
	[image: image81.png]hasSerialNumber humidity sensor

sinteger @

isSubClassof

@ '

hasManufacturer

hasFunction

sleeping Anstring

(min1) measuringFunction

hasSubclass

measuringHumidity

quantifies
(only)
HumidityAspect

hasValu;
hasUnit

	oneM2M
Technical Report

	Document Number
	TR-0033-Study_on_Enhanced_Semantic_Enablement-V4_5_0

	Document Name:
	Study on Enhanced Semantic Enablement

	Date:
	2019-10-23

	Abstract:
	In this study requirements on enhanced semantic enablement and approaches for addressing these requirements will be developed and discussed. The intention is to achieve agreement between the interested participants on the approaches to be pursued in oneM2M. On this basis normative contributions to Technical Specifications can then be made.

	Template Version: January 2017 (Do not modify)

The present document is provided for future development work within oneM2M only. The Partners accept no liability for any use of this report.

The present document has not been subject to any approval process by the oneM2M Partners Type 1. Published oneM2M specifications and reports for implementation should be obtained via the oneM2M Partners' Publications Offices.
About oneM2M

The purpose and goal of oneM2M is to develop technical specifications which address the need for a common M2M Service Layer that can be readily embedded within various hardware and software, and relied upon to connect the myriad of devices in the field with M2M application servers worldwide.

More information about oneM2M may be found at: http//www.oneM2M.org

Copyright Notification

© 2017, oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC).

All rights reserved.

The copyright and the foregoing restriction extend to reproduction in all media.

Notice of Disclaimer & Limitation of Liability

The information provided in this document is directed solely to professionals who have the appropriate degree of experience to understand and interpret its contents in accordance with generally accepted engineering or other professional standards and applicable regulations. No recommendation as to products or vendors is made or should be implied.

NO REPRESENTATION OR WARRANTY IS MADE THAT THE INFORMATION IS TECHNICALLY ACCURATE OR SUFFICIENT OR CONFORMS TO ANY STATUTE, GOVERNMENTAL RULE OR REGULATION, AND FURTHER, NO REPRESENTATION OR WARRANTY IS MADE OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. NO oneM2M PARTNER TYPE 1 SHALL BE LIABLE, BEYOND THE AMOUNT OF ANY SUM RECEIVED IN PAYMENT BY THAT PARTNER FOR THIS DOCUMENT, WITH RESPECT TO ANY CLAIM, AND IN NO EVENT SHALL oneM2M BE LIABLE FOR LOST PROFITS OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES. oneM2M EXPRESSLY ADVISES ANY AND ALL USE OF OR RELIANCE UPON THIS INFORMATION PROVIDED IN THIS DOCUMENT IS AT THE RISK OF THE USER.

Contents

61
Scope

2
References
6
2.1
Normative references
6
2.2
Informative references
6
3
Abbreviations
7
4
Conventions
8
5
Requirements
8
5.1
Overview
8
6
Semantic modelling & ontologies
10
7
Architecture for semantics
10
7.1
Introduction
10
7.2
Semantic functionality in CSFs
10
7.3
Resources related to semantics
10
7.3.1
Resource <semanticDescriptor>
10
7.3.2
Example showing the uses of the Semantic Descriptor resource
13
7.3.4
Proposed Resource <semanticContentInstance>
14
7.3.5
Resource <ontologyRepository>
17
7.3.6
Resource <ontology>
18
7.3.6.1
Introduction
18
7.3.6.2
Resource definition
18
7.3.7
Semantic Mashup Function (SMF) Implementation Details
20
7.3.7.1
Resource Type semanticMashupJobProfile
20
7.3.7.2
<semanticMashupJobProfile> Procedures
21
7.3.7.2.0
Introduction
21
7.3.7.2.1
Create <semanticMashupJobProfile>
22
7.3.7.2.2
Retrieve <semanticMashupJobProfile>
22
7.3.7.2.3
Update <semanticMashupJobProfile>
22
7.3.7.2.4
Delete <semanticMashupJobProfile>
23
7.3.7.3
Resource Type semanticMashupInstance
23
7.3.7.4
<semanticMashupInstance> Procedures
26
7.3.7.4.0
Introduction
26
7.3.7.4.1
Create <semanticMashupInstance>
27
7.3.7.4.2
Retrieve <semanticMashupInstance>
28
7.3.7.4.3
Retrieve <semanticMashupInstance>/<mashup>
28
7.3.7.4.4
Update <semanticMashupInstance>
28
7.3.7.4.5
Delete <semanticMashupInstance>
29
7.3.7.5
Examples for <semanticMashupJobProfile> and <semanticMashupInstance>
30
7.4
Implementation options
35
7.4.1
Introduction
35
7.4.2
The hierarchically layered architecture
35
7.4.2.0
Introduction
35
7.4.2.1
Data layer as upper layer
36
7.4.2.2
Semantic layer as upper layer
36
7.4.3
The parallel architecture
37
7.5
Approaches to Access Control
39
7.5.1
Access Control for semantic discovery, based on the ACPs in resource tree and triples in the graph store
39
7.5.1.1
Introduction
39
7.5.1.2
Solution A: Semantic filtering based on graph store
39
7.5.1.3
Solution B: Graph division based semantic filtering
44
7.5.2
Direct access control of semantic graph store
45
7.5.2.1
Introduction
45
7.5.2.2
Access control modelling in semantic graph store
46
7.5.2.3
Examples of SPARQL query procedure
49
7.5.3
Access control using temporary semantic graph stores
51
8
Semantic functionalities
53
8.1
Introduction
53
8.2
Semantic annotations
54
8.2.1
Overview
54
8.2.2
Semantic instance management
54
8.2.2.1
Overview
54
8.2.2.2
Concrete example of managing semantic instance
54
8.2.2.3
Managing semantic instances using SPARQL update operation
54
8.3
Semantic validation
59
8.3.1
Problem statement
59
8.3.2
Proposed solution
62
8.3.3
Aspects to be checked in semantic validation
63
8.4
Semantic filtering and discovery
64
8.5
General semantic queries
65
8.5.1
Introduction
65
8.5.2
Semantic query vs. semantic resource discovery
65
8.5.3
Introduction to semantic graph scoping (SGS)
66
8.5.4
Solutions to semantic graph scoping
68
8.5.5
Implicitly scoped semantic queries
70
8.5.5.1
Introduction
70
8.5.5.2
Semantic query based on virtual resource
71
8.5.5.3
Semantic query based on request parameter
74
8.5.5.4
Conclusion
74
8.5.6
Explicitly scoped semantic queries
75
8.5.6.1
Using <semanticFanOutPoint> for semantic queries
75
8.6
Query scopes
76
8.7
Semantic reasoning
76
8.7.1
Semantic reasoning definition
76
8.7.2
Hospital facility surveillance use case
77
8.7.2.1
Use case description
77
8.7.2.2
The needs for semantic reasoning in oneM2M
78
8.7.3
Semantic reasoning function (SRF)
79
8.7.4
Triggering An Individual Semantic Reasoning Process
83
8.7.4.1
Logical role definitions
83
8.7.4.2
Procedure for triggering an individual semantic reasoning process
83
8.7.4.3
Examples usage of procedure for triggering an individual semantic reasoning process
85
8.7.5
Initiating A Continuous Semantic Reasoning Process
87
8.7.5.1
Procedure for initiating a continuous semantic reasoning process
87
8.7.5.2
Examples usage of procedure for initiating a continuous semantic reasoning process
88
8.7.6
Initiating a Semantic Operation with Reasoning Support
90
8.7.6.1
Introduction
90
8.7.6.2
Solution 1: Initiating a semantic operation with reasoning support via IDB augmentation
91
8.7.6.2.1
Procedure for initiating a semantic operation with reasoning support via IDB augmentation
91
8.7.6.2.2
Examples usage of procedure for initiating a semantic operation with reasoning support via IDB augmentation
93
8.7.6.3
Solution 2: Initiating a semantic operation with reasoning support via query modification
94
8.7.6.3.1
Procedure for initiating a semantic operation with reasoning support via query modification
94
8.7.6.3.2
Examples usage of procedure for initiating a semantic operation with reasoning support via query modification
95
8.8
Semantic mash-up
97
8.8.1
Introduction
97
8.8.1.1
Semantic mashup definition
97
8.8.1.2
Semantic mashup example: smart parking application
97
8.8.2
Problem statement
98
8.8.2.1
Entities involved in sematic mashup
98
8.8.2.2
Technical analysis of semantic mashup
98
8.8.3
Semantic Mashup Function (SMF)
99
8.8.3.1
High-level architecture
99
8.8.3.2
High-level operations
101
8.8.3.3
Functional paradigms
103
8.8.4
Semantic Mashup Procedure Details
103
8.8.4.0
Introduction
103
8.8.4.1
Semantic Mashup Job Profile Discovery and Retrieval
103
8.8.4.2
Semantic Mashup Instance Creation
104
8.8.4.3
Semantic Mashup Result Retrieval
105
8.8.4.4
Semantic Mashup Instance Discovery
106
8.9
Semantics-based data analytics
107
8.10
Ontology management
107
8.11
Semantic Access Control
107
8.11.1
Synchronizing ACP information between the Resource Tree and the Semantic Graph Store
107
8.11.2
Synchronizing SD-related triples between the Resource Tree and the Semantic Graph Store
111
8.11.2.1
Introduction
111
8.11.2.2
Procedure for Creating ACP-SD binding triples and SD relationship triples in SGS
112
8.11.2.3
Procedure for updating ACP-SD binding triples in SGS
114
8.11.2.4
Procedure for updating SD relationship triples in SGS
115
8.11.2.5
Procedure for deleting SD relationship triples and ACP-SD binding triples in SGS
117
9
Conclusions
118
History
119

1
Scope

The present document discusses proposed solutions for semantic oneM2M features. The solutions covered fulfil requirements related to semantics that have been identified for oneM2M Release 4. It serves as the basis for selecting agreed solutions, which are then put into the fitting oneM2M Technical Specifications. Due to the progress of normative work, there may be inconsistencies between what is described in this document and the normative oneM2M technical specifications, which take precedence.
2
References

2.1
Normative references

Normative references are not applicable in the present document.

2.2
Informative references

References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.

[i.1]
oneM2M Drafting Rules.
NOTE:
Available at http://www.onem2m.org/images/files/oneM2M-Drafting-Rules.pdf.
[i.2]
oneM2M TS-0002: "onM2M Requirements".
[i.3]
oneM2M TS-0001: "Functional Architecture".
[i.4]
oneM2M TS-0004: "Service Layer Core Protocol Specification".
[i.5]

W3C Recommendation: "OWL 2 Web Ontology Language Structural Specification and Functional-Style Syntax".

NOTE:
Available at http://www.w3.org/TR/owl2-syntax/#IRIs.

[i.6]
oneM2M TS-0012: "Base Ontology".
[i.7]
oneM2M TS-0030: "Generic Interworking".
[i.8]
W3C Recommendation: "RDF 1.1 Concepts and Abstract Syntax".
NOTE:
Available at http://www.w3.org/TR/rdf11-concepts/.
[i.9]
W3C Recommendation: "RDF 1.1 XML Syntax".
NOTE:
Available at https://www.w3.org/TR/rdf-syntax-grammar/.
[i.10]
W3C Recommendation: "OWL Web Ontology Language Semantics and Abstract Syntax".
NOTE:
Available at http://www.w3.org/TR/owl-semantics/.
[i.11]
ETSI TS 103 264: "SmartM2M; Smart Appliances; Reference Ontology and oneM2M Mapping".
[i.12]
oneM2M TS-0034: "Semantics Support".
[i.13]
oneM2M TR-0007: "Study on Abstraction and Semantics Enablement".
[i.14]
W3C Recommendation: "SPARQL Query Language for RDF".
NOTE:
Available at http://www.w3.org/TR/rdf-sparql-query/.
[i.15]
IETF RFC 3987: "Internationalized Resource Identifiers (IRIs)".
NOTE:
Available at https://www.ietf.org/rfc/rfc3987.txt.
[i.16]
oneM2M TR-0001: "Use Cases Collection".

[i.17]
GeeksforGeeks: "Maximum Bipartite Matching".i.17
NOTE:
Available at https://www.geeksforgeeks.org/maximum-bipartite-matching/.

[i.18]
Princeton: "WordNet: A Lexical Database for English ".
NOTE:
Available at https://wordnet.princeton.edu/.

[i.19]
T. Mikolov, K. Chen, G. Corrado, and J. Dean: "Efficient estimation of word representations in vector space ".
NOTE:
Published in International Conference on Learning Representations.
[i.20]
J. Pennington, R. Socher, and C. D. Manning: "Glove: Global vectors for word representation ".
NOTE:
Published in International Conference on Empirical Methods in Natural Language Processing.

[i.21]
Reasoners and rule engines: "Jena inference support"
NOTE:
Available at http://jena.apache.org/documentation/inference/index.html
[i.22]
Univerity of Maryland College Park: "pellet "
NOTE:
Available at http://pellet.owldl.com/
3
Abbreviations

For the purposes of the present document, the following abbreviations apply:

ACP
Access Control Policy

AE
Application Entity

CSE
Common Services Entity

CSF
Common Services Function

FOAF
Friend Of A Friend
HGI
Home Gateway Initiative
HTTP
Hypertext Transfer Protocol

IN
Infrastructure Node

IRI
Internationalized Resource Identifier

JSON
JavaScript Object Notation
M2M
Machine-to-Machine

MA
Mandatory Announced
Mca
Reference Point for M2M Communication with AE

Mcc
Reference Point for M2M Communication with CSE

Mcc'
Reference Point for M2M Communication with CSE of different M2M Service Provider

MR
Mashup Requester

NA
Not Announced

OA
Optional Announced
OWL
Web Ontology Language

RDBMS
Relational Data Base Management System
RDF
Resource Description Framework

RH
Resource Host

RO
Read Only

RW
Read Write

SAREF
Smart Applicance REFerence Ontology

SD
Semantic Descriptor

SEM
Semantics CSF
SGS
Semantic Graph Scoping

SMF
Semantic Mashup Function

SMI
Semantic Mashup Instance

SMJP
Semantic Mashup Job Profile

SMR
Semantic Mashup Resource
SMS
Semantic Mashup System
SPARQL
SPARQL Protocol and RDF Query Language

UML
Unified Modeling Language
URI
Uniform Resource Identifier

URL
Uniform Resource Locator

WO
Write Once

XML
Extensible Markup Language

4
Conventions

The key words "Shall", "Shall not", "May", "Need not", "Should", "Should not" in this document are to be interpreted as described in the oneM2M Drafting Rules [i.1].
5
Requirements

5.1
Overview

Table 5.1-1 lists the requirements on Abstraction and Semantics. It is based on those identified in oneM2M TS‑0002 [i.2]. As the result of the work described in this Technical Report, the original requirements have been refined, new requirements have been added and the overall consistency has been checked. The requirements have been categorized according to different key semantic aspects, i.e. semantics annotation, ontology, semantics query, semantics mashup, data analytics and semantic reasoning.
Table 5.1-1: Requirements on abstraction and semantics

	No.
	Category
	Requirement

	1
	Semantics Annotation
	The M2M System shall provide capabilities to manage semantic information about the oneM2M resources, e.g. create, retrieve, update, delete, associate/link.

	2
	Ontology
	The M2M System shall support modelling semantic descriptions of Things (including relationships among them) by using ontologies.

