Doc# SDS-2019-0386-Message_Scripting

	Input Contribution

	Meeting ID*
	SDS#41

	Title:*
	Message Scripting

	Source:*
	Chonggang Wang, Convida Wang.Chonggang@ConvidaWireless.com

Dale Seed, Convida, Seed.Dale@ConvidaWireless.com

	Date:*
	2019-07-03

	Input related to*
	TR-0053 (V-0.3.0) on Lightweight Services, Clause 6.1.4

	Intended purpose of

document:*
	 FORMCHECKBOX
 Decision

 FORMCHECKBOX
 Discussion

 Information

 Other <specify>

	Impacted other TS/TR(s)
	<TS/TR number>, <Version Number>, and <Description on which aspect should be reflected in this TS/TR>

	Decision requested or recommendation:*
	Propose message scripting as a new CSF to enable lighter weight message handling between an Originator and a Hosting CSE.

	Template Version: January 2017 (Do not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

Introduction
1. Related Requirements in TR-0053
A few requirements for lightweight services have been agreed in TR-0053, such as:
· The oneM2M System shall support suitable request/response message interaction between a service layer and a constrained IoT device with low communication overhead (Clause 6.1.3)

· The oneM2M System shall support request/response message interaction with M2M Devices with minimal number of request/response messages (Clause 6.2.3)

2. Use Cases

Figure 1 illustrates interactions between an IoT application, an IoT service layer, and one or more IoT devices that control valves on an oil pipeline. In this example, the IoT application sends daily request messages to turn on/off specific valves at specific times to control the flow of oil. For example, daily at 1pm, turn on a certain valve and then turn it off again at 5pm. This requires an IoT application and SL to exchange two sets of repetitive on/off request and response message pairs daily per valve.
· This results in repetitive request and response exchanges between request originators and the Service Layer. Processing of these repetitive and redundant requests over time can result in considerable amounts of cumulative overhead to underlying networks, applications, devices and SLs. This is especially the case for bandwidth limited and resource constrained underlying networks and devices (e.g. battery powered devices). The overhead of repetitive request and response messaging represents a scalability issue for many IoT deployments. Reducing this overhead can allow IoT deployments to scale to handle increased numbers of devices while at the same time reducing deployment costs

[image: image1.emf]IoT

Device(s)

IoT

Application

Request #1 (At 1pm Turn Valve ON)

Response #1 (Value is ON)

IoT Service

Layer

Request #1 (Turn Valve ON)

Response #1 (Valve is ON)

Request #2 (At 5pm Turn Valve OFF)

Response #2 (Value is OFF)

Request #2 (Turn Valve OFF)

Response #2 (Valve is OFF)

.

.

.

Wait till 1pm

Wait till 5pm

Request #N (At 1pm Turn Valve ON)

Response #N (Valve is ON)

Request #N (Turn Valve ON)

Response #N (Valve is ON)

Request #N+1 (At 5pm Turn Valve OFF)

Response #N+1 (Valve is OFF)

Request #N+1 (Turn Valve OFF)

Response #N+1 (Valve is OFF)

Wait till 1pm

Wait till 5pm

IoT Server or Gateway

Figure 1: Repetitive IoT message exchanges

3. Existing Solutions
SDS-2019-0194R03 described a good use case on message repetition and accordingly proposed two message repition solutions: 1) introduce a new request parameter “Message Repetition” indicating that a request message needs to be repeatedly delivered; 2) introduce new attributes to <subscription> to enable repeated notifications. Both solutions aim to reduce the number of request/response messages, which is aligned with one of the requirements in Clause 6.2.3.

4. Objectives of This Contribution

As discussed in previous meetings/calls, a new dedicated resource (in contrast to a new request parameter and/or resource attributes) seems more favored since a dedicated resource offers AEs more flexibility and higher efficiency to enable repetitive messages by offloading related tasks to a Hosting CSE.

As such, this contribution proposes a new alternative solution (i.e. a new dedicated resource) to optimize repetitive message scenarios and ultimately reduce the number of request/response messages, for example, between an Originator AE and a Hosting CSE.

