SDS-2019-0528-TR-0050_ABAC_policy_evaluation_rules

	Input Contribution

	Meeting ID*
	TP#42

	Title:*
	TR-0050 ABAC policy evaluation rules

	Source:*
	Wei Zhou, CICT, zhouwei@catt.cn

	Date:*
	2019-09-23

	Input related to*
	WI-0077

	Intended purpose of

document:*
	 FORMCHECKBOX 
 Decision

 FORMCHECKBOX 
 Discussion

 Information

 Other <specify>

	Impacted other TS/TR(s)
	TR-0050 Attribute Based Access Control Policy, V0_10_0

	Decision requested or recommendation:*
	Approve the proposed text into the TR.

	Template Version: January 2017 (Do not modify)


oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M.  Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

Introduction

-----------------------Start of change 1---------------------------------------------
6.3.y
Solution #1.x: ABAC Policy Evaluation
6.3.y.1
Introduction
This solution addresses key issue #1.2. It describes ABAC policy evaluation process.
6.3.y.2
Solution details
6.3.y.2.1
Primitive evaluation
The evaluation result of a primitive is TRUE, FALSE or INDETERMINATE.

If the logical relationship between operand 1 and operand 2 satisfies the logical relationship defined by the operator, the evaluation result of the primitive is TRUE, otherwise FALSE.

If an error occurs during the evaluation process, the evaluation result is INDETERMINATE.

6.3.y.2.2
Condition evaluation
The evaluation result of a condition is TRUE, FALSE or INDETERMINATE.

A condition contains one or multiple primitives. The logical relationships among these primitives are “AND”, i.e. only when the evaluation result of all primitives is TRUE, the evaluation result of the condition is TRUE.

If the evaluation result of a primitive is FALSE, the evaluation result of the condition is FALSE.

If the evaluation result of primitive is INDETERMINATE and the evaluation results of other primitives are all TRUE, then the evaluation result of the condition is INDETERMINATE.

If there is no condition, the evaluation result of the condition is TRUE.

6.3.y.2.3
Constraint evaluation
The evaluation result of a constraint is TRUE, FALSE or INDETERMINATE.

A constraint contains one or multiple primitives. The logical relationships among these primitives are “AND”, i.e. only when the evaluation result of all primitives is TRUE, the evaluation result of the constant is TRUE.

If the evaluation result of a primitive is FALSE, the evaluation result of the constraint is FALSE.

If the evaluation result of primitive is INDETERMINATE and the evaluation results of other primitives are all TRUE, then the evaluation result of the constraint is INDETERMINATE.

6.3.y.2.4
Constraints evaluation
A rule contains one or multiple constraints. The relationship between the constraints are “OR”.

The evaluation result of a set of constraints is TRUE, FALSE or INDETERMINATE.

If the evaluation result of any constraint is TRUE, the evaluation result of the constraint set is TRUE.
If the evaluation result of all constraints is FALSE, the evaluation result of the constraint set is FALSE.
If the evaluation result of any constraint is INDETERMINATE and no constraint is evaluated as TRUE, the evaluation result of the constraint set is INDETERMINATE.
6.3.y.2.5
Rule evaluation
The evaluation result of a rule is PERMIT, DENY, INDETERMINATE or NOT_APPLICABLE.

A rule contains zero or one condition.

The rule truth table is shown in Table 6.3.y-1.
Table 6.3.y-1: Rule truth table
	Condition
	Constraints
	Rule value
	Description

	TRUE
	TRUE
	Effect
	Decided by the value of Effect.

	TRUE
	FALSE
	NOT_APPLICABLE
	

	TRUE
	INDETERMINATE
	INDETERMINATE
	

	FALSE
	Do not care
	NOT_APPLICABLE
	

	INDETERMINATE
	Do not care
	INDETERMINATE
	


6.3.y.2.6
Policy evaluation
The evaluation result of a policy is PERMIT, DENY, INDETERMINATE or NOT_APPLICABLE.