	3
	Semantics Annotation
	The M2M System shall support a common language for semantic description, e.g. RDF.

	4
	Ontology
	The M2M System shall support a common modeling language for ontologies (e.g. OWL).

	5
	Ontology
	The M2M System should be able to provide translation capabilities from different modeling languages for ontologies to the language adopted by oneM2M if the expressiveness of the imported ontology allows.

	6
	Semantics Query
	The M2M System shall provide capabilities to discover M2M Resources based on semantic descriptions.

	7
	Ontology
	The M2M System shall provide the capability to retrieve semantic descriptions and ontologies stored outside of the M2M System.

	8
	Data Analytics
	The M2M System shall be able to support capabilities (e.g. processing function) for performing M2M data analytics based on semantic descriptions from M2M Applications and /or from the M2M System.

	9
	Semantics Mashup
	The M2M system shall provide the capability to host processing functions for mash-up.

	10
	Semantics Mashup
	The M2M system shall enable Applications to provide processing functions for mash-up.

	11
	Semantics Mashup
	The M2M system itself may provide pre-provisioned or dynamically created processing functions for mash-up.

	12
	Semantics Mashup
	The M2M system shall be able to create and execute mash-ups based on processing functions.

	13
	Semantics Mashup
	The M2M system shall be able to expose mash-ups as resources e.g. virtual devices.

	14
	Semantics Annotation
	The M2M System shall support semantic annotation of oneM2M resources for example application related data contained in containers.

	15
	Semantics Annotation
	The M2M System shall support semantic annotation based on related ontologies.

	16
	Ontology
	The M2M System shall provide support for linking ontologies defined in the context of the M2M system with ontologies defined outside this context.

	17
	Ontology
	The M2M System shall be able to support extending ontologies in the M2M system.

	18
	Ontology
	The M2M System shall be able to use ontologies that contain concepts representing aspects (e.g. a room) that are not represented by resources of the M2M System.

	19
	Ontology
	The M2M System shall be able to re-use common ontologies (e.g. location, time ontologies, etc.) which are commonly used in M2M Applications.

	20
	Ontology
	The M2M System shall be able to support simultaneous usage of multiple ontologies for the same M2M resource.

	21
	Semantics Reasoning
	The M2M system shall be able to update ontologies as a result of the ontology reasoning.

	22
	Ontology
	The M2M system shall provide the capability for making ontology available in the M2M System, e.g. through announcement.

	23
	Ontology
	The M2M system shall be able to support mechanisms to import external ontologies into the M2M system.

	24
	Ontology
	The M2M System shall be able to support update of ontologies.

	25
	Semantics Reasoning
	The M2M System shall be able to support semantic reasoning e.g. ontology reasoning or semantic rule-based reasoning.

	26
	Semantics Reasoning
	The M2M System shall be able to support adding and updating semantic information based on semantic reasoning.

	27
	Data Analytics
	The M2M System shall provide the capability of interpreting and applying service logic (e.g. rules/policies of triggering operations upon other resources or attributes according to the change of the monitored resource) described with semantic annotation and ontology.

	28
	Data Analytics
	The M2M system shall support a standardized format for the rules/policies used to define service logic.

	29
	Ontology
	The M2M System shall enable functions for data conversion based on ontologies.

	30
	Semantics Annotation
	The M2M System shall provide the capability for making semantic descriptions available in the M2M System, e.g. announcement.

	31
	Semantics Annotation
	The M2M system shall enable applications to retrieve an ontology representation related to semantic information used in the M2M system.

	32
	Ontology
	The M2M system shall be able to model devices based on ontologies which may be available outside the M2M system (e.g. HGI device template).

	33
	Ontology
	The M2M System shall support storage, management and discovery of ontologies.

Figure 5.1-1 shows dependencies and relations between the requirements listed in table 5.5-1. It can be used as a basis for prioritizing the addressing of requirements and to make sure that all preconditions are addressed first.

[image: image2.emf]4

2

3

18

7

9

10

11

12

13

8

27

28

6

33

19

22

1

5

30

20

23

29

32

16

17

21

24

31

15

14

25

26

manage semantic

information

thing modelling

based on

ontologies

semantics

description

language

ontology modelling

language

ontology

translation

discover based on

semantic

descriptions

retrieve external semantic

descr. & ontologies

data analytics

based on semantic

descriptions

host processing

functions for

mash-up

applications provide

processing functions

pre-provisioned or

dynamically created

processing functions

create &

execute

mash-ups

expose mash-

ups as virtual

devices

semantic annotation

of oneM2M

resources

semantic annotation

based on ontologies

ontology

linking

extending

ontologies

use ontologies

containing

external aspects

simultaneous

usage of multiple

ontologies

update ontologies

as a result of

ontology reasoning

re-use common

ontologies

manage

ontologies

make ontology

available, e.g.

announce

import external

ontologies

update

ontologies

semantic reasoning

(ontology/rule-

based)

interpreting & applying

sem. descr. service

logic

standardized format

for service logic

ontology-based

data conversion

make semantic desc.

available, e.g. announce

retrieve

ontology

related to

semantic

description

device modelling

based on

ontologies

depends on

is related to

Semantic Annotation

Ontology

Semantics Query

Semantics Mash-up

Data Analytics

Semantic Reasoning

adding and

updating semantic

information as the

result of reasoning

Figure 5.1-1: Dependencies and relations between requirements

6
Semantic modelling & ontologies

Semantic information is at the basis of all semantic features of oneM2M. Semantic information explicitly represents the meaning of what is stored in oneM2M resources, e.g. <AE>, <container> or <contentInstance> reosurces. The concepts and related properties according to which the semantic information is modelled are defined in ontologies. oneM2M does not restrict, which ontologies are used, but agreement on using the same ontologies across applications may enable reuse and increase the value provided by the oneM2M system. The Base Ontology [i.6] defined by oneM2M models those aspects that are needed for enabling Generic Interworking [i.7]. This means that the resource structure in oneM2M representing devices and servicessemantically modelled according to the Base Ontology - or a derived ontology - can be directly determined based on the semantic model.
Semantic information in oneM2M is modelled as RDF triples [i.8] and represented in the RDF/XML serialization of RDF [i.9]. Ontologies are modelled in OWL [i.10] and are also represented in the RDF/XML serialization.
7
Architecture for semantics

7.1
Introduction

The subclauses of clause 7 introduce the aspects of semantics related to architecture. Claus 7.2 introduces the high-level semantic functionality as defined in oneM2M TS-0001 [i.3]. Clause 7.3 introduces the resources related to semantics. Different implementation options are discussed in clause 7.4. Ways of implementing access control for semantic information, in particular if stored in triple stores, are presented in clause 7.5.
7.2
Semantic functionality in CSFs

Semantic functionalities are grouped in the Semantics Common Services Function (SEM CSF). The SEM CSF enables applications to manage semantic information and provides functionalities based on this information. Thus the SEM CSF brings value-added features related to the meaning of data and resources. The SEM CSF functionality is based on semantic descriptions and supports features such as: annotation, resource filtering and discovery, querying, validation, mash-up, reasoning, analytics, etc. The SEM CSF also provides input for Access Control applied to semantic content and is responsible for the management of ontologies. More details can be found in oneM2M TS-0001 [i.3].
7.3
Resources related to semantics

7.3.1
Resource <semanticDescriptor>

The <semanticDescriptor> resource is used to store a semantic description pertaining to a resource and potentially sub-resources. Such a description can be provided according to ontologies. The semantic information is used by the semantic functionalities of the oneM2M system and is also available to applications or CSEs.

Resources of several types (e.g. <AE>, <container>, <contentInstance>) optionally can have one or more semantic descriptor resources. See oneM2M TS-0001 [i.3], clause 9.6.1.1, for a complete list of resources which may have a <semanticDecriptor> child resource and oneM2M TS-0001 [i.3], clause 9.6.30, for a complete description of this resource.

[image: image3.emf]<semanticDescriptor>

1

descriptor

0..1 (L)

0..1

ontologyRef

<subscription>

relatedSemantics

0..n

1

descriptorRepresentation

0..1

semanticOpExec

semanticValidated

0..1

validationEnable

0..1

<transaction>

0..n

Figure 7.3.1-1: Structure of <semanticDescriptor> resource

The <semanticDescriptor> resource contains the child resources specified in table 7.3.1-1.

Table 7.3.1-1: Child resources of <semanticDescriptor> resource

	Child Resources of <semanticDescriptor>
	Child Resource Type
	Multiplicity
	Description
	<semanticDescriptorAnnc> Child Resource Types

	[variable]
	<subscription>
	0..n
	See [i.3], clause 9.6.8 where the type of this resource is described.
	<subscription>

	[variable]
	<transaction>
	0..n
	See [i.3], clause 9.6.48.
	<transaction>

The <semanticDescriptor> resource contains the attributes specified in table 7.3.1-2.

Table 7.3.1-2: Attributes of <semanticDescriptor> resource

	Attributes of <semanticDescriptor>
	Multiplicity
	RW/

RO/

WO
	Description
	<semanticDescriptorAnnc> Attributes

	resourceType
	1
	RO
	See [i.3], clause 9.6.1.3.
	NA

	resourceID
	1
	RO
	See [i.3], clause 9.6.1.3.
	NA

	resourceName
	1
	WO
	See [i.3], clause 9.6.1.3.
	NA

	parentID
	1
	RO
	See [i.3], clause 9.6.1.3.
	NA

	accessControlPolicyIDs
	0..1 (L)
	RW
	See [i.3], clause 9.6.1.3.
	MA

	creationTime
	1
	RO
	See [i.3], clause 9.6.1.3.
	NA

	expirationTime
	1
	RW
	See [i.3], clause 9.6.1.3.
	MA

	lastModifiedTime
	1
	RO
	See [i.3], clause 9.6.1.3.
	NA

	labels
	0..1 (L)
	RW
	See [i.3], clause 9.6.1.3.
	MA

	announceTo
	0..1 (L)
	RW
	See [i.3], clause 9.6.1.3.
	NA

	announcedAttribute
	0..1 (L)
	RW
	See [i.3], clause 9.6.1.3.
	NA

	dynamicAuthorizationConsultationIDs
	0..1 (L)
	RW
	See [i.3], clause 9.6.1.3.
	OA

	creator
	0..1
	RO
	See [i.3], clause 9.6.1.3.
	NA

	descriptorRepresentation
	1
	RW
	Indicates the type used for the serialization of the descriptor attribute, e.g. RDF serialized in XML.
	OA

	semanticOpExec
	0..1
	RW
	This attribute cannot be retrieved. Contains a SPARQL query request for execution of semantic operations on the descriptor attribute e.g. SPARQL update as described in oneM2M TS-0004 [i.4].
	NA

	descriptor
	1
	RW
	Stores a semantic description pertaining to a resource and potentially sub-resources. Such a description shall be according to subject-predicate-object triples as defined in the RDF graph-based data model [i.8]. The encoding of the RDF triples used in oneM2M is defined in oneM2M TS-0004 [i.4]. The elements of such triples may be provided according to ontologies.
	OA

	ontologyRef
	0..1
	WO
	A reference (URI) of the ontology used to represent the information that is stored in the descriptor attribute. If this attribute is not present, the ontologyRef from the parent resource is used if present.
	OA

	relatedSemantics
	0..1(L)
	WO
	List of resource identifiers containing related semantic information to be used in processing semantic queries. The esource identifiers may reference either a <group> resource or <semanticDescriptor> resources and <contentInstance> resources with semantic information in their content attributes as indicated by their contentInfo attribute. In the latter case, the resource identifier may reference a <latest> resource representing the most recent <contentInstance> in a container..
	OA

	semanticValidated
	0..1
	RO
	A Boolean value representing the validation result of the triples in the descriptor attribute. The validation is against the referenced ontology as pointed by the ontologyRef attribute as well as other associated <semanticDescriptor> resources (and their referenced ontologies) linked by relatedSemantics attribute and triples in the descriptor attribute.
	OA

	validationEnable
	0..1
	RW
	A Boolean value indicating whether the triples in the descriptor attribute needs to be validated by the hosting CSE.

Note: the hosting CSE may override this value according to local policy to enforce or disable semantic validation despite the suggested value from the issuer.
	OA

7.3.2
Example showing the uses of the Semantic Descriptor resource

This clause gives an example of how semantic annotations based on the Smart Appliance REFerence Ontology (SAREF) [i.11] can be used to describe an AE representing a smart appliance.

[image: image4.emf]AEwashingMachine1

ontologyRef

startStopContainer

stateContainer

semanticDescriptor

Figure 7.3.2-1: Resource structure of smart washing machine AE

Figure 7.3.2-1 shows the resource structure of an AE representing a smart washing machine.

NOTE:
The assumption here is that the Washing Machine acts as an AE using the Mca interface. Here no distinction is made between the Washing Machine AE and the washing machine as a physical device. This can be done under the given assumption, but could lead to problems in other cases, e.g. if an interworking proxy is involved.

The resource includes an ontologyRef attribute, which contains the URI of the ontology concept of the smart washing machine, e.g. "http://ontology.tno.nl/saref#WashingMachine". The startStopContainer and the stateContainer represent the functional interface aspects of the washing machine, i.e. it can be started and stopped and the current state can be requested.

Table 7.3.2-1 shows the semantic annotation stored in the descriptor attribute of the semanticDescriptor resource. The information provides the link between the operations of the washing machines and the containers of the smart washing machine AE and describes the REST methods that can be executed on the containers. The washing operation can be started by executing a Create request on the startStopContainer whose URI is provided, the same for the state operation, where a Retrieve request on the latest contentInstance of the stateContainer will provide the current state of the washing machine.

Table 7.3.2-1: Semantic resource description of smart washing machine AE based on SAREF [i.11]
	<rdf:RDF
 <rdf:Description rdf:about="http://ontology.tno.nl/saref#WASH_LG_123">
 <rdf:type rdf:resource="http://ontology.tno.nl/saref#WashingMachine"/>
 <saref:hasManufacturer>LG</saref:hasManufacturer>
 <saref:hasDescription>Very cool Washing Machine</saref:hasDescription>
 <saref:hasLocation rdf:resource="http://ontology.tno.nl/saref#Bathroom"/>
 <msm:hasService rdf:resource="http://ontology.tno.nl/saref#WashingService_123"/>
 <msm:hasService rdf:resource="http://ontology.tno.nl/saref#StateService_123"/>
 </rdf:Description>

 <rdf:Description rdf:about="http://ontology.tno.nl/saref#WashingService_123">

 <rdf:type rdf:resource="http://ontology.tno.nl/saref#WashingService"/>
 <msm:hasOperation rdf:resource="http://ontology.tno.nl/saref#WashingOperation_123"/>
 </rdf:Description>

 <rdf:Description rdf:about="http://ontology.tno.nl/saref#WashingOperation_123">

 <rdf:type rdf:resource="http://ontology.tno.nl/saref#WashingOperation"/>
 <hr:hasMethod>Create</hr:hasMethod>
 <hr:hasURITemplate>/CSE1/WASH_LG_123/startStopContainer </hr:hasURITemplate>
 <msm:hasInput rdf:resource="http://ontology.tno.nl/saref#Action"/>
 </rdf:Description>

 <rdf:Description rdf:about="http://ontology.tno.nl/saref#StateService123">

 <rdf:type rdf:resource="http://ontology.tno.nl/saref#StateService"/>
 <msm:hasOperation rdf:resource="http://ontology.tno.nl/saref#StateOperation123"http://www.tno.com/saref#StateOperation123"/>
 </rdf:Description>

 <rdf:Description rdf:about= http://ontology.tno.nl/saref#StateOperation123>

 <rdf:type rdf:resource="http://ontology.tno.nl/saref#StateOperation"/>
 <hr:hasMethod>Retrieve</hr:hasMethod>
 <hr:hasURITemplate>/CSE1/WASH_LG_123/state/stateContainer/latest</hr:hasURITemplate>
 <msm:hasOutput rdf:resource="http://ontology.tno.nl/saref#State"/>
 </rdf:Description>
</rdf:RDF>

7.3.4
Proposed Resource <semanticContentInstance>

This clause describes a proposal to define a <semanticContentInstance> resource that was not adopted in Release 3. Instead, it was decided to treat a <contentInstance> with semantic content (as identified by the contentInfo attribute)as a semantic resource with respect to semantic functionality, e.g. a semantic query would take into account the semantic content contained in the content attribute of a <contentInstance> resource if this resource is within the scope of the semantic query.