-----------------------Start of change 1---
6.1.4 Potential Solutions

6.1.4.X Solution X: Message Scripting Service
6.1.4.X.1 Definition of Message Scripting (MSC) CSF
A Message Scripting (MSC) CSF enables a CSE to be capable of offloading the generation and processing of oneM2M requests from request originators. The MSC CSF supports the following capabilities.
· The MSC CSF can support the capability to allow oneM2M request originators to configure one or more oneM2M requests to be scripted. Once configured, a requestor can then manually trigger the MSC CSF to generate scripted request(s) in an on-demand fashion without having to send the actual request to the CSE. The requestor can also configure the MSC CSF with scripted request generation criteria to allow the MSC CSF to auto-trigger itself and generate request(s) based on if/when the specified criteria have been met. Examples of criteria can include schedule information or a logical expression that can reference the state of one or more CSE hosted resources.

· The MSC CSF can also support the capability to allow requestors to query and discover one or more scripted requests supported by the MSC CSF. Once discovered, a requestor can then manually trigger the MSC CSF to generate a request based on the scripted request. The MSC CSF can qualify the discovery and triggering of a scripted request by a requestor based on whether the requestor has the proper access privileges to the scripted request.

· After generating requests (referred to as scripted requests) on behalf of a requestor, the MSC CSF can perform scripted response handling on behalf of a requestor. This response handling can be based on one or more response handling policies. The MSC CSF can support various response handling policies such as filteringand aggregation of responses. By supporting these response handling capabilities, the MSC CSF can provide increased levels of automation and offloading for its request originators. In addition, the MSC CSF can also offload the network by reducing the number of unwanted and repetitive responses that must be transmitted across the network. For example, responses that meet certain criteria defined by the applications can be returned and other that do not can be filtered by the SL and not returned to the request originator.
Overall, the MSC CSF aims to reduce the number of request/response messages between an Originator (e.g. an AE) and a Hosting CSE and enables lighter weight message handling between the Originator and the Hosting CSE.
6.1.4.X.2 New <scriptedRequest> Resource

A new oneM2M <scriptedRequest> resource type is proposed to support the MSC CSF capabilities described in clause 6.1.4.X.1 and includes the child resources specified in Table 6.1.4.X.2-1 and the attributes specified in Table 6.1.4.X.2-2. Note that a <scriptedRequest> resource can be discovered and leveraged by various AEs.

An AE or CSE can create a <scriptedRequest> resource; an AE or CSE can also send a trigger request to a created <scriptedRequest> resource to trigger the Hosting CSE to generate scripted requests.

Table 6.1.4.X.2-1: <scriptedRequest> child resources

	Child Resource Type
	Multiplicity
	Description

	<schedule>
	0..1
	A child resource that contains schedule information that defines the time periods when the Hosting CSE is permitted to generate scripted requests based on the parent <scriptedRequest> resource.

	<semanticDescriptor>
	0..1
	A child resource that contains semantic metadata to describe the parent <scriptedRequest> resource.

Table 6.1.4.X.2-2: <scriptedRequest> resource attributes

	Attributes of <scriptedRequest>
	Description

	scriptedRequestEnable
	When set to “TRUE”, the Hosting CSE is permitted to generate scripted requests defined by this resource on behalf of the request originator. When set to “FALSE” the Hosting CSE will not generate scripted requests defined by this resource.

	scriptedRequestTrigger
	Used by a requestor to manually / explicitly trigger the Hosting CSE to generate a scripted request on its behalf. An update of this attribute will trigger the Hosting CSE to generate a scripted request defined by this resource.

A Hosting CSE can support using parameters specified in the trigger request to configure / override parameter settings of this resource and/or system defaults. For example, a Hosting CSE can use trigger request parameters such as From, Request Expiration Timestamp and Operational Execution Time to configure scripted request parameters. This can allow a <scriptedRequest> resource to be more easily used by different request originators.
Editor’s Note – The types of scriptedRequestTrigger are FFS.

	scriptedRequestCriteria
	This attribute can contain a list of criteria that the Hosting CSE can use as auto-trigger conditions to generate scripted requests defined by this resource.

For example, this list can consist of auto-trigger critiera. Each element in the list can be defined as a triple. Each triple can consist of an attribute, operator and value.