The policy truth table is shown in Table 6.3.y-2.
Table 6.3.y-2: Policy truth table
	ApplicableSubjects
	ApplicableResources
	Rule value
	Policy value

	TRUE
	TRUE
	Do not care
	Specified by the rule-combining algorithm

	Do not care
	FALSE
	Do not care
	NOT_APPLICABLE

	FALSE
	Do not care
	Do not care
	NOT_APPLICABLE

	INDETERMINATE
	TRUE
	Do not care
	INDETERMINATE

	TRUE
	INDETERMINATE
	Do not care
	INDETERMINATE


6.3.y.2.7
Policy set valuation
The evaluation result of a policy set is PERMIT, DENY, INDETERMINATE or NOT_APPLICABLE.

The policy set truth table is shown in Table 6.3.y-3.
Table 6.3.y-2: Policy set truth table
	ApplicableSubjects
	ApplicableResources
	Policy value
	Policy set value

	TRUE
	TRUE
	Do not care
	Specified by the rule-combining algorithm

	Do not care
	FALSE
	Do not care
	NOT_APPLICABLE

	FALSE
	Do not care
	Do not care
	NOT_APPLICABLE

	INDETERMINATE
	TRUE
	Do not care
	INDETERMINATE

	TRUE
	INDETERMINATE
	Do not care
	INDETERMINATE


-----------------------End of change 1---------------------------------------------

-----------------------Start of change 2---------------------------------------------
6.3.8
Solution #1.8: ABAC Policy Syntax
6.3.8.1
Introduction
This solution addresses key issue #1.2. It describes the schema of the proposed ABAC policies
6.3.8.2
Solution details
6.3.8.2.1
Element <PolicySet>
The <PolicySet> element is a top-level element in the ABAC policy schema. <PolicySet> is an aggregation of other policy sets and policies. Policy sets may be included in an enclosing <PolicySet> element either directly using the <PolicySet> element or indirectly using the <PolicySetIdReference> element. Policies may be included in an enclosing <PolicySet> element either directly using the <Policy> element or indirectly using the <PolicyIdReference> element.
Policy sets and policies included in a <PolicySet> element should be combined using the algorithm identified by the PolicyCombiningAlgId attribute. <PolicySet> is treated exactly like a <Policy> in all policy-combining algorithms.
A <PolicySet> element may be evaluated, in which case the evaluation procedure defined in clause 6.3.y.2.7 should be used.
<xs:element name="PolicySet" type="m2m:PolicySetType"/>

<xs:complexType name="PolicySetType">

<xs:sequence>

<xs:element ref="m2m:Description" minOccurs="0"/>

<xs:element ref="m2m:PolicyIssuer" minOccurs="0"/>

<xs:element ref="m2m:ApplicableSubjects" minOccurs="0"/>
<xs:element ref="m2m:ApplicableResources" minOccurs="0"/>

<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element ref="m2m:PolicySet"/>
<xs:element ref="m2m:Policy"/>

<xs:element ref="m2m:PolicySetIdReference"/>
<xs:element ref="m2m:PolicyIdReference"/>
</xs:choice>

<xs:element ref="m2m:PermittedAttributes" minOccurs="0"/>

<xs:element ref="m2m:PermittedSubResources" minOccurs="0"/>

</xs:sequence>

<xs:attribute name="PolicySetId" type="xs:anyURI" use="required"/>
<xs:attribute name="Version" type="m2m:VersionType" use="required"/>
<xs:attribute name="PolicyCombiningAlgId" type="xs:anyURI" use="required"/>
</xs:complexType>

The <PolicySet> element contains the following attributes and elements:
· PolicySetId [Required]
The identifier of a policy set.

· Version [Required]
The version number of the PolicySet.
· PolicyCombiningAlgId [Required]
The identifier of the policy-combining algorithm by which the <PolicySet> and <PolicySet> components in the policy set will be combined.
· <Description> [Optional]
A free-form description of the policy set.
· <PolicyIssuer> [Optional]
The identifier of the issuer of the policy set.
· <ApplicableSubjects> [Optional]
The <ApplicableSubjects> element defines the applicability of a policy set to a set of requestors.
· <ApplicableResources> [Optional]
The <ApplicableResources> element defines the applicability of a policy set to a set of requestors.
· <PolicySet> [Any Number]

A policy set that is included in this policy set.

· <Policy> [Any Number]

A policy that is included in this policy set.

· <PolicySetIdReference> [Any Number]

A reference to a policy set that should be included in this policy set.