The <semanticContentInstance> resource represents a data instance in the <container> resource that contains semantic information as RDF triples.

Like the <contentInstance> resource, it shall not be modified once created. An AE shall be able to delete a semanticContentInstance resource explicitly or it may be deleted by the platform based on policies. If the platform has rentention policies for contentInstance resources, these shall also apply to semanticContentInstance resources and be represented by the attributes maxByteSize, maxNrOfInstances and/or maxInstanceAge attributes in the <container> resource. If multiple policies are in effect, the strictest policy shall apply.

The <semanticContentInstance> resource inherits the same access control policies of the parent <container> resource, and does not have its own accessControlPolicyIDs attribute.

[image: image5.emf]<semanticContentInstance>

1

contentSize

0..1

semanticContentRef

0..1

ontologyRef

1

semanticRepresentation

0..1

semanticOpExec

semantic descriptor

1

semanticContent

0..1(L)

relatedSemantics

0..n

Figure 7.3.4-1: Structure of <semanticContentInstance> resource

The <semanticContentInstance> resource shall contain the child resources specified in table 7.3.4-1.

Table 7.3.4-1: Child resources of <semanticContentInstance> resource

	Child Resources of <semanticContentInstance>
	Child Resource Type
	Multiplicity
	Description
	<semanticContentInstanceAnnc> Child Resource Types

	[variable]
	<semanticDescriptor>
	0..n
	See [i.3], clause 9.6.30
	<semanticDescriptor>, <semanticDescriptorAnnc>

The <semanticContentInstance> resource shall contain the attributes specified in table 7.3.4-2.

Table 7.3.4-2: Attributes of <semanticContentInstance> resource

	Attributes of <semanticContentInstance>
	Multiplicity
	RW/

RO/

WO
	Description
	<semanticContentInstanceAnnc> Attributes

	resourceType
	1
	RO
	See [i.3], clause 9.6.1.3.
	NA

	resourceID
	1
	RO
	See [i.3], clause 9.6.1.3.
	NA

	resourceName
	1
	WO
	See [i.3], clause 9.6.1.3.
	NA

	parentID
	1
	RO
	See [i.3], clause 9.6.1.3.
	NA

	labels
	0..1 (L)
	WO
	See [i.3], clause 9.6.1.3.
	MA

	expirationTime
	1
	WO
	See [i.3], clause 9.6.1.3.
	NA

	creationTime
	1
	RO
	See [i.3], clause 9.6.1.3.
	NA

	lastModifiedTime
	1
	RO
	See [i.3], clause 9.6.1.3.
	NA

	stateTag
	1
	RO
	See [i.3], clause 9.6.1.3.

The stateTag attribute of the parent resource should be incremented first and copied into this stateTag attribute when a new instance is added to the parent resource.
	OA

	announceTo
	0..1 (L)
	WO
	See [i.3], clause 9.6.1.3.
	NA

	announcedAttribute
	0..1 (L)
	WO
	See [i.3], clause 9.6.1.3.
	NA

	dynamicAuthorizationConsultationIDs
	0..1 (L)
	RW
	See [i.3], clause 9.6.1.3.
	OA

	creator
	0..1
	RO
	See [i.3], clause 9.6.1.3.
	NA

	contentSize
	1
	RO
	Size in bytes of the semanticContent attribute.
	OA

	semanticContentRef
	0..1
	RW
	This attribute contains a list of name-value pairs. Each entry expresses an associative reference to a <semanticContentInstance> resource. The name of the entry indicates the relationship and the value of the entry the indicates reference (URI) to the resource.
	OA

	ontologyRef
	0..1
	WO
	A reference (URI) of the ontology used to represent the information that is stored in the semanticContentInstances resources of the <container> resource. If this attribute is not present, the semanticContentInstance resource inherits the ontologyRef from the parent <container> resource if present (see note).
	OA

	semanticRepresentation
	1
	RW
	Indicates the type used for the serialization of the semanticContent attribute, e.g. RDF serialized in XML
	OA

	semanticOpExec
	0..1
	RW
	This attribute cannot be retrieved. Contains a SPARQL query request for execution of semantic operations on the semanticContent attribute e.g. SPARQL update as described in [i.4].
	NA

	semanticContent
	1
	WO
	Actual content of the semanticContentInstance. Stores semantic content according to subject-predicate-object triples as defined in the RDF graph-based data model [8]. The encoding of the RDF triples used in oneM2M is defined in oneM2M TS‑0004 [i.4]. The elements of such triples may be provided according to ontologies.
	OA

	relatedSemantics
	0..1(L)
	WO
	List of URIs for resources containing related semantic information to be used in processing semantic queries. The URI(s) may reference either a <group> resource or other semantic resources, i.e. <semanticDescriptor> or <semanticContentInstance> resources.
	OA

	NOTE:
Access to this URI is out of scope of oneM2M.

7.3.5
Resource <ontologyRepository>
An <ontologyRepository> resource is capable of storing multiple ontologies in the unified languages adopted by the M2M system, e.g. RDFS/OWL. For easy illustration of the examples, in this clause its is assumed that the M2M system adopts RDFS/OWL in describing ontologies.
This structure provides support for re-use of existing ontologies, the ability to access both internal and external ones and for ontology import into the system. It also allows to fulfil the requirements for ontology discovery, as well as addition and updates, via CRUD operations.

[image: image6.emf]<ontologyRepository>

<semanticValidation>

<ontology>

0..n

1

<subscription>

0..n

Figure 7.3.5-1: Structure of <ontologyRepository> resource
Resources of type <CSEBase> and <AE> optionally can have one <ontologyRepository> resource.The <ontology> resource is further described in clause 7.3.6.

The <ontologyRepository>resource may also contain a (virtual) sub-resource <semanticValidation> <semanticValidation> as the interface to accept semantic validation requestfrom an <AE> or a remote <CSE>. Upon receiving a Update request with <semanticDescriptor> resource representation addressing the <semanticValidation> <semanticValidation>> sub-resource, the hosting CSE performs the semantic validation procedures as described in clause 8.3.2.
The <ontologyRepository> resource shall contain the child resources as specified in table 7.3.5-1.

Table 7.3.5-1: Child resources of <ontologyRepository> resource

	Child Resources of <ontologyRepository>
	Child Resource Type
	Multiplicity
	Description
	<ontologyRepository>Child Resource Types

	[variable]
	<ontology>
	0..n
	See clause 7.3.6
	<ontologyAnnc>

	smv
	<semanticValidation>
	1
	See [i.3], clause 9.6.52
	None

	[variable]
	<subscription>
	0..n
	See [i.3], clause 9.6.8
	<subscription>

The < ontologyRepository > resource above contains the attributes specified in table 7.3.5-2.

Table 7.3.5-2: Attributes of <ontologyRepository> resource

	Attribute Name
	Multiplicity
	RW/RO/WO
	Description
	<ontologyRepositoryAnnc> Attributes

	resourceName
	1
	WO
	See clause [i.3], clause 9.6.1.3.
	NA

	parentID
	1
	RO
	See clause [i.3], clause 9.6.1.3.
	NA

	expirationTime
	1
	RW
	See clause [i.3], clause 9.6.1.3.
	NA

	accessControlPolicyIDs
	0..1 (L)
	RW
	See clause [i.3], clause 9.6.1.3.
	NA

	labels
	0..1 (L)
	RW
	See clause [i.3], clause 9.6.1.3.
	MA

	creationTime
	1
	RO
	See clause [i.3], clause 9.6.1.3.
	MA

	lastModifiedTime
	1
	RO
	See clause [i.3], clause 9.6.1.3.
	MA

	announceTo
	0..1 (L)
	RW
	See clause [i.3], clause 9.6.1.3.
	NA

	announcedAttribute
	0..1 (L)
	RW
	See clause [i.3], clause 9.6.1.3.
	NA

	dynamicAuthorizationConsultationIDs
	0..1 (L)
	RW
	See clause [i.3], clause 9.6.1.3.
	OA

	creator
	0..1
	RO
	See clause [i.3], clause 9.6.1.3.
	NA

7.3.6
Resource <ontology>

7.3.6.1
Introduction

The <ontology> resource is used to store the representation of an ontology. This representation may contain ontology descriptions in a variety of formats, given the requirements for re-use of existing ontologies, for support for ontologies available only externally and for support of ontology import into the system. The ontology description is made available to the semantic-related functions of the oneM2M system provided by applications or CSEs.

In the following, a number of examples are given what applications, but also the semantic functionalities supported by the oneM2M platform itself, may need from an ontology:

1) get all classes of an ontology;

2) get all object | data properties of ontology;

3) get direct subclasses of class A;

4) get also transitive subclasses class A;
e.g. if information from instances of class A is requested, all subclasses of class A also need to be included as they are also instances of class A;

5) get all the superclasses of class A;
e.g. if for derived ontologies the class of the base ontology needs to be found from which the class is derived, for example to apply rules defined for the base ontology, e.g. for creating a resource structure;

6) get all object | data properties where class A is in the domain;
e.g. to find out what properties an instance of class A can possibly have;

7) get all object | data properties where class A is in the range;

8) get all sub-properties of a property A;
e.g. if information concerning property A is requested all sub-properties of A also need to be included;

9) get classes that are equivalent to class A.

7.3.6.2
Resource definition

Using OWL 2.0 [i.5] as an ontology format example to be supported by the oneM2M system and based on W3C specifications (http://www.w3.org/TR/owl2-syntax/#IRIs) the following apply:

· "Ontologies and their elements are identified using Internationalized Resource Identifiers (IRIs) [RFC3987]; thus, OWL 2 extends OWL 1, which uses Uniform Resource Identifiers (URIs). Each IRI MUST be absolute (i.e. not relative). In the structural specification, IRIs are represented by the IRI UML class. Two IRIs are structurally equivalent if and only if their string representations are identical."

And

· "Ontology documents are not represented in the structural specification of OWL 2, and the specification of OWL 2 makes only the following two assumptions about their nature:

· Each ontology document can be accessed via an IRI by means of an appropriate protocol.

· Each ontology document can be converted in some well-defined way into an ontology (i.e. into an instance of the Ontology UML class from the structural specification)."
Therefore current methods of accessing and importing ontologies requires access to the respective ontology document via an IRI (Internationalized Resource Identifiers) as specified in IETF RFC 3987 [i.15]. Given that access to the ontology document has been obtained, this approach also provides for local storage of the document in a content attribute which is available to the platform based on access control rules.

Given the possible need to have access to multiple versions of an ontology, and to different formats, a specialized attribute contentFormat provides information necessary for the system to interpret the information available in the content attribute.

[image: image7.emf]<ontology>

contentFormat

content

description

<subscription>

0..n

0..1

0..n

0..n

Figure 7.3.6.2-1: <ontology> resource for ontology document access

The <ontology> resource above contains the child resources specified in table 7.3.6.2-1.

Table 7.3.6.2-1: Child resources of <ontology> resource in the unstructured approach

	Child Resources of <semanticDescriptor>
	Child Resource Type
	Multiplicity
	Description

	[variable]
	<subscription>
	0..n
	See [i.3], clause 9.6.8 where the type of this resource is described.

7.3.7
Semantic Mashup Function (SMF) Implementation Details

7.3.7.1
Resource Type semanticMashupJobProfile

The <semanticMashupJobProfile> resource represents a Semantic Mashup Job Profile (SMJP). The <semanticMashupJobProfile> resource shall contain the child resources specified in table 7.3.7.1-1.

Table 7.3.7.1-1: Child resources of <semanticMashupJobProfile> resource

	Child Resources of <semanticMashupJobProfile>
	Child Resource Type
	Multiplicity
	Description

	<variable>
	<semanticMashupInstance>
	0..n
	Represents semantic mashup instances which have been created based on this <semanticMashupJobProfile> resource. This child resource is optional as related<semanticMashupJobProfile> and <semanticMashupInstance> may be stored separately within the resource tree or on different CSEs.

	<variable>
	<semanticDescriptor>
	0..1
	Describes general semantic information about this <semanticMashupJobProfile> resource.

	<variable>
	<subscription>
	0..n
	Represents subscriptions on this resource.

The <semanticMashupJobProfile> resource shall contain the attributes specified in table 7.3.7.1-2.
Table 7.3.7.1-2: Attributes of <semanticMashupJobProfile> resource

	Attributes of
<semanticMashupJobProfile>
	Multiplicity
	RW/

RO/

WO
	Description

	memberFilter
	1
	RW
	Semantically describes the types of member resources which are involved in this semantic mashup job profile <semanticMashupJobProfile>. When a <semanticMashupInstance> is created based on this <semanticMashupJobProfile>, the member resources of the <semanticMashupInstance> shall be discovered and selected based on this memberFilter attribute. The value of this attribute is a SPARQL query.

	smiID
	0..1(L)
	RO
	List of identifiers (e.g. URI) of related semantic mashup instance resources which have been created based on this <semanticMashupJobProfile>.

	inputDescriptor
	0..1
	RW
	Semantically (e.g. in semantic triples) describes the types of input parameters, which are required as input parameters in order to use this <semanticMashupJobProfile>. A Mashup Requestor needs to know and understand all types of input parameters as described in this attribute in order to create a <semanticMashupInstance> based on this <semanticMashupJobProfile>. Some semantic mashup job profiles may not need input parameters and as such this attribute is optional.

	outputDescriptor
	1
	RW
	Semantically (e.g. in semantic triples) describes the types of output parameters generated as semantic mashup results if using this <semanticMashupJobProfile>.

	functionDescriptor
	1
	RW
	Semantically (e.g. in semantic triples) describes the mashup function of this <semanticMashupJobProfile>. The mashup function specifies how semantic mashup results should be generated based on input parameters (defined by the inputDescriptor attribute) and original member resources (defined by the memberFilter attribute).

The structure of a <semanticMashupJobProfile> resource is also illustrated in figure 7.3.7.1-1.

[image: image8.emf]<semanticMashupJobProfile>

memberFilter

<semanticMashupInstance>

smiID

1

1(L)

0:1(L)

0:n

<subscription>

0:n

0:1

1

<semanticDescriptor>

0:1

inputDescriptor

outputDescriptor

functionDescriptor

Figure 7.3.7.1-1: Structure of <semanticMashupJobProfile> Resource

7.3.7.2
<semanticMashupJobProfile> Procedures

7.3.7.2.0
Introduction

A <semanticMashupJobProfile> resource can be provisioned to a Hosting CSE which provides semantic mashup function; alternatively, an AE or CSE can request to create <semanticMashupJobProfile> resource at the Hosting CSE. Once a <semanticMashupJobProfile> resource is provisioned or created at the Hosting CSE, other oneM2M CSEs/AEs, which act as Mashup Requestors, can discover, retrieve, update, or delete it based on the requirements.