An example triple is the following:

csebase/ae01/flexContainer01/battery < 10

If / when the value of the attribute at the specified path “csebase/ae01/flexContainer01/battery” is less than a value “10”, then the Hosting will trigger the generation of a request.
Editor’s Note – The types of scriptedRequestCriteria are FFS.

	responseHandlingOperation
	When the Hosting CSE receives a response to a request defined by this resource, this attribute defines whether the Hosting CSE will aggregate or filter the response on behalf of the request originator.
If this attribute is not configured, then the Hosting CSE will not aggregate or filter responses. Instead, all responses will be individually processed and stored and/or forwarded based on the setting of the responseHandling attribute.
Editor’s Note – The types of responseHandlingOperations are FFS.

	responseHandling
	This attribute controls whether the Hosting CSE stores and/or forwards response primitives that it receives for the scripted request primitives it sends. The attribute can be configured with the following values:

· STORE – Hosting CSE stores response primitives in the responsePrimitives attribute but does not forward them to the request origintator configured in the From parameter of the request primitive.

· FORWARD - Hosting CSE does not store response primitives in the responsePrimitives attribute but does forward them to the request origintator configured in the From parameter of the request primitive.

· STORE & FORWARD - Hosting CSE stores response primitives in the responsePrimitives attribute and also forwards them to the request origintator configured in the From parameter of the request primitive.

	maxResponsePrimitives
	This attribute defines the maximum number of response primitives that the Hosting CSE stores within the responsePrimitives attribute. When the maximum number is reached, the Hosting CSE will replace the oldest response primitive stored within the responsePrimitives attribute with each new response primitive that it stores.

	requestPrimitives
	This attribute is configured with a oneM2M request primitive. A Hosting CSE uses information contained in this attribute to generate a scripted request

	responsePrimitives
	This attribute contains a list of response primitives that the Hosting CSE stores when receiving and processing responses to scripted requests. A request Originator can retrieve this attribute to fetch response primitives or subscribe to this attribute to receive notifications when the Hosting CSE updates this attribute with a new response primitive.

6.1.4.X.3 Example Procedure for Scripted Requests
Figure 6.1.4.X.3-1 shows an example procedure. In this example, an IN-AE needs to repeatedly retrieve resources hosted by an ASN-CSE by sending requests to an IN-CSE. The IN-CSE forwards the requests to ASN-CSE.

In order to reduce the number of request/response messages between the IN-CSE and the IN-AE, the IN-CSE has the MSC CSF capabilities. As an example,
· IN-AE first creates a scriptedRequest01 resource at IN-CSE (Steps 1-3), which has an attribute responseHandling set to “STORE” and another attribute scriptedRequestCriteria set to some criteria.
· When the criteria set in scriptedRequestCriteria is met, IN-CSE triggers generation of scripted requests (Steps 4 and 8).
· IN-CSE generates two scripted retrieve requests, which are sent to ASN-CSE (Steps 5 and 9). As a result, IN-CSE receives two responses (Steps 6 and 10). Because scriptedRequest01’s responseHandling = “STORE”, IN-CSE stores both responses within scriptedRequest01’s responsePrimitives attribute (Steps 7 and 11).
· IN-AE retrieves scriptedRequest01/responsePrimitives to get all responses (Steps 12 and 13).
· Alternatively, IN-AE can create a subscription to scriptedRequest01/responsePrimitives and receive notifications from the IN-CSE for each response stored in scriptedRequest01/responsePrimitives.

[image: image2.emf]ASN-

CSE

IN-CSE

MSC

IN-AE

1. CREATE a <scriptedRequest> Resource

(responseHandling = ³STORE´�

2. Create a new resource scriptedRequest01

3. Response from IN-CSE

4. scriptedRequestCriteria Met

5. Scripted Retrieve Request #1 to ASN-CSE

6. Response #1 from ASN-CSE

9. Scripted Retrieve Request #2 to ASN-CSE

10. Response #2 from ASN-CSE

7. Store the Response #1 to scriptedRequest01/responsePrimitives

12. RETRIEVE

scriptedRequest01/responsePrimitives

13. Response from IN-CSE

(representation of responsePrimitives)

11. Store the Response #2 to scriptedRequest01/responsePrimitives

IN-AE creates a

<scriptedRequest>

resource.

IN-CSE triggers

to generate

scripted requests

and send them to

ASN-CSE.

IN-CSE receives

responses from

ASN-CSE and

stores these

responses for IN-

AE to retrieve.

IN-CSE retrieves

responses which

are resulted from

each scripted

request.

8. scriptedRequestCriteria Met

Figure 6.1.4.X.3-1: oneM2M Scripted Sequence of Requests

Step 1: IN-AE sends a CREATE request to IN-CSE to create a <scriptedRequest> resource. IN-AE sets the attribute responseHandling= “STORE” and also configure some criteria in the attribute scriptedRequestCriteria (e.g., to generate scripted retrieve requests every one hour).