· <PolicyIdReference> [Any Number]

A reference to a policy that should be included in this policy set.
· <PermittedAttributes> [Optional]
The <PermittedAttributes> element defines a list of attribute ids that will be provided to the PEP when the access request is permitted and the operation is RETRIEVE.
· <PermittedSubResources> [Optional]
The <PermittedSubResources> element defines a list of resource types that will be provided to the PEP when the access request is permitted and the operation is RETRIEVE.
6.3.8.2.2
Element <Policy>
The <Policy> element is the smallest entity that should be presented to the PDP for evaluation.
The main components of this element are the <Rule> element and the RuleCombiningAlgId attribute.
Rules included in the <Policy> element should be combined by the algorithm specified by the RuleCombiningAlgId attribute.

A <Policy> element may be evaluated, in which case the evaluation procedure defined in clause 6.3.y.2.6 should be used.
<xs:element name="Policy" type="m2m:PolicyType"/>
<xs:complexType name="PolicyType">
<xs:sequence>
<xs:element ref="m2m:Description" minOccurs="0"/>
<xs:element ref="m2m:PolicyIssuer" minOccurs="0"/>
<xs:element ref="m2m:ApplicableSubjects" minOccurs="0"/>
<xs:element ref="m2m:ApplicableResources" minOccurs="0"/>

<xs:choice maxOccurs="unbounded">
<xs:element ref="m2m:Rule"/>
</xs:choice>
<xs:element ref="m2m:PermittedAttributes" minOccurs="0"/>

<xs:element ref="m2m:PermittedSubResources" minOccurs="0"/>

</xs:sequence>
<xs:attribute name="PolicyId" type="xs:anyURI" use="required"/>
<xs:attribute name="Version" type="m2m:VersionType" use="required"/>
<xs:attribute name="RuleCombiningAlgId" type="xs:anyURI" use="required"/>
</xs:complexType>
The <Policy> element contains the following attributes and elements:
· PolicyId [Required]
The identifier of a policy.

· Version [Required]
The version number of the policy.
· RuleCombiningAlgId [Required]
The identifier of the rule-combining algorithm by which the <rule> components in the policy will be combined.
· <Description> [Optional]
A free-form description of the policy.
· <PolicyIssuer> [Optional]
The identifier of the issuer of the policy.
· <ApplicableSubjects> [Optional]
The <ApplicableSubjects> element defines the applicability of a policy to a set of requestors.
· <ApplicableResources> [Optional]
The <ApplicableResources> element defines the applicability of a policy to a set of requestors.
· <Rule> [Any Number]

A sequence of rules that should be combined according to the RuleCombiningAlgId attribute.
· <PermittedAttributes> [Optional]
The <PermittedAttributes> element defines a list of attribute ids that will be provided to the PEP when the access request is permitted and the operation is RETRIEVE.
· <PermittedSubResources> [Optional]
The <PermittedSubResources> element defines a list of resource types that will be provided to the PEP when the access request is permitted and the operation is RETRIEVE.
6.3.8.2.3
Element <Rule>
The <Rule> element should define the individual rules in the policy.
The main components of this element are the <Constraint> and <Condition> elements and the Effect attribute.

A <Rule> element may be evaluated, in which case the evaluation procedure defined in clause 6.3.y.2.5 should be used.
<xs:element name="Rule" type="m2m:RuleType"/>
<xs:complexType name="RuleType">
<xs:sequence>
<xs:element ref="m2m:Description" minOccurs="0"/>
<xs:element ref="m2m:Constraint" minOccurs="0"/>
<xs:element ref="m2m:Condition" minOccurs="0"/>
</xs:sequence>
<xs:attribute name="RuleId" type="xs:string" use="required"/>
<xs:attribute name="Effect" type="m2m:EffectType" use="required"/>
</xs:complexType>
The <Rule> element contains the following attributes and elements:
· RuleId [Required]
The identifier of a rule.