Figure 7.3.7.2-1 illustrates a generic procedure (e.g. Create/Retrieve/Update/Delete) to operate on a <semanticMashupJobProfile> resource. Detailed descriptions are given in following clauses 7.3.7.2.1, 7.3.7.2.2, 7.3.7.2.3, and 7.3.7.2.4, respectively.

[image: image9.emf]Receiver

(a CSE)

Originator

(a CSE or AE)

1. Processing at Originator

before sending Request

2. Request Message

(e.g. Create/Retrieve/Update/Delete

<semanticMashupJobProfile>

)

3. Processing at Receiver

4. Response Message

Figure 7.3.7.2-1: Generic procedures for operating a <semanticMashupJobProfile> resource

7.3.7.2.1
Create <semanticMashupJobProfile>

This procedure shall be used for creating a <semanticMashupJobProfile> resource as described in table 7.3.7.2.1-1.

Table 7.3.7.2.1-1: <semanticMashupJobProfile> CREATE

	<semanticMashupJobProfile> CREATE

	Associated Reference Point
	Mca, Mcc and Mcc'.

	Information in Request message
	All parameters defined in table 8.1.2-3 in [i.3] apply with the specific details for:

Content: The resource content shall provide the information about an <semanticMashupJobProfile> resource (e.g. attribute values) as described in the clause 7.3.7.1.

	Processing at Originator before sending Request
	According to clause 10.1.1.1 in [i.3].

	Processing at Receiver
	According to clause 10.1.1.1 in [i.3].

	Information in Response message
	All parameters defined in table 8.1.3-1 in [i.3] apply with the specific details for:

Content: Address of the created <semanticMashupJobProfile> resource, according to clause 10.1.1.1 in [i.3].

	Processing at Originator after receiving Response
	According to clause 10.1.1.1 in [i.3].

	Exceptions
	According to clause 10.1.1.1 in [i.3]

7.3.7.2.2
Retrieve <semanticMashupJobProfile>

This procedure shall be used for retrieving the attributes of a <semanticMashupJobProfile> resource as described in table 7.3.7.2.2-1.

Table 7.3.7.2.2-1: <semanticMashupJobProfile> RETRIEVE

	<semanticMashupJobProfile> RETRIEVE

	Associated Reference Point
	Mca, Mcc and Mcc'.

	Information in Request message
	All parameters defined in table 8.1.2-3 in [i.3] apply with the specific details for:

Content: void.

	Processing at Originator before sending Request
	According to clause 10.1.2 in [i.3].

	Processing at Receiver
	The Receiver shall verify the existence (including Filter Criteria checking, if it is given) of the target resource or the attribute and check if the Originator has appropriate privileges to retrieve information stored in the resource/attribute. Otherwise clause 10.1.2 in [i.3] applies.

	Information in Response message
	All parameters defined in table 8.1.3-1 in [i.3] apply with the specific details for:

Content: attributes of the <semanticMashupJobProfile> resource as defined in clause 7.3.7.1.

	Processing at Originator after receiving Response
	According to clause 10.1.2 in [i.3].

	Exceptions
	According to clause 10.1.2 in [i.3].
In addition, a timer has expired. The Receiver responds with an error.

7.3.7.2.3
Update <semanticMashupJobProfile>

This procedure as described in table 7.3.7.2.3-1 shall be used to update an existing <semanticMashupJobProfile> resource, e.g. an update to its inputDescriptor attribute. The generic update procedure is described in clause 10.1.3 in [i.3].

Table 7.3.7.2.3-1: <semanticMashupJobProfile> UPDATE

	<semanticMashupJobProfile> UPDATE

	Associated Reference Point
	Mca, Mcc and Mcc'.

	Information in Request message
	All parameters defined in table 8.1.2-3 in [i.3] apply with the specific details for:

Content: attributes of the <semanticMashupJobProfile> resource as defined in clause 7.3.7.1 to be updated.

	Processing at Originator before sending Request
	According to clause 10.1.3 in [i.3].

	Processing at Receiver
	According to clause 10.1.3 in [i.3].

	Information in Response message
	According to clause 10.1.3 in [i.3].

	Processing at Originator after receiving Response
	According to clause 10.1.3 in [i.3].

	Exceptions
	According to clause 10.1.3 in [i.3].

7.3.7.2.4
Delete <semanticMashupJobProfile>

This procedure as described in table 7.3.7.2.4-1 shall be used to delete an existing <semanticMashupJobProfile> resource. The generic delete procedure is described in clause 10.1.4.1 in [i.3].

Table 7.3.7.2.4-1: <semanticMashupJobProfile> DELETE

	<semanticMashupJobProfile> DELETE

	Associated Reference Point
	Mca, Mcc and Mcc'.

	Information in Request message
	All parameters defined in table 8.1.2-3 in [i.3] apply.

	Processing at Originator before sending Request
	According to clause 10.1.4.1 in [i.3].

	Processing at Receiver
	According to clause 10.1.4.1 in [i.3]:
· If the <semanticMashupJobProfile> to be deleted has smiID attribute and the smiID attribute has a value, the Receiver notifies each <semanticMashupInstance> resource as included in the smiID attribute of the removal of the <semanticMashupJobProfile> since those <semanticMashupInstance> resources use this <semanticMashupJobProfile>.
· If the <semanticMashupJobProfile> to be deleted has <semanticMashupInstance> child resources, all those <semanticMashupInstance> child resources shall be removed accordingly.

	Information in Response message
	According to clause 10.1.4.1 in [i.3].

	Processing at Originator after receiving Response
	According to clause 10.1.4.1 in [i.3].

	Exceptions
	According to clause 10.1.4.1 in [i.3].

7.3.7.3
Resource Type semanticMashupInstance
<semanticMashupInstance> models and represents a Semantic Mashup Instance (SMI) resource. A CSE/AE as a Mashup Requestor can request to create <semanticMashupInstance> resources at another oneM2M CSE which implements the semantic mashup function as described in the clause 7.3.2. Each created <semanticMashupInstance> resource corresponds to a semantic mashup job profile (i.e. a <semanticMashupJobProfile> resource); in other words, how the <semanticMashupInstance> resource should execute the mashup operation to calculate the mashup result is specified in the corresponding <semanticMashupJobProfile> resource. Note that the <semanticMashupInstance> and its corresponding <semanticMashupJobProfile> resources may be placed at the same CSE or at different CSEs, and the smjpID attribute of the <semanticMashupInstance> allows locating the corresponding <semanticMashupJobProfile> resource. If the <semanticMashupInstance> resource has a <semanticMashupResult> as its child resource, the Mashup Requestor may use it to retrieve the mashup result.
<semanticMashupInstance> resource shall contain the child resources specified in table 7.3.7.3-1.

Table 7.3.7.3-1: Child resources of <semanticMashupInstance> resource

	Child Resources of <semanticMashupInstance>
	Child Resource Type
	Multiplicity
	Description

	<variable>
	<semanticMashupResult>
	0..n
	Contains mashup result. A <semanticMashupInstance> resource may have multiple <semanticMashupResult> child resources, with each mashup result instance resulting from different member resource values. The hosting CSE generates <semanticMashupResult> each time when it executes the mashup operation and calculate a new semantic mashup result (e.g. for long-lived mashup application as described in the clause 8.8.3.3).

	<variable>
	<semanticDescriptor>
	0..1
	Describes general semantic information about this <semanticMashupInstance> resource.

	<variable>
	<subscription>
	0..n
	Stands for any subscription on this <semanticMashupInstance>. This is an existing oneM2M resource.

	<mashup>
	<mashup>
	0..1
	This is a standard oneM2M virtual resource. When a Mashup Requestor sends a RETRIEVE operation on this virtual resource, it triggers a re-calculation and re-generation of the mashup result.

<semanticMashupInstance> resource shall contain the attributes specified in table 7.3.7.3-2.
Table 7.3.7.3-2: Attribute of <semanticMashupInstance> resource

	Attributes of
<semanticMashupInstance>
	Multiplicity
	RW/

RO/

WO
	Description

	smjpID
	1
	RW
	Denotes the identifier (e.g. URI) of the semantic mashup job profile resource <semanticMashupJobProfile> which this <semanticMashupInstance> is based on.

	smjpInputParameter
	1
	RW
	Contains the value of all input parameters which are required to calculate the mashup result. Note that the types of these input parameters are specified by the inputDescriptor attribute of the corresponding <semanticMashupJobProfile> which is denoted by the smjpID attribute of this <semanticMashupInstance> resource. This attribute is not needed if the corresponding <semanticMashupJobProfile> does not have inputDescriptor attribute.

	memberStoreType
	1
	RW
	Indicates the way which member resources should be stored under this <semanticMashupInstance>. For example:
· If memberStoreType="URI Only", the mashupMember attribute contains the URI of each member resource.
· If memberStoreType="URI and Value", the mashupMember attribute contains both the URI and the value of each member resource.

	mashupMember
	0:1(L)
	RW
	Stores the URI and/or value of each mashup member resource, which is dependent on the value of memberStoreType attribute.

	resultGenType
	1(L)
	RW
	Describes how the mashup result should be generated using this <semanticMashupInstance>. Example values for this attribute could be one of the following or a combination of them:
· If resultGenType="When SMI Is Created", the semantic mashup result is generated when this <semanticMashupInstance> is created by running semantic functions specified by the corresponding <semanticMashupJobProfile>.

· If resultGenType="When Mashup Requestor Requests", the mashup result is to be calculated and generated when requested or triggered by a Mashup Requestor which sends a RETRIEVE operation on the virtual child resource mashup.
· If resultGenType="Periodically", the CSE which hosts <semanticMashupInstance> calculates and generates the semantic mashup result periodically based on the periodForResultGen attribute.

· If resultGenType="When A Mashup Member Is Updated", the CSE which hosts <semanticMashupInstance> calculates and generates the semantic mashup result whenever there is any update on the mashupMember attribute of <semanticMashupInstance>.

	periodForResultGen
	0:1
	RW
	Is the time period for re-calculating and generating the semantic mashup result. When it is the time to re-calculate the semantic mashup result, the CSE hosting this <semanticMashupInstance> needs to retrieve the latest content value of each member resource if it is not obtained yet. This attribute is needed when resultGenType="Periodically".

The structure of <semanticMashupInstance> resource is also illustrated in figure 7.3.7.3-1.

[image: image10.emf]<semanticMashupInstance>

smjpID

1

mashupMember

0:1(L)

<subscription>

0:1

0:n

<semanticMashupResult>

0:n

<semanticDescriptor>

resultGenType

1

smjpInputParameter

0:1

memberStoreType

1

periodForResultGen

0:1

mashup

0:1

Figure 7.3.7.3-1: Structure of <semanticMashupInstance> Resource

7.3.7.4
<semanticMashupInstance> Procedures

7.3.7.4.0
Introduction

Figure 7.3.7.4.0-1 illustrates the procedure to operate a <semanticMashupInstance> resource (e.g. Create/Retrieve/Update/Delete a <semanticMashupInstance> resource). Detail descriptions are given in the clauses 7.3.7.4.1, 7.3.7.4.2, 7.3.7.4.3, 7.3.7.4.4 and 7.3.7.4.5, respectively.

[image: image11.emf]Receiver

(a CSE)

Originator

(a CSE or AE)

1. Processing at Originator

before sending Request

2. Request Message

(e.g. Create/Retrieve/Update/Delete

<

semanticMashupInstance

>)

3. Processing at Receiver

4. Response Message

Figure 7.3.7.4.0-1: Procedures for Operating a <semanticMashupInstance> Resource

7.3.7.4.1
Create <semanticMashupInstance>

This procedure shall be used for creating a <semanticMashupInstance> resource as described in table 7.3.7.4.1-1.

Table 7.3.7.4.1-1: <semanticMashupInstance> CREATE

	<semanticMashupInstance> CREATE

	Associated Reference Point
	Mca, Mcc and Mcc'.

	Information in Request message
	All parameters defined in table 8.1.2-3 in [i.3] apply with the specific details for:

Content: The resource content shall provide the information about a <semanticMashupInstance> resource (e.g. attribute values) as described in the clause 7.3.7.3.

	Processing at Originator before sending Request
	According to clause 10.1.1.1 in [i.3]:
· If the Originator knows the identifier or URI of each mashup member, it can include the value of mashupMember in the Request message.

	Processing at Receiver
	According to clause 10.1.1.1 in [i.3]:
· The Receiver shall first check if the corresponding <semanticMashupJobProfile> as denoted by smjpID attribute exists or not. If it does not exist, the Receiver shall not create the <semanticMashupInstance> and shall report an error (e.g. "<semanticMashupJobProfile> does not exist") in the Response message to the Originator. If it exists, the Receiver shall retrieve its content.
· The Receiver shall check if smjpInputParameter included in the Request message meets the input parameter requirement as specified by the inputDescriptor attribute of corresponding <semanticMashupJobProfile>. If it does not meet the requirement, the Receiver shall not create the <semanticMashupInstance> and shall report an error (e.g. "smjpInputParameter" does not meet the requirement") in the Response message to the Originator.

· According to the memberFilter attribute of the retrieved <semanticMashupJobProfile>, the Receiver extracts the SPARQL query contained in memberFilterand use it to discover and determine mashup member resources for the <semanticMashupInstance> to be created.
· Dependent on the memberStoreType attribute contained in the Request message, the Receiver maintains each member resource in different ways. If memberStoreType="URI Only", the Receiver creates the mashupMember attribute containing the URIs of the determined member resources. If memberStoreType="URI and Value", the Receiver creates the mashupMember attribute, retrieves the content value of each member resource and then stores both the identifier and the content value of each member resource in the mashupMember attribute.
· Depending on the resultGenType attribute contained in the Request message, the Receiver prepares to execute the corresponding semantic mashup job profile as follows:
· If resultGenType=" When SMI Is Created", the Receiver retrieves the content value of each member resource if not retrieved yet; then it executes mashup functions as specified by the <semanticMashupJobProfile> and generates semantic mashup result, which shall be stored in the <semanticMashupResult> child resource.
· If resultGenType="When A Mashup Requestor Requests", there is no further processing at the Receiver.
· If resultGenType="Periodically", the Receiver shall set up a timer according to the periodForResultGen attribute contained in the Request message. When the timer expires, the Receiver shall retrieve the content value of each member resource and re-generate the mashup result; then it renews the timer.

· If resultGenType="When A Mashup Member Is Updated", there is no further processing at the Receiver.

	Information in Response message
	All parameters defined in table 8.1.3-1 in [i.3] apply with the specific details for:

Content: Address of the created <semanticMashupInstance> resource and address of created <semanticMashupResult> resource if any, according to clause 10.1.1.1 in [i.3].

	Processing at Originator after receiving Response
	According to clause 10.1.1.1 in [i.3].

	Exceptions
	According to clause 10.1.1.1 in [i.3]

7.3.7.4.2
Retrieve <semanticMashupInstance>

This procedure shall be used for retrieving the attributes of a <semanticMashupInstance> resource as described in table 7.3.7.4.2-1.

Table 7.3.7.4.2-1: <semanticMashupInstance> RETRIEVE

	<semanticMashupInstance> RETRIEVE

	Associated Reference Point
	Mca, Mcc and Mcc'.

	Information in Request message
	All parameters defined in table 8.1.2-3 in [i.3] apply with the specific details for:

Content: void.

	Processing at Originator before sending Request
	According to clause 10.1.2 in [i.3].

	Processing at Receiver
	The Receiver shall verify the existence (including Filter Criteria checking, if it is given) of the target resource or the attribute and check if the Originator has appropriate privileges to retrieve information stored in the resource/attribute. Otherwise clause 10.1.2 in [i.3] applies.