Step 2: IN-CSE accordingly creates a new resource scriptedRequest01

Step 3: IN-CSE sends a response to IN-AE including the identifier of the created scriptedRequest01 resource, so that IN-AE is able to retrieve scriptedRequest01’s attribute responsePrimitives in Step 12.
Step 4: The IN-CSE’s MSC CSF monitors the criteria specified within the scriptedRequest01/scriptedRequestCriteria to determine if/when the proper conditions have been met for it to generate a scripted sequence of requests. In this example the criteria is schedule based (i.e. IN-CSE’s MSC CSF needs to generate scripted retrieve requests every one hour). Note, not shown in this example, but other criteria can also be specified.
Step 5: The IN-CSE’s MSC CSF uses information specified in the scriptedRequest01 resource to generate a first scripted retrieve request for ASN-CSE.

Step 6: The first scripted request is received and processed by ASN-CSE. ASN-CSE returns a first response to the IN-CSE’s MSC CSF.

Step 7: IN-CSE receives the first response from ASN-CSE. In this case, because scriptedRequest01’s attribute responseHandling= “STORE”, IN-CSE stores the first response to scriptedRequest01’s attribute responsePrimitives.

Step 8: Same as Step 4.

Step 9: Similar to Step 5, The IN-CSE’s MSC CSF uses information specified in the scriptedRequest01 resource to generate a second scripted retrieve request for ASN-CSE.

Step 10: Similar to Step 6, the second scripted request is received and processed by ASN-CSE. ASN-CSE returns a second response to the IN-CSE’s MSC CSF.

Step 11: Similar to Step 7, IN-CSE receives the second response from ASN-CSE. In this case, because scriptedRequest01’s attribute responseHandling= “STORE”, IN-CSE stores the second response to scriptedRequest01’s attribute responsePrimitives.

Step 12: IN-AE sends a RETRIEVE request to IN-CSE to retrieve scriptedRequest01’s attribute responsePrimitives in order to get these two responses generated by ASN-CSE.

Step 13: IN-CSE sends a response to IN-AE, which basically includes those two responses contained in scriptedRequest01’s attribute responsePrimitives.
-----------------------End of change 1 ---

© 2015 oneM2M Partners

Page 1 (of 2)

IoT Device(s)
IoT Application

Request #1 (At 1pm Turn Valve ON)

Response #1 (Value is ON)
IoT Service Layer

Request #1 (Turn Valve ON)

Response #1 (Valve is ON)

Request #2 (At 5pm Turn Valve OFF)

Response #2 (Value is OFF)

Request #2 (Turn Valve OFF)

Response #2 (Valve is OFF)
.
.
.
Wait till 1pm
Wait till 5pm

Request #N (At 1pm Turn Valve ON)

Response #N (Valve is ON)

Request #N (Turn Valve ON)

Response #N (Valve is ON)

Request #N+1 (At 5pm Turn Valve OFF)

Response #N+1 (Valve is OFF)

Request #N+1 (Turn Valve OFF)

Response #N+1 (Valve is OFF)
Wait till 1pm
Wait till 5pm
IoT Server or Gateway

ASN-CSE
IN-CSE
MSC

IN-AE
1. CREATE a <scriptedRequest> Resource (responseHandling = “STORE”)
2. Create a new resource scriptedRequest01
3. Response from IN-CSE
4. scriptedRequestCriteria Met
5. Scripted Retrieve Request #1 to ASN-CSE
6. Response #1 from ASN-CSE
9. Scripted Retrieve Request #2 to ASN-CSE
10. Response #2 from ASN-CSE
7. Store the Response #1 to scriptedRequest01/responsePrimitives
12. RETRIEVE  scriptedRequest01/responsePrimitives
13. Response from IN-CSE
(representation of responsePrimitives)
11. Store the Response #2 to scriptedRequest01/responsePrimitives

IN-AE creates a <scriptedRequest> resource.
IN-CSE triggers to generate scripted requests and send them to ASN-CSE.

IN-CSE receives responses from ASN-CSE and stores these responses for IN-AE to retrieve.
IN-CSE retrieves responses which are resulted from each scripted request.
8. scriptedRequestCriteria Met