· Effect [Required]
Rule effect. The value of this attribute is either “Permit” or “Deny”.
· <Description> [Optional]
A free-form description of the rule.
· <Constraint> [Optional]
Identifies the set of constraints that should be satisfied for the rule to be assigned its Effect value.
· <Condition> [Optional]
A predicate that must be satisfied for the rule to be assigned its Effect value.
6.3.8.2.4
Element <Primitive>
The <Primitive> element denotes application of a function to its arguments (Operands), thus encoding a function call. The <Primitive> elements are the arguments of the function.
A <Primitive> element may be evaluated, in which case the evaluation procedure defined in clause 6.3.y.2.1 should be used.
<xs:element name="Primitive" type="m2m:PrimitiveType"/>
<xs:complexType name="PrimitiveType">
<xs:sequence>
<xs:element name="Operand1" type="m2m:Operand"/>
<xs:element name="Operand2" type="m2m:Operand"/>
</xs:sequence>
<xs:attribute name="FunctionId" type="xs:anyURI" use="required"/>
</xs:complexType>
The <Primitive> element contains the following attributes and elements:
· Operand1 [Required]
Argument 1 applied to the function identified by the attribute FunctionId.

· Operand2 [Required]
Argument 2 applied to the function identified by the attribute FunctionId.

· FunctionId [Required]
The identifier of the function (see clause 6.3.8.2.8) applied to the arguments.
6.3.8.2.5
Element <Operand>
The <Operand> element represents an argument that applies to a function.
<xs:complexType name="OperandType">
<xs:sequence>
<xs:choice>
<xs:element ref="m2m:AttributeDesignator"/>
<xs:element ref="m2m:AttributeValue"/>
</xs:choice>
</xs:sequence>
</xs:complexType>
The <Operand> element contains the following elements:
· <AttributeDesignator> [Required choice]
Retrieve values from request, resource or system.

· <AttributeValue> [Required choice]
Embedded attribute value. 

6.3.8.2.6
Element <AttributeDesignator>
The <AttributeDesignator> element denotes where and how to retrieve a value.
<xs:complexType name="AttributeDesignatorType">
<xs:complexContent>
<xs:attribute name="Category" type="xs:anyURI" use="required"/>
<xs:attribute name="AttributeId" type="xs:anyURI" use="required"/>
<xs:attribute name="DataType" type="xs:anyURI" use="required"/>
</xs:complexContent>
</xs:complexType>
The <AttributeDesignator> element contains the following attributes:
· Category [Required]
This attribute specifies the Category from which to retrieve the attribute.

· AttributeId [Required]
This attribute specifies the attribute that should be retrieved from a data category.

· DataType [Required]
The attribute specifies the data type of the attribute.
6.3.8.2.7
Element <AttributeValue>
The <AttributeValue> element should contain a literal attribute value.
<xs:element name="AttributeValue" type="m2m:AttributeValueType"/> 

<xs:complexType name="AttributeValueType" mixed="true">
<xs:complexContent mixed="true">
<xs:sequence>
<xs:any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="DataType" type="xs:anyURI" use="required"/>
<xs:anyAttribute namespace="##any" processContents="lax"/>
</xs:complexContent>
</xs:complexType>
The <AttributeValue> element contains the following attributes:
· DataType [Required]
The data-type of the attribute value.
6.3.8.2.8
Primitive comparison functions

The comparison functions for comparing operand 1 and operand 2 in <Primitive> are:

· equal: Both operand 1 and operand 2 are single values, and operand 1 is equal to operand 2.
· match: Both operand 1 and operand 2 are single values, and operand 1 is equal to operand 2. This comparison supports wildcards.
· is-in: Operand 1 is a single value, operand 2 is a data set, and operand 1 is a member of operand 2.
· is-in-match: Operand 1 is a single value, operand 2 is a data set, and operand 1 is a member of operand 2. This comparison supports wildcards.
· set-equal: Both operand 1 and operand 2 are data sets, and operand 1 is equal to operand 2.
· set-match: Both operand 1 and operand 2 are data sets, and operand 1 is equal to operand 2. This comparison supports wildcards.
· at-least-one-member-of: Both operand 1 and operand 2 are data sets, and at least one member of operand 1 is also a member of operand 2.
· at-least-one-member-of-match: Both operand 1 and operand 2 are data sets, and at least one member of operand 1 is also a member of operand 2. This comparison supports wildcards.
-----------------------End of change 2---------------------------------------------

© 2017 oneM2M Partners






















Page 1 (of 2)