	Information in Response message
	All parameters defined in table 8.1.3-1 in [i.3] apply with the specific details for:

Content: attributes of the <semanticMashupInstance> resource as defined in the clause 7.3.7.3.

	Processing at Originator after receiving Response
	According to clause 10.1.2 in [i.3].

	Exceptions
	According to clause 10.1.2 in [i.3].

7.3.7.4.3
Retrieve <semanticMashupInstance>/<mashup>

This procedure shall be used for triggering the CSE which hosts the <semanticMashupInstance> to recalculate mashup results and returning the mashup result back to the requestor (e.g. an AE) of this retrieve request as described in table 7.3.7.4.3-1.

Table 7.3.7.4.3-1: <semanticMashupInstance>/<mashup> RETRIEVE

	<semanticMashupInstance>/<mashup> RETRIEVE

	Associated Reference Point
	Mca, Mcc and Mcc'.

	Information in Request message
	All parameters defined in table 8.1.2-3 in [i.3] apply with the specific details for:

To: <semanticMashupInstance>/<mashup>
Content: void.

	Processing at Originator before sending Request
	According to clause 10.1.2 in [i.3].

	Processing at Receiver
	The Receiver shall check if the Originator has appropriate privileges. Otherwise clause 10.1.2 in [i.3] applies:
· The Hosting CSE triggers the recalculation of semantic mashup result for this <semanticMashupInstance>. The recalculated mashup result shall be stored in a child <semanticMashupResult> resource.

	Information in Response message
	All parameters defined in table 8.1.3-1 in [i.3] apply with the specific details for:

Content: the mashup result, if indicated in the request

	Processing at Originator after receiving Response
	According to clause 10.1.2 in [i.3].

	Exceptions
	According to clause 10.1.2 in [i.3].
In addition: a timer has expired. The Receiver responds with an error.

7.3.7.4.4
Update <semanticMashupInstance>

This procedure as described in table 7.3.7.4.4-1 shall be used to update an existing <semanticMashupInstance>, e.g. an update to its memberStoreType attribute. The generic update procedure is described in clause 10.1.3 in [i.3].

Table 7.3.7.4.4-1: <semanticMashupInstance> UPDATE

	<semanticMashupInstance> UPDATE

	Associated Reference Point
	Mca, Mcc and Mcc'.

	Information in Request message
	All parameters defined in table 8.1.2-3 in [i.3] apply with the specific details for:

Content: attributes of the <semanticMashupInstance> resource as defined clause 7.3.7.3 to be updated.

	Processing at Originator before sending Request
	According to clause 10.1.3 in [i.3].

	Processing at Receiver
	According to clause 10.1.3 in [i.3]:
· If the updated attribute in the Request message is smjpInputParameter and if the original resultGenType="When SMI Is Updated", the Receiver needs to recalculate the semantic mashup result using the new values of input parameters.

· If the updated attribute in the Request message is memberStoreType, the Receiver needs to change the way to maintain mashup member resources. For example, if memberStoreType is updated from "URI Only" to "URI and Value", the Receiver needs to retrieve the content value of each mashup member resource and store the values together with URI in mashupMember attribute. If memberStoreType is updated from "URI and Value" to "URI Only", the Receiver needs mashupMember attribute to only maintain the identifier of each mashup member.
· If the updated attribute in the Request message is resultGenType, the Receiver changes the way to calculate/generate the semantic mashup result accordingly.

	Information in Response message
	According to clause 10.1.3 in [i.3].

	Processing at Originator after receiving Response
	According to clause 10.1.3 in [i.3].

	Exceptions
	According to clause 10.1.3 in [i.3].

7.3.7.4.5
Delete <semanticMashupInstance>

This procedure as described in table 7.3.7.4.5-1 shall be used to delete an existing <semanticMashupInstance>. The generic delete procedure is described in clause 10.1.4.1 in [i.3].

Table 7.3.7.4.5-1: <semanticMashupInstance> DELETE

	<semanticMashupInstance> DELETE

	Associated Reference Point
	Mca, Mcc and Mcc'.

	Information in Request message
	All parameters defined in table 8.1.2-3 in [i.3] apply.

	Processing at Originator before sending Request
	According to clause 10.1.4.1 in [i.3].

	Processing at Receiver
	According to clause 10.1.4.1 in [i.3]:
· In addition, The Receiver removes this <semanticMashupInstance> from the smiID attribute of the corresponding <semanticMashupJobProfile>.

	Information in Response message
	According to clause 10.1.4.1 in [i.3].

	Processing at Originator after receiving Response
	According to clause 10.1.4.1 in [i.3].

	Exceptions
	According to clause 10.1.4.1 in [i.3].

7.3.7.5
Examples for <semanticMashupJobProfile> and <semanticMashupInstance>

A concrete example is illustrated below to show how the proposed semantic mashup related resources can be utilized to realize the smart parking mashup application.

For this mashup application, two ontologies are illustrated in figures 7.3.7.5-1 and 7.3.7.5-2, respectively for parking spot ontology and semantic mashup job profile ontology:
· Figure 7.3.7.5-1 shows a general ontology on parking spot which can be leveraged by various different mashup applications. The following classes are defined in this ontology:
· parkingSpot, parkingSpotInAParkingBuilding, streetParkingSpot, address, spotSelectionAlgorithm;
· parkingSpotInAParkingBuilding is a subclass of parkingSpot;
· streetParkingSpot is a subclass of parkingSpot;
· spotSelectionAlgorithm is used to apply "adoptedSelectionCriteria" on the candidate parking spots and address (i.e. user destination) to calculate suitable parking spots.

· Figure 7.3.7.5-2 shows the particular ontology for this mashup application (called SMJP ontology). The following classes are defined in this ontology:

· semanticMashupJobProfile, input, output, memberCandidate, and mashupFunction.
· Note that, depending on different applications, those classes defined in the SMJP ontology will be linked to classes of specific ontologies when realizing different mashup applications. For example, when describing the SMJP of the smart parking assistance as shown in figure 7.3.7.5-3, the classes defined in the SMJP ontology will be linked to the specific classes defined in the parking spot ontology shown in figure 7.3.7.5-1.

[image: image12.emf]parkingSpot

streetParkingSpot parkingSpotInAParkingBuilding

subClassOf subClassOf

hasOccupiedStatus

hasParkingSpotID

hasCorrespondingParkingFloor

boolean

hasCorrespondingParkingBuildingAddress

literal

hasCorrespondingRoadAddress

integer

string

address

hasValue

hasName

literal

hasName

literal

spotSelectionAlgorithm

adoptedSelectionCriteria

string

hasUserDestinationInput

outputSuitableParkingSpot

hasCandidateParkingSpot

Figure 7.3.7.5-1: Parking Spot Ontology

[image: image13.emf]input

hasInput

output

hasOutput

memberCandidate

mashupFunction hasMashupFunction

semanticMashupJobProfile

hasMember

string

string

hasName

string

hasService

hasSmjpId

Figure 7.3.7.5-2: Semantic Mashup Job Profile (SMJP) Ontology

Based on those two ontologies, an example of <semanticMashupJobProfile> resource (i.e. <SmartParkingAssistance>) is shown in figure 7.3.7.5-3. Basically, this <SmartParkingAssistance> resource exposes all the necessary information about the smart parking mashup application. For example:
· memberFilter: This attribute includes the information about which resources are eligible or qualified to provide data inputs for this smart parking mashup application. For example, <SmartParkingAssistance> has two type of member candidates: the first type of member candidate is the type of "building parking spot" and the second type of member candidate is the type of "street parking spot". This is where how the classes defined in the SMJP ontology are linked to the specific classes defined in the parking spot ontology, i.e. an instance of memberCandidate class defined in SMJP ontology is also an instance of parkingSpot class defined in the parking spot ontology. In the meantime, certain constraints are also defined to describe further application requirements. For example, for a given parking spot (either a building parking spot or a street parking spot), it needs to be in an "unoccupied" status. For this example, the memberFilter contains a SPARQL query as below. The returned result from this SPARQL query will be a list of RDF triples; each triple represents an instance of parkingSpotInAParkingBuilding or an instance of streetParkingSpot; then the mashup function as described in functionDescriptor is able to know the type of each member candidate and can appropriately apply them accordingly to generate mashup result:
PREFIX ps:<http://parkingspot.example.org>

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd:<http://www.w3.org/2001/XMLSchema#>

CONSTRUCT {

 ?BuildingParkingSpot rdf:type ps:parkingSpotInAParkingBuilding .

 ?StreetParkingSpot rdf:type ps:streetParkingSpot .

}

where

{

 ?BuildingParkingSpot
rdf:type

ps:parkingSpotInAParkingBuilding ;

ps:hasOccupiedStatus
"unoccupied" .

 ?StreetParkingSpot
rdf:type

ps:streetParkingSpot ;

ps:hasOccupiedStatus
"unoccupied" .

}

· inputDescriptor: This attribute includes what information is needed from the Mashup Requestor (MR) to leverage/apply this semantic mashup profile. For example, in the smart parking example shown in figure 7.3.7.5-3, the user/MR will provide his/her destination address (described as "smjp:input1"). Similarly, here an instance of input class defined in SMJP ontology is an instance of address class defined in the parking spot ontology. It is also possible that other inputs may also be provided such as "parking preference", which is not shown in this example.
· functionDescriptor: This attribute indicates how the mashup result will be generated, which is based on certain application business logic. For example, in the smart parking mashup application, given all the eligible/candidate parking spots, different types of selection criteria could be adopted. In the example shown in figure 7.3.7.5-3, it indicates that the parking spot having the shortest walking distance will be selected as the "suitable parking spot" that is to be returned to the user (as the mashup result). The real implementation of the application business logic (e.g. how to calculate the walking distance between a parking spot and the user destination? and how to find the shortest walking distance in this smart parking assistance example?) is an implementation-specific (e.g. some script code); this is an internal process of the Common Service Entity (CSE) where <semanticMashupInstance> resides and will not be exposed to via the <semanticMashupInstance> resource.

· outputDescriptor: This attribute describes what the mashup result looks like. For example, in the smart parking example shown in figure 7.3.7.5-3, this attribute indicates that the mashup result has the name of "suitable parking spot" and it is in fact either a building parking spot or a street parking spot. Since the mashup result is a type of ex:parkingSpotInAParkingBuilding or ex:streetParkingSpot (which are the classes/concepts defined in the adopted ontology), it will be clear that the mashup result in terms of an instance of output class defined in SMJP ontology is also an instance of parkingSpotInAParkingBuilding or streetParkingSpot classes defined in the parking spot ontology, and then the mashup result will have corresponding properties, such as address information, spot ID, etc.
· <semanticDescriptor>/descriptor: The information stored in the <semanticDescriptor>/descriptor can include the general metadata about a <semanticMashupJobProfile>. For example, in figure 7.3.7.5-3, it shows that the <SmartParkingAssistance> is type of <semanticMashupJobProfile> resource, and it is for supporting smart parking application and can provide a service called "find suitable parking spot".

[image: image14.emf]<SmartParkingAssistance>

inputDescriptor

@PREFIX ps: <http://parkingspot.example.org> .

@PREFIX smjp: <http://smjp.org>

<SmartParkingAssistance> smjp:hasInput smjp:input1 .

smjp:input1 rdf:type ps:address .

smjp:input1 ps:hasName ³userDestination´��

outputDescriptor

@PREFIX ps: <http://parkingspot.example.org> .

@PREFIX smjp: <http://smjp.org>

<SmartParkingAssistance> smjp:hasOutput smjp:output1 .

smjp:output1 rdf:type ps:parkingSpot .

smjp:output1 ps:hasName ³suitableParkingSpot´��

functionDescriptor

@PREFIX ps: <http://parkingspot.example.org> .

@PREFIX smjp: <http://smjp.org>

<SmartParkingAssistance> smjp:hasMashupFunction smjp:mashupFunction1 .

smjp:mashupFunction1 rdf:type ps:spotSelectionAlgorithm .

smjp:mashupFunction1 ps:adoptedSelectionCriteria ³shortestWalkingDistance´��

smjp:mashupFunction1 ps:hasUserDestinationInput smjp:input1 .

smjp:mashupFunction1 ps:outputSuitableParkingSpot smjp:output1 .

memberFilter

PREFIX ps: <http://parkingspot.example.org>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

CONSTRUCT {

?BuildingParkingSpot rdf:type ps:parkingSpotInAParkingBuilding.

?StreetParkingSpot rdf:type ps:streetParkingSpot .

}

where {

?BuildingParkingSpot rdf:type ps:parkingSpotInAParkingBuilding;

ps:hasOccupiedStatus ³unoccupied´��

?StreetParkingSpot rdf:type ps:streetParkingSpot ;

ps:hasOccupiedStatus ³unoccupied´�

}

<semanticDescriptor>/descriptor

@PREFIX ps: <http://parkingspot.example.org> .

@PREFIX smjp: <http://smjp.org>

<SmartParkingAssistance> rdf:type smjp:semanticMashupJobProfile.

<SmartParkingAssistance> ps:hasName �³SmartParkingAssistance´��

<SmartParkingAssistance> ps:hasService ��������������³FindSuitableParkingLot´��

<SmartParkingAssistance> ps:hasSmjpId ³SMJP-001´�

Figure 7.3.7.5-3: An SMJP of Smart Parking Mashup Application using
a <semanticMashupJobProfile> Resource

Once an MR identifies a desired <semanticMashupJobProfile>, it can initialize a real mashup process (which corresponds to a "working instance", i.e. a <semanticMashupInstance>). In the example of smart parking mashup application, when a user intends to find a suitable parking spot around his/her destination, it will send a request to the hosting CSE to trigger a real mashup process for the smart parking assistance application. Accordingly, the hosting CSE will refer to the <semanticMashupJobProfile> of the smart parking assistance (as shown in figure 7.3.7.5-3), and create a <semanticMashupInstance> based on this <semanticMashupJobProfile> and the inputs given by the user. Figure 7.3.7.5-4 shows a concrete example of the <semanticMashupInstance> for the smart parking assistance application. In figure 7.3.76.5-4, it shows a specific <SuitableParkingSpot-1> resource, which is a type of <semanticMashupInstance> resource, and it exposes all the necessary information about this specific SMI. For example:
· smjpID: This attribute indicates this <semanticMashupInstance> is created based on which <semanticMashupJobProfile> resource. In the example shown in figure 7.3.7.5-4, it shows that the smjpID is "SmartParkingAssistance-001", which corresponds to smart parking assistance mashup application profile as shown in figure 7.3.7.5-3.

· smjpInputParameter: This attribute includes the inputs from the MR/user side. For example, it shows that the user is looking for a suitable parking spot around his/her destination, which is "255 36th street, New York City, NY, 10001".

· memberStoreType: The value of this attribute is "URI and Value", which means that the mashupMember attribute will show both the URIs of member resources and their attribute values in RDF triples in this example.

