do not conflict with each other. For example, two primitive profiles that perform additions, such as “expirationTime=date1” and “expirationTime=date2” conflict with each other. This can be handled according to local CSE policy. For example, the CSE could detect the conflict and generate an error or decide on a value to configure into the attribute to resolve the conflict.
Step 5: Appropriate <primitiveProfile> resources are applied to the oneM2M request primitive prior to normal request processing. A request primitive may still include parameters and attributes defined within an applicable <primitiveProfile> resource. Their presence in a request message may be used by the Originator to indicate that the default values specified within the <primitiveProfile> resource should be overridden with the provided values in the request primitive.
Step 6: After request processing is complete and the CSE is generating the response, the <primitiveProfile> resources are also applied to the oneM2M response primitive, if applicable. For example, when the operations is configured with a value of “RETRIEVE” and deletions is configured with a value of “expirationTime”. In this case, the expirationTime attribute will be filtered and not included in the response primitive.
--------------------End of change 1---
© 2018 oneM2M Partners

Page 1 (of 1)

Originator
(AE or CSE)
CSE
A Request Message
<primitiveProfile> Request Handling Procedures
Existing oneM2M Procedures for
Processing a Request
<primitiveProfile> Response Handling Procedures
A Response Message
Step 1 – Find <primitiveProfile> resources
Step 2 – Match <primitiveProfile> resources
Step 3 – check <primitiveProfile> permissions
Step 4 – consistency check
Step 5 – Apply <primitiveProfile>
Step 6 – Apply <primitiveProfile>
Existing oneM2M Procedures for
Generating a Response

<IDList>AE001</IDList>
<resourceTypes>4<resourceTypes>
<operations>1<operations>
<deletions>resourceType resourceName parentID creationTime lastModifiedTime expirationTime stateTag contentSize</deletions>
<applicability>RESPONSE</applicability>

Overhead in the request and response primitives
Sensor
(AE)
M2M Service Layer
(CSE)
Request

POST /URI_of_container
<m2m:contentInstance>
<contentInfo>application/text:0</contentInfo>
<content>occupied</content>
</m2m:contentInstance>
Create <contentInstance>
Response

200
<m2m:contentInstance>
<resourceType>4</resourceType>
 <resourceName>CI001</resourceName>
<resourceID>cin_20150912T020442_5</resourceID>
<parentID>cnt_20150912T020441_4</parentID>
<creationTime>20150912T020442</creationTime>
<lastModifiedTime>20150912T020442</lastModifiedTime>
<expirationTime>20150912T020455</expirationTime>
<stateTag>1</stateTag>
<contentSize>13</contentSize>
</m2m:contentInstance>