· mashupMember: This attribute indicates all the qualified member resources for this particular <semanticMashupInstance>. For example, as shown in figure 7.3.7.5-4, given user's destination address (i.e. around "255 36th street, New York City, NY, 10001"), all the potential eligible parking spots will be listed here, which were identified based on the "memberFilter" attribute as defined in the corresponding SMJP of this <semanticMashupInstance>. For example, two parking spots are listed in figure 7.3.7.5-4, i.e. <buildingParkingSopt-1> (which is a spot in a parking building) and <streetParkingSopt-1> (which is a street parking spot). In particular, the detailed information about those two parking spots are also included in this attribute. For example, the detailed location information about <buildingParkingSopt-1> is as follows: This parking spot is in a parking building at "255 37th street, New York City, NY, 10001", and this spot is in the 3rd floor, and the specific spot ID is "23".
· resultGenType: This attribute indicates how the mashup process will be triggered. In this smart parking assistance example, the value is "when SMI is created". It means that when a user is looking for a suitable parking spot by sending a request to the hosting CSE for SMS, once a corresponding SMI is created, it will immediately generate the mashup result in terms of a suitable parking spot. Note that, the smart parking assistance is type of "short-lived semantic mashup" in the sense that each user will create a respective SMI for his/her own parking needs and the created SMI may be just used once. For another type of mashup application, i.e. "long-lived semantic mashup application" such as the weather reporting mashup application, a given SMI could be re-used and shared by different MRs for multiple times. For example, once an SMI has been created for reporting weather information of New York City Area, the mashup result of this SMI can either be refreshed periodically due to real-time weather changes or the mashup process can be triggered by users' requests after the SMI is created.

· <semanticMashupResult>: To store the mashup result. For example, in figure 7.3.7.5-4, from this <semanticMashupResult> child resource, it can be seen that the suitable parking sport is <buildingParkingSopt-1>, among all the eligible parking spots near the user's destination.

[image: image15.emf]<SuitableParkingSpot-1>

smjpID

“SMJP-001”

<semanticMashupResult>

smjpInputParameter

@PREFIX ps: <http://parkingspot.example.org> .

ps:input1 rdf:type ps:address .

ps:input1 ps:hasName “userDestination” .

ps:input1 ps:hasValue “255 36

th

 street, New York City, NY, 10001” .

memberStoreType

“URI and Value”

mashupMember

@PREFIX ps: <http://parkingspot.example.org> .

Example 1: //For an unoccupied parking spot in a parking building (Corresponding Resource: <buildingParkingSpot-1>)

<buildingParkingSpot-1> rdf:type ps:parkingSpotInAParkingBuilding .

<buildingParkingSpot-1> ps: hasCorrespondingParkingBuildingAddress ps:address1.

ps:address1 ps: hasValue “255 37

th

 street, New York City, NY, 10001” .

<buildingParkingSpot-1> ps: hasConrespondingParkingFloor “3

rd

 floor” .

<buildingParkingSpot-1> ps: hasParkingSpotID “23” .

Example 2: //For unoccupied parking spot on a street (Corresponding Resource: <streetParkingSpot-1>)

<streetParkingSpot-1> rdf:type ps:streetParkingSpot .

<streetParkingSpot-1> ps:hasCorrespondingRoadAddress ps:address2

 ps:address2 ps:hasValue “Near 255 39

th

 street, New York City, NY, 10001” .

<streetParkingSpot-1> ps: hasParkingSpotID “16” .

……. All qualified members are listed here.

resultGenType

“When SMI Is Created”

mashupResult

<buildingParkingSpot-1>

Figure 7.3.7.5-4: An SMI of Smart Parking Mashup Application Represented
by a <semanticMashupInstance> Resource
7.3.8
Resource <ontologyMapping> and <ontologyMappingAlgorithmRepository>
The <ontologyMapping> resource is used for the mapping between two different ontologies. It contains necessary input parameters, such as the Resource-IDs of the source and target ontologies and the mapping method description (which includes the parameters of mapping policy and mapping algorithm), to perform ontology mapping. It also contains the output ontology mapping results.

The <ontologyMappingAlgorithmRepository> resource is used for storing a collection of ontology mapping algorithms which are represented as <ontologyMappingAlgorithm> resources, which are referenced from the <ontologyMapping> resource.

[image: image16.emf]<ontologyMapping>

sourceOntology

targetOntology

mappingResult

mappingAlgorithmLinks

1

1

1

1

executable

description

<ontologyMappingAlgorithm>

<ontologyMappingAlgorithmRepository>

0..n

0..1

0..1

<subscription>

0..1

<subscription>

0..1

mappingPolicy

1

Figure 7.3.8-1: Resource structure of <ontologyMapping> and <ontologyMappingAlgorithmRepository>
The <ontologyMapping> resource contains the child resources specified in table 7.3.8-1.

Table 7.3.8-1: Child resources of <ontologyMapping> resource

	Child Resources of <ontologyMapping>
	Child Resource Type
	Multiplicity
	Description
	<ontologyMappingAnnc> Child Resource Types

	[variable]
	<subscription>
	0..n
	See [i.3], clause 9.6.8 where the type of this resource is described.
	<subscription>

The <ontologyMapping> resource contains the attributes specified in table 7.3.8-2.
Table 7.3.8-2: Attributes of <ontologyMapping> resource

	Attribute Name
	Multiplicity
	RW/RO/WO
	Description
	<ontologyMappingAnnc> Attributes

	resourceType
	1
	RO
	See [i.3], clause 9.6.1.3.
	NA

	resourceID
	1
	RO
	See [i.3], clause 9.6.1.3.
	NA

	resourceName
	1
	WO
	See [i.3], clause 9.6.1.3.
	NA

	parentID
	1
	RO
	See [i.3], clause 9.6.1.3.
	NA

	accessControlPolicyIDs
	0..1 (L)
	RW
	See [i.3], clause 9.6.1.3.
	MA

	creationTime
	1
	RO
	See [i.3], clause 9.6.1.3.
	NA

	expirationTime
	1
	RW
	See [i.3], clause 9.6.1.3.
	MA

	lastModifiedTime
	1
	RO
	See [i.3], clause 9.6.1.3.
	NA

	labels
	0..1 (L)
	RW
	See [i.3], clause 9.6.1.3.
	MA

	announceTo
	0..1 (L)
	RW
	See [i.3], clause 9.6.1.3.
	NA

	announcedAttribute
	0..1 (L)
	RW
	See [i.3], clause 9.6.1.3.
	NA

	dynamicAuthorizationConsultationIDs
	0..1 (L)
	RW
	See [i.3], clause 9.6.1.3.
	OA

	creator
	0..1
	RO
	See [i.3], clause 9.6.1.3.
	NA

	sourceOntology
	1
	RW
	Contains the resourceID of the source ontology to be mapped.
	OA

	targetOntology
	1
	RW
	Contains the resourceID of the target ontology to be mapped.
	OA

	mappingPolicy
	1
	RW
	Determines the policy of applying the ontology mapping algorithms between the sourceOntology and targetOntology. It’s an enumeration type and the value can be:

· single: only one mapping algorithm is used.
· multiple: two or more mapping algorithms of different types are used.

· traversal: all provided mapping algorithms are used in a traversal way.
	OA

	mappingAlgorithmLinks
	1
	RW
	Links to a <ontologyMappingAlgorithmRepository> resource, or one or multiple <ontologyMappingAlgorithm> resources;
	OA

	mappingResultFormat
	1
	RW
	Indicates the required format of the generated content in the mappingResult attribute.
	OA

	mappingResult
	1
	RO
	Stores the mapping results (e.g. RDF/XML) generated by the hosting CSE.
	
OA

The <ontologyMappingAlgorithmRepository> resource contains the child resources specified in table 7.3.8-3.
Table 7.3.8-3: Child resources of <ontologyMappingAlgorithmRepository> resource

	Child Resources of <ontologyMapping>
	Child Resource Type
	Multiplicity
	Description
	<ontologyMappingAlgorithmRepositoryAnnc>Child Resource Types

	[variable]
	<ontologyMappingAlgorithm>
	0..n
	Each <ontologyMappingAlgorithm> represents an ontology mapping algorithm.
	<ontologyMappingAlgorithmAnnc>

	[variable]
	<subscription>
	0..n
	See [i.3], clause 9.6.8 where the type of this resource is described.
	<subscription>

The <ontologyMappingAlgorithmRepository> resource contains the attributes specified in table 7.3.8-5.
Table 7.3.8-4: Attributes of <ontologyMappingAlgorithmRepository> resource

	Attribute Name
	Multiplicity
	RW/RO/WO
	Description
	<ontologyMappingAlgorithmAnnc>Attributes

	resourceType
	1
	RO
	See [i.3], clause 9.6.1.3.
	NA

	resourceID
	1
	RO
	See [i.3], clause 9.6.1.3.
	NA

	resourceName
	1
	WO
	See [i.3], clause 9.6.1.3.
	NA

	parentID
	1
	RO
	See [i.3], clause 9.6.1.3.
	NA

	accessControlPolicyIDs
	0..1 (L)
	RW
	See [i.3], clause 9.6.1.3.
	MA

	creationTime
	1
	RO
	See [i.3], clause 9.6.1.3.
	NA

	expirationTime
	1
	RW
	See [i.3], clause 9.6.1.3.
	MA

	lastModifiedTime
	1
	RO
	See [i.3], clause 9.6.1.3.
	NA

	labels
	0..1 (L)
	RW
	See [i.3], clause 9.6.1.3.
	MA

	announceTo
	0..1 (L)
	RW
	See [i.3], clause 9.6.1.3.
	NA

	announcedAttribute
	0..1 (L)
	RW
	See [i.3], clause 9.6.1.3.
	NA

	dynamicAuthorizationConsultationIDs
	0..1 (L)
	RW
	See [i.3], clause 9.6.1.3.
	OA

	creator
	0..1
	RO
	See [i.3], clause 9.6.1.3.
	NA

The <ontologyMappingAlgorithm> resource contains no child resources. It contains the attributes specified in table 7.3.8-5.
Table 7.3.8-5: Attributes of <ontologyMappingAlgorithm> resource

	Attribute Name
	Multiplicity
	RW/RO/WO
	Description
	<ontologyMappingAlgorithmAnnc>Attributes

	resourceType
	1
	RO
	See [i.3], clause 9.6.1.3.
	NA

	resourceID
	1
	RO
	See [i.3], clause 9.6.1.3.
	NA

	resourceName
	1
	WO
	See [i.3], clause 9.6.1.3.
	NA

	parentID
	1
	RO
	See [i.3], clause 9.6.1.3.
	NA

	accessControlPolicyIDs
	0..1 (L)
	RW
	See [i.3], clause 9.6.1.3.
	MA

	creationTime
	1
	RO
	See [i.3], clause 9.6.1.3.
	NA

	expirationTime
	1
	RW
	See [i.3], clause 9.6.1.3.
	MA

	lastModifiedTime
	1
	RO
	See [i.3], clause 9.6.1.3.
	NA

	labels
	0..1 (L)
	RW
	See [i.3], clause 9.6.1.3.
	MA

	announceTo
	0..1 (L)
	RW
	See [i.3], clause 9.6.1.3.
	NA

	announcedAttribute
	0..1 (L)
	RW
	See [i.3], clause 9.6.1.3.
	NA

	dynamicAuthorizationConsultationIDs
	0..1 (L)
	RW
	See [i.3], clause 9.6.1.3.
	OA

	creator
	0..1
	RO
	See [i.3], clause 9.6.1.3.
	NA

	executable
	0..1
	RW
	Contains the binary executable of the ontology mapping algorithm.

For a pre-configured algorithm already stored in the system, this attribute can be omitted. The system can invoke the algorithm according to the resourceName or resourceID attribute based on its local policy configuration.
	
OA

	algorithmType
	0..1
	RW
	Indicates the type of the ontology mapping algorithm. It’s an enumeration type with possible values as follows:

· linguistic-feature extraction algorithm: compute the similarity based on linguistic string distance between the concepts of the source and target ontologies.

· structural-feature extraction algorithm: compute the similarity based on the graph structure between the source and target ontologies.

· external resource acquisition algorithm: compute the similarity based on external resources (e.g. well-known dictionary, knowledge base, expert system)

· logical reasoning algorithm: compute the similarity based on the reasoning of description logic.

· others: any other types that are not specified here.

This attribute can be used by an originator for discovering and selecting the candidate algorithms as the input to the ontology mapping task. It can also be used by the hosting CSE that performs the ontology mapping task to determine the proper ontology mapping algorithms according to the specified mapping policy.
	OA

	description
	0..1
	RW
	Human readable description of the ontology mapping algorithm.
	
OA

	mappingThreshold
	1
	WO
	Indicates a real number between 0 and 1 to filter entity mappings with a similarity exceeding this threshold. If the similarity between two concepts of the source and target ontologies is greater than this threshold, there is a mapping relationship between this pair of concepts. Note that a higher value of this threshold indicates a more strict mapping condition.
	
OA

7.3.9
Resource <reasoningRules>
7.3.9.1
Introduction
A semantic reasoning operation is to analyse the existing knowledge/facts (e.g., data/facts stored in a <semanticDescriptor> resource or in a <ontology> resource) in order to derive implicit facts by leveraging a set of semantic reasoning rules. This clause is to introduce <reasoningRules> resource, which is a child resource of the <ruleRepository> resource. A <reasoningRules> resource can be used to store a set of related reasoning rules (e.g. for supporting a particular application). By performing the CRUD operations on the <reasoningRules> resources, various reasoning rules (e.g., user-defined reasoning rules based on business logic) can be created, discovered, retrieved, updated and deleted inside the oneM2M system.

The <reasoningRules> resource contains the child resources specified in table 7.3.9.1-1.
Table 7.3.9.1-1: Child resources of <reasoningRules> resource
	Child Resources of <reasoningRules>
	Child Resource Type
	Multiplicity
	Description
	<reasoningRulesAnnc> Child Resource Types

	[variable]
	<subscription>
	0..n
	See [i.3], clause 9.6.8
	<subscription>

The <reasoningRules> resource above contains the attributes specified in table 7.3.9.1-2.

Table 7.3.9.1-2: Attributes of <reasoningRules> resource
	Attribute Name
	Multiplicity
	RW/RO/WO
	Description
	<reasoningRulesAnnc> Attributes

	resourceName
	1
	WO
	See clause [i.3], clause 9.6.1.3.
	NA

	parentID
	1
	RO
	See clause [i.3], clause 9.6.1.3.
	NA

	expirationTime
	1
	RW
	See clause [i.3], clause 9.6.1.3.
	NA

	accessControlPolicyIDs
	0..1 (L)
	RW
	See clause [i.3], clause 9.6.1.3.
	NA

	labels
	0..1 (L)
	RW
	See clause [i.3], clause 9.6.1.3.
	MA

	creationTime
	1
	RO
	See clause [i.3], clause 9.6.1.3.
	MA

	lastModifiedTime
	1
	RO
	See clause [i.3], clause 9.6.1.3.
	MA

	announceTo
	0..1 (L)
	RW
	See clause [i.3], clause 9.6.1.3.
	NA

	announcedAttribute
	0..1 (L)
	RW
	See clause [i.3], clause 9.6.1.3.
	NA

	dynamicAuthorizationConsultationIDs
	0..1 (L)
	RW
	See clause [i.3], clause 9.6.1.3.
	OA

	creator
	0..1
	RO
	See clause [i.3], clause 9.6.1.3.
	NA

	ontologyRef
	1
	WO
	A reference (URIs) of the ontologies used to represent the reasoning rules that are stored in the content attribute.
	OA

	ruleRepresentation
	1
	RW
	Indicates the format of the rules, e.g. Rule Interchange Format (RIF). In this clause, it is assumed that the M2M system adopts RIF in describing reasoning rules, which is W3C Recommendation.
	OA

	content
	1
	RW
	Stores a set of rules.
	OA

7.3.9.2
<reasoningRules> Procedures

7.3.9.2.1
Create <reasoningRules>

This procedure is used for creating a <reasoningRules> resource as described in table 7.3.9.2.1-1.

Table 7.3.9.2.1-1: <reasoningRules> CREATE
	<reasoningRules> CREATE

	Associated Reference Point
	Mca, Mcc and Mcc'

	Information in Request message
	All parameters defined in [i.3] table 8.1.2-3 apply with the specific details for:

Content: The resource content provides the information as defined in the resource definition of <reasoningRules> resource.

	Processing at Originator before sending Request
	According to clause 10.1.2 in oneM2M TS-0001 in [i.3].

	Processing at Receiver
	According to clause 10.1.2 in oneM2M TS-0001 in [i.3].

	Information in Response message
	All parameters defined in table 8.1.3-1 in [i.3] apply with the specific details for:

Content: Address of the created <reasoningRules> resource, according to clause 10.1.2 in [i.3].

	Processing at Originator after receiving Response
	According to clause 10.1.2 in oneM2M TS-0001 in [i.3].

	Exceptions
	According to clause 10.1.2 in oneM2M TS-0001 in [i.3].

7.3.9.2.2
Retrieve <reasoningRules>

This procedure is used for retrieving the attributes of a <reasoningRules> resource as described in table 7.3.9.2.2-1.

Table 7.3.9.2.2-1: <reasoningRules> RETRIEVE
	<reasoningRules> RETRIEVE

	Associated Reference Point
	Mca, Mcc and Mcc'.

	Information in Request message
	All parameters defined in table 8.1.2-3 in [i.3] apply.

	Processing at Originator before sending Request
	According to clause 10.1.3 in oneM2M TS-0001 in [i.3].

	Processing at Receiver
	According to clause 10.1.3 in oneM2M TS-0001 in [i.3].

	Information in Response message
	All parameters defined in table 8.1.3-1 in [i.3] apply with the specific details for:

Content: Attributes of the <reasoningRules> resource.

	Processing at Originator after receiving Response
	According to clause 10.1.3 in oneM2M TS-0001 in [i.3].

	Exceptions
	According to clause 10.1.3 in oneM2M TS-0001 in [i.3].

7.3.9.2.3
Update <reasoningRules>

This procedure is used for updating the attributes of a <reasoningRules> resource as described in table 7.3.9.2.3-1.

Table 7.3.9.2.3-1: <reasoningRules> UPDATE
	<reasoningRules> UPDATE

	Associated Reference Point
	Mca, Mcc and Mcc'

	Information in Request message

	All parameters defined in table 8.1.2-3 in [i.3] apply with the specific details for:

Content: Attributes of the <reasoningRules> resource as defined in clause 7.3.9.1 to be updated.

	Processing at Originator before sending Request
	According to clause 10.1.4 in oneM2M TS-0001 in [i.3].

	Processing at Receiver
	According to clause 10.1.4 in oneM2M TS-0001 in [i.3].

	Information in Response message
	According to clause 10.1.4 in oneM2M TS-0001 in [i.3].

	Processing at Originator after receiving Response
	According to clause 10.1.4 in oneM2M TS-0001 in [i.3].

	Exceptions
	According to clause 10.1.4 in oneM2M TS-0001 in [i.3].

7.3.X.2.4
Delete <reasoningRules>

This procedure is used for deleting a <reasoningRules> resource as described in table 7.3.9.2.4-1.

Table 7.3.9.2.4-1: <reasoningRules> DELETE
	<reasoningRules> DELETE

	Associated Reference Point
	Mca, Mcc and Mcc'

	Information in Request message
	All parameters defined in table 8.1.2-3 in [i.3] apply.

	Processing at Originator before sending Request
	According to clause 10.1.5 in oneM2M TS-0001 in [i.3].

	Processing at Receiver
	According to clause 10.1.5 in oneM2M TS-0001 in [i.3].

	Information in Response message
	According to clause 10.1.5 in oneM2M TS-0001 in [i.3].

	Processing at Originator after receiving Response
	According to clause 10.1.5 in oneM2M TS-0001 in [i.3].

	Exceptions
	According to clause 10.1.5 in oneM2M TS-0001 in [i.3].

7.3.10
Resource <ruleRepository>
7.3.10.1
Introduction
A <ruleRepository> resource is a child resource of the <CSEBase> resource. The <ruleRepository> resource may have one or multiple <reasoningRules> child resources to represent different sets of reasoning rules in the oneM2M system. A reasoning initiator can create <reasoningJobInstance> child resources of a <ruleRepository> resource to initiate desired reasoning operations (See clause 7.3.X for details).

The <ruleRepository> resource contains the child resources specified in table 7.3.10.1-1.
Table 7.3.10.1-1: Child resources of <ruleRepository> resource
	Child Resources of <ruleRepository>
	Child Resource Type
	Multiplicity
	Description
	<ruleRepositoryAnnc> Child Resource Types

	[variable]
	<reasoningRules>
	0..n
	<reasoningRules> resource for describing a set of reasoning rules.
	<reasoningRulesAnnc>

	[variable]
	<subscription>
	0..n
	See [i.3], clause 9.6.8.
	<subscription>

	[variable]
	<reasoningJobInstance>
	0..n
	<reasoningJobInstance> resource for describing a specific reasoning job instance.
	<reasoningJobInstanceAnnc>

The <ruleRepository> resource above contains the attributes specified in table 7.3.10.1-2.

Table 7.3.10.1-2: Attributes of <ruleRepository> resource
	Attribute Name
	Multiplicity
	RW/RO/WO
	Description
	<ruleRepositoryAnnc> Attributes

	resourceName
	1
	WO
	See clause [i.3], clause 9.6.1.3.
	NA

	parentID
	1
	RO
	See clause [i.3], clause 9.6.1.3.
	NA

	expirationTime
	1
	RW
	See clause [i.3], clause 9.6.1.3.
	NA

	accessControlPolicyIDs
	0..1 (L)
	RW
	See clause [i.3], clause 9.6.1.3.
	NA

	labels
	0..1 (L)
	RW
	See clause [i.3], clause 9.6.1.3.
	MA

	creationTime
	1
	RO
	See clause [i.3], clause 9.6.1.3.
	MA

	lastModifiedTime
	1
	RO
	See clause [i.3], clause 9.6.1.3.
	MA

	announceTo
	0..1 (L)
	RW
	See clause [i.3], clause 9.6.1.3.
	NA

	announcedAttribute
	0..1 (L)
	RW
	See clause [i.3], clause 9.6.1.3.
	NA

	dynamicAuthorizationConsultationIDs
	0..1 (L)
	RW
	See clause [i.3], clause 9.6.1.3.
	OA

	creator
	0..1
	RO
	See clause [i.3], clause 9.6.1.3.
	NA

7.3.10.2
<ruleRepository> Procedures

7.3.10.2.1
Create <ruleRepository>

This procedure is used for creating a <ruleRepository> resource as described in table 7.3.10.2.1-1.

Table 7.3.10.2.1-1: <ruleRepository> CREATE
	<ruleRepository> CREATE

	Associated Reference Point
	Mca, Mcc and Mcc'

	Information in Request message
	All parameters defined in [i.3] table 8.1.2-3 apply with the specific details for:

Content: The resource content provides the information as defined in the resource definition of <ruleRepository> resource.

	Processing at Originator before sending Request
	According to clause 10.1.2 in oneM2M TS-0001 in [i.3].

	Processing at Receiver
	According to clause 10.1.2 in oneM2M TS-0001 in [i.3].

	Information in Response message
	All parameters defined in table 8.1.3-1 in [i.3] apply with the specific details for:

Content: Address of the created <ruleRepository> resource, according to clause 10.1.2 in [i.3].

	Processing at Originator after receiving Response
	According to clause 10.1.2 in oneM2M TS-0001 in [i.3].

	Exceptions
	According to clause 10.1.2 in oneM2M TS-0001 in [i.3].

7.3.10.2.2
Retrieve <ruleRepository>

This procedure is used for retrieving the attributes of a <ruleRepository> resource as described in table 7.3.10.2.2-1.

Table 7.3.10.2.2-1: <ruleRepository> RETRIEVE
	<ruleRepository> RETRIEVE

	Associated Reference Point
	Mca, Mcc and Mcc'.

	Information in Request message
	All parameters defined in table 8.1.2-3 in [i.3] apply.

	Processing at Originator before sending Request
	According to clause 10.1.3 in oneM2M TS-0001 in [i.3].

	Processing at Receiver
	According to clause 10.1.3 in oneM2M TS-0001 in [i.3].

	Information in Response message
	All parameters defined in table 8.1.3-1 in [i.3] apply with the specific details for:

Content: Attributes of the <ruleRepository> resource.

	Processing at Originator after receiving Response
	According to clause 10.1.3 in oneM2M TS-0001 in [i.3].

	Exceptions
	According to clause 10.1.3 in oneM2M TS-0001 in [i.3].

7.3.10.2.3
Update <ruleRepository>

This procedure is used for updating the attributes of a <ruleRepository> resource as described in table 7.3.10.2.3-1.

Table 7.3.10.2.3-1: <ruleRepository> UPDATE
	<ruleRepository> UPDATE

	Associated Reference Point
	Mca, Mcc and Mcc'

	Information in Request message

	All parameters defined in table 8.1.2-3 in [i.3] apply with the specific details for:

Content: Attributes of the <ruleRepository> resource as defined in clause 7.3.10.1 to be updated.

	Processing at Originator before sending Request
	According to clause 10.1.4 in oneM2M TS-0001 in [i.3].

	Processing at Receiver
	According to clause 10.1.4 in oneM2M TS-0001 in [i.3].

	Information in Response message
	According to clause 10.1.4 in oneM2M TS-0001 in [i.3].

	Processing at Originator after receiving Response
	According to clause 10.1.4 in oneM2M TS-0001 in [i.3].

	Exceptions
	According to clause 10.1.4 in oneM2M TS-0001 in [i.3].

7.3.10.2.4
Delete <ruleRepository>

This procedure is used for deleting a <ruleRepository> resource as described in table 7.3.10.2.4-1.

Table 7.3.10.2.4-1: <ruleRepository> DELETE
	<ruleRepository> DELETE

	Associated Reference Point
	Mca, Mcc and Mcc'

	Information in Request message
	All parameters defined in table 8.1.2-3 in [i.3] apply.

	Processing at Originator before sending Request
	According to clause 10.1.5 in oneM2M TS-0001 in [i.3].

	Processing at Receiver
	According to clause 10.1.5 in oneM2M TS-0001 in [i.3].

	Information in Response message
	According to clause 10.1.5 in oneM2M TS-0001 in [i.3].

	Processing at Originator after receiving Response
	According to clause 10.1.5 in oneM2M TS-0001 in [i.3].

	Exceptions
	According to clause 10.1.5 in oneM2M TS-0001 in [i.3].

7.3.11
Resource <reasoningJobInstance>
7.3.11.1
Introduction
A Reasoning Initiator (RI), such as an AE or CSE, may trigger two types of reasoning operations. One type is “one-time reasoning operation. For example, a reasoning operation can be executed over a Fact Set (FS) and a Rule Set (RS) that may not change over time. In comparison, the other type is a “continuous” reasoning operation. For example, it is possible that in some cases the input FS and RS for reasoning may change over time, and accordingly the previously inferred knowledge may not be valid anymore. Therefore, new reasoning is executed over the latest version of FS and RS in order to generate up-to-date inferred knowledge. See clause 8.7.5 for examples of these two types of reasoning operations.

In this clause, a <reasoningJobInstance> resource represents a specific reasoning job instance for enabling the two types of reasoning operations. A RI initiates a desired reasoning operation by creating a <reasoningJobInstance> resource as a child resource of a <ruleRepository> resource.

The <reasoningJobInstance> resource contains the child resources specified in table 7.3.11.1-1.
Table 7.3.11.1-1: Child resources of <reasoningJobInstance> resource
	Child Resources of <reasoningJobInstance>
	Child Resource Type
	Multiplicity
	Description
	<reasoningJobInstance> Child Resource Types

	[variable]
	<subscription>
	0..n
	See [i.3], clause 9.6.8
	<subscription>

The <reasoningJobInstance> resource above contains the attributes specified in table 7.3.11.1-2.

Table 7.3.11.1-2: Attributes of <reasoningJobInstance> resource
	Attribute Name
	Multiplicity
	RW/RO/WO
	Description
	<reasoningJobInstance> Attributes

	resourceName
	1
	WO
	See clause [i.3], clause 9.6.1.3.
	NA

	parentID
	1
	RO
	See clause [i.3], clause 9.6.1.3.
	NA

	expirationTime
	1
	RW
	See clause [i.3], clause 9.6.1.3.
	NA

	accessControlPolicyIDs
	0..1 (L)
	RW
	See clause [i.3], clause 9.6.1.3.
	NA

	labels
	0..1 (L)
	RW
	See clause [i.3], clause 9.6.1.3.
	MA

	creationTime
	1
	RO
	See clause [i.3], clause 9.6.1.3.
	MA

	lastModifiedTime
	1
	RO
	See clause [i.3], clause 9.6.1.3.
	MA

	announceTo
	0..1 (L)
	RW
	See clause [i.3], clause 9.6.1.3.
	NA

	announcedAttribute
	0..1 (L)
	RW
	See clause [i.3], clause 9.6.1.3.
	NA

	dynamicAuthorizationConsultationIDs
	0..1 (L)
	RW
	See clause [i.3], clause 9.6.1.3.
	OA

	creator
	0..1
	RO
	See clause [i.3], clause 9.6.1.3.
	NA

	reasoningType
	1
	WO
	The type of the reasoning job represented by this resource, such as “one-time” or “continuous”.
	OA

	mode
	0..1
	WO
	The supported values of this attribute include:
· “Periodic” - the reasoning job represented by this resource is executed periodically.

· “When the invovled FS/RS changes” - if the factSet and/or ruleSet attributes change, the reasoning job represented by this resource is executed.
This attribute is present only when the value of reasoningType is set to “continuous”.
	OA

	period
	0..1
	RW
	The time period for executing the reasoning job represented by this resource. For example, every two hours.

This attribute is present only when the value of mode is present and set to “Periodic”.
	

	factSet
	1 (L)
	RW
	A list of URIs of the resources that store the facts used by this reasoning job.
	OA

	ruleSet
	1 (L)
	RW
	A list of URIs of resources that store the reasoning rules used by this reasoning job.
	OA

	result
	1
	RO
	The latest reasoning result produced by this reasoning job.
	OA

	resultRepresentation
	1
	RW
	Indicates the type of serialization of the result attribute, e.g. RDF/XML, OWL/XML.
	OA

7.3.11.2
<reasoningJobInstance> Procedures

7.3.11.2.1
Create <reasoningJobInstance>

This procedure is used for creating a <reasoningJobInstance> resource as described in table 7.3.11.2.1-1.

Table 7.3.11.2.1-1: <reasoningJobInstance> CREATE
	<reasoningJobInstance> CREATE

	Associated Reference Point
	Mca, Mcc and Mcc'

	Information in Request message
	All parameters defined in [i.3] table 8.1.2-3 apply with the specific details for:

Content: The resource content provides the information as defined in the resource definition of <reasoningJobInstance> resource.

	Processing at Originator before sending Request
	According to clause 10.1.2 in oneM2M TS-0001 in [i.3].

	Processing at Receiver
	The Receiver follows the basic procedure according to clause 10.1.4 in oneM2M TS-0001 [i.3], with the following specific details:
1. The receiver first retrieves the facts from the resources referred to by the factSet attribute. For example,
· If a referred resource is a type of <semanticDescriptor> resource, the RDF triples included in the descriptor attribute will be collected.
· If a referred resource is a type of <ontology> resource, the data included in the ontologyContent attribute will be collected.

2. The receiver retrieves all the related reasoning rules for the resources referred to by the ruleSet attribute. For example,

· If a referred resource is a <reasoningRules> resource, the rules included in the ruleRepresentation attribute will be collected.

3. The receiver includes the retrieved facts and rules from the previous steps, as well as optional facts/rules based on local policies, as inputs for the semantic reasoning operation. The receiver performs semantic reasoning processing using these inputs and produces the reasoning result and stores it in the result attribute of the created <reasoningJobInstance> resource.

4. If the created <reasoningJobInstance> resource represents a continuous reasoning operation (i.e., the reasoningType attribute is set to “continuous”), subsequent reasoning processing will be automatically triggered and performed according to the values of mode and period attributes and the result attribute will be overwritten with the latest reasoning result.

	Information in Response message
	All parameters defined in table 8.1.3-1 in [i.3] apply with the specific details for:

Content: Address of the created <reasoningJobInstance> resource, according to clause 10.1.2 in [i.3].

	Processing at Originator after receiving Response
	According to clause 10.1.2 in oneM2M TS-0001 in [i.3].

	Exceptions
	According to clause 10.1.2 in oneM2M TS-0001 in [i.3].

7.3.11.2.2
Retrieve <reasoningJobInstance>

This procedure is used for retrieving the attributes of a <reasoningJobInstance> resource as described in table 7.3.11.2.2-1.

Table 7.3.11.2.2-1: <reasoningJobInstance> RETRIEVE
	<reasoningJobInstance> RETRIEVE

	Associated Reference Point
	Mca, Mcc and Mcc'.

	Information in Request message
	All parameters defined in table 8.1.2-3 in [i.3] apply.

	Processing at Originator before sending Request
	According to clause 10.1.3 in oneM2M TS-0001 in [i.3].

	Processing at Receiver
	According to clause 10.1.3 in oneM2M TS-0001 in [i.3].

	Information in Response message
	All parameters defined in table 8.1.3-1 in [i.3] apply with the specific details for:

Content: Attributes of the <reasoningJobInstance> resource.

	Processing at Originator after receiving Response
	According to clause 10.1.3 in oneM2M TS-0001 in [i.3].

	Exceptions
	According to clause 10.1.3 in oneM2M TS-0001 in [i.3].

7.3.11.2.3
Update <reasoningJobInstance>

This procedure is used for updating the attributes of a <reasoningJobInstance> resource as described in table 7.3.11.2.3-1.

Table 7.3.11.2.3-1: <reasoningJobInstance> UPDATE
	<reasoningJobInstance> UPDATE

	Associated Reference Point
	Mca, Mcc and Mcc'

	Information in Request message

	All parameters defined in table 8.1.2-3 in [i.3] apply with the specific details for:

Content: Attributes of the <reasoningJobInstance> resource as defined in clause 7.3.X.1 to be updated.

	Processing at Originator before sending Request
	According to clause 10.1.4 in oneM2M TS-0001 in [i.3].

	Processing at Receiver
	According to clause 10.1.4 in oneM2M TS-0001 in [i.3].

	Information in Response message
	According to clause 10.1.4 in oneM2M TS-0001 in [i.3].

	Processing at Originator after receiving Response
	According to clause 10.1.4 in oneM2M TS-0001 in [i.3].

	Exceptions
	According to clause 10.1.4 in oneM2M TS-0001 in [i.3].

7.3.11.2.4
Delete <reasoningJobInstance>

This procedure is used for deleting a <reasoningJobInstance> resource as described in table 7.3.11.2.4-1.

Table 7.3.11.2.4-1: <reasoningJobInstance> DELETE
	<reasoningJobInstance> DELETE

	Associated Reference Point
	Mca, Mcc and Mcc'

	Information in Request message
	All parameters defined in table 8.1.2-3 in [i.3] apply.

	Processing at Originator before sending Request
	According to clause 10.1.5 in oneM2M TS-0001 in [i.3].

	Processing at Receiver
	According to clause 10.1.5 in oneM2M TS-0001 in [i.3].

	Information in Response message
	According to clause 10.1.5 in oneM2M TS-0001 in [i.3].

	Processing at Originator after receiving Response
	According to clause 10.1.5 in oneM2M TS-0001 in [i.3].

	Exceptions
	According to clause 10.1.5 in oneM2M TS-0001 in [i.3].

7.4
Implementation options

7.4.1
Introduction

The efficiency of queries, semantic resource discovery and access control for sematic information depend on the underlying implementation. In this clause architectural and implementation perspectives are presented.

7.4.2
The hierarchically layered architecture

7.4.2.0
Introduction

While the current oneM2M architectural view is exclusively based on resources, these can be implemented in different ways. Especially for managing semantic triples, triple stores are the straightforward choice. This has implications for how the access control to resources and triples is handled. In this clause different implementation options are discussed assuming a hierarchical structuring into a semantic layer and a data layer.

As shown in figures 7.4.2.1-1and 7.4.2.2-1, data resources and semantic triples may be integrated in a hierarchically layered architecture. In the hierarchical model the Upper Layer provides an interface for RESTful operations, controls and manages the Access Control Policies (ACPs). The Lower Layer supports the upper layer with specific services.

From a functional perspective there are two layers: aData Layer containing the data resources and related functions and a Semantic Layer containing semantic triples and related semantic functions. Each functional Layer may be used as either the Upper Layer or the Lower Layer as detailed later in this clause.

The layers may reside on different CSEs, but integration on the same CSE may be more performance efficient.

7.4.2.1
Data layer as upper layer

In figure 7.4.2.1-1 the Upper Layer is the Data Layer and the Lower Layer is the Semantic Layer which provides the Upper Layer with semantic information.
There are three alternatives for implementation of the Semantic Layer as the Lower Layer:

· Using Semantic Descriptors distributed in the oneM2M Resource Tree, which corresponds to the Release 2 data resource driven approach.
· Using permanent Sematic Graph Stores, which may be distributed or centralized.
· In a hybrid option, using temporary Semantic Graph Stores together with the distributed resource model to provide support for semantic functionality e.g. in Release 2.

Figure 7.4.2.1-1 shows a typical data resource driven approach for M2M scenarios. Resource Discovery through the data resource tree may be supported by the semantic leaves (i.e. distributed graph stores) in the Semantic Layer. The ACPs are maintained under <semanticDescriptor> resources in the Data Layer. Further description for the Access Control methods in this architecture are provided in clause 7.5.

[image: image17.emf]semanticDescriptor

ACP1

RDF triples

semanticDescriptor

ACP2

RDF triples

semanticDescriptor

ACP3

RDF triples

semanticDescriptor

ACP4

RDF triples

Data Layer

Semantic Layer

CSE

Semantic Resource Discovery

Figure 7.4.2.1-1: Hierarchically layered structure - controlled by the data layer

7.4.2.2
Semantic layer as upper layer

In figure 7.4.2.2-1, the Upper Layer is the Semantic Layer and the Lower Layer is the Data Layer supporting the upper layer with raw data. The main implementation of the Sematic Layer as an Upper Layer is using Sematic Graph Stores. Further description for the Access Control methods in this architecture are provided in clause 7.5.

NOTE:
In the following clauses the terms "Semantic Graph Stores" and "Triple Stores" are used interchangeably.

[image: image18.emf]Semantic Query

RDF triples

ACPs

Ontology

Data Layer

Semantic Layer

CSE

Index Mapping

A data resource addressed by a

triple associated with a ACP

Semantic Resource

Discovery

Figure 7.4.2.2-1: Hierarchically layered structure -
controlled by the semantic layer

Figure 7.4.2.2-1 shows a typical semantics driven scheme for Semantic Web scenarios. Semantic Query may be conducted in the Semantic Layer with the return of the URI or URL of the data resources in the Data Layer. Semantic Resource Discovery may also be realized with the return of the data resources in the Data Layer via proper mapping between these two layers. The triples in the Semantic Layer are associated with their specific ACPs. A data resource in the Data Layer is addressed by a triple (e.g. via its URI or URL) associated with the ACP.

7.4.3
The parallel architecture

Looking beyond the currently supported semantic functionality, a more advanced architecture may be needed. In the following clause the concepts of Data Entity and Semantic Entity are introduced. These concepts may be used in different configurations, supporting more advanced semantic functionality like semantic mash-up and the possible interaction with other semantic platforms like the semantic web.
Figure 7.4.3-1 shows a parallel architecture with distinct entities, i.e. a Data Entity and a Semantic Entity.

A Data Entity and/or a Semantic Entity may each have its own Access Control Policies (ACPs) for managing the access control within its scope.

The semantic triples or data resources in the Data Entity may be exposed to the Semantic Entity with specific ACPs associated. For example:

a) a Semantic Publication function in the Data Entity may expose semantic triples to the Central Graph Store in Semantic Entity with the corresponding ACPs associated with the triples; or

b) a Data Annotation function in the Data Entity may expose data and associated ACPs to the Central Graph Store via the local temporary or caching Relational Data Base Management System (RDBMS) and Semantic Reasoning and Mapping functions in Semantic Entity.

The data resources or semantic triples in the Semantic Entity may also be exposed to the Data Entity with specific ACPs associated. For example:

c) a Semantic Mash-up function in the Semantic Entity may expose new data resources and related ACPs from the semantic mash-up to the Data Entity; or

d) a Semantic Annotation function in the Semantic Entity may expose semantic triples and related ACPs to the <semanticDescriptor> resources in the Data Entity.

[image: image19.png]Data
Annotation

i Semantic
1 Publication
.

Semantic Resource Discovery

1
Semantic | | 1
Mash-up o 1
£ 1
a2 1
Semantic || & 1
Annotation = 1
g 1
8 1
B !
T 1
RDF triples :
v 1
=T |
- I
g 1 L 1
Mcc/Mcc | ./.«h i
1 1
1 1
1 1

Semantic Entity

A —
Central Graph Store

Semantic Query/Reasoning

Figure 7.4.3-1: Access control in a parallel structure
Figure 7.4.3-1 shows that a Data Entity and a Semantic Entity may reside on different CSEs. But a Data Entity and a Semantic Entity may also reside on the same CSE. Figure 7.4.3-2 shows a logical resource tree with both a Data Entity and a Semantic Entity.

[image: image20.emf]<CSEBase>

1

CSE-ID

<node>

0..n

<AE>

0..n

<container>

0..n

<group>

0..n

<accessControlPolicy>

0..n

<remoteCSE>

0..n

<m2mServiceSubscriptionProfile>

0..n

1

nodeID

<semanticDescriptor>

0..n

1(L)

memberIDs

<semanticDescriptor>

0..n

0..1

ontologyRef

<semanticDescriptor>

0..n

1

App-ID

0..1

ontologyRef

<semanticDescriptor>

0..n

<contentInstance>

0..n

1

content

0..n

<semanticDescriptor>

<subscription>

0..n

1

descriptor

0..1

ontologyRef

0..1 (L)

accessControlPolicy

<semanticDescriptor>

<semanticDescriptor>

0..n

(central Semantic Graph Store)

Figure 7.4.3-2: Logic resource tree with both a data entity and a semantic entity

7.5
Approaches to Access Control

7.5.1
Access Control for semantic discovery, based on the ACPs in resource tree and triples in the graph store

7.5.1.1
Introduction

Implementing access control for semantic related functionalities (e.g. semantic resource discovery, semantic query) based on the ACPs in resource tree can be seen as an attractive approach since the compatibility with existing resource tree ACPs will be kept.
7.5.1.2
Solution A: Semantic filtering based on graph store

In the solution descriptions below, some assumptions are considered.

10) There is a centralized graph store to store the triples in all <semanticDescriptor>s.

11) Based on the query request with a target URL in the resource tree, the scope of the query is limited to the triples in both the <semanticDescriptor>s as child resources in the sub-tree under the target URL and the relevant <semanticDescriptor>s linked to the <semanticDescriptor>s under the target URL.
In solution A, the triples in the <semanticDescriptor>s will be stored in one graph of a graph store. To retain the effect of ACPs in resource tree, the <semanticDescriptor>is used as the anchor to link the ACPs in resource tree and the access control during the query on semantic repository. The procedure of the solution A are described as follows.

Pre-steps before semantic query process:
12) The CSE hosting the Graph store creates an internal ontology with class SemanticDescriptor and atomDescription, and the property describedIn, hasSubject hasObject and hasProperty.
13) For each <semanticDescriptor>with ACP in resource tree(s), the CSE hosting the graph store creates corresponding semantic descriptor instances in the semantic graph store using IRI/URL of the respective <semantic Descriptor>. The semantic descriptor instances are the instances of the predefined class SemanticDescriptor.

14) The CSE hosting the graph store adds triples in semantic graph store to associate the semantic triples in the <semanticDescriptor>s in resource tree with the created semantic descriptor instances. The triples in the <semanticDescriptor>s in the resource tree(s) of other CSEs should be notified to the CSE hosting the graph store.

Considering that one subject can be described in multiple <semanticDescriptor>s with different ACPs, the association should be implemented with each triple for classification, and the association triples are added based on each triple described in the <semanticDescriptor>. Figure 7.5.1.2-1 shows the association between the triple and the semantic descriptor instance.

[image: image21.png]Subject

Instance hassubject

hasProperty
Property

Object
Instance

i Semantic Same IRI Semantic
atom Description describedin

RSN Descriptor - Descriptor
istancs Instance Resource

The atomDescription class is used to express the description of one triple

Figure 7.5.1.2-1: Association between the triple and the SemanticDescriptor instance

For example, for the triple in <semanticDescriptor> A as classX property Y classZ, the following association triples are needed to be added. These association triples are termed "SD Relationship Triples":
· atomDescriptionA hasSubject classX

· atomDescriptionA hasObject classX

· atomDescriptionA hasProperty classZ

· atomDescriptionA describedIn SemanticDescriptorA

The process after receiving the semantic query request with SPARQL statement:
15) The receiver CSE finds the <semanticDescriptor>s where the Originator (AE ID or CSE ID) is allowed to use for querying based on the ACPs in resource tree and the target URL in the request.
16) The receiver CSE identifies the corresponding SemanticDescriptor instances (same IRI/URL with the <semanticDescriptor>) in the semantic graph store.
17) In the received original SPARQL semantic query statements, the receiver CSE adds new sentences to indicate that the target variable triples are associated with the identified SemanticDescriptor (i.e. new SD Relationship Triples) instances as follows:
a)
find the variables and their relevant triples in the SPARQL query;
b)
create atomdescription variables for each triple with variables in the query;
c)
associate the atomdescription variables with each triple with variables in the query;
d)
add the sentence to associate the atomdescription variables and the identified SemanticDescriptor instances.
Figure 7.5.1.2-2 shows the association between the triple with variables and the SemanticDescriptor instances.

[image: image22.png]Subject
variable
S

hasProperty
—

Object
variable

hassubject

PRI Semantic same IRI emantic

RSN Descriptor - Descriptor

Instances Resources

atom Description

Figure 7.5.1.2-2: Association between the triple with variables in SPARQL query and
the SemanticDescriptor instances

For example, for the original SPARQL query:
SELECT ?device ?operation

WHERE {

?device rdf:type m2m:WashMachine.

?device m2m:hasOperation ?operation.
}

If the allowed SemanticDescriptor instance is SemanticDescriptorA, then the modified SPARQL query is given as:
 SELECT ?device ?operation
WHERE {
?device rdf:type m2m:WashMachine.

?device m2m:hasOperation ?operation.
?atom1 temp:hasSubject ?device.

?atom1 temp:hasObject ?operation

?atom1 temp:hasProperty m2m:hasOperation

?atom2 temp:hasSubject ?device

?atom2 temp:hasObject m2m:WashMachine

?atom2 temp:hasProperty rdf:type

?atom1 temp:desribedIn SemanticDescriptorA(IRI/URL).

?atom2 temp:desribedIn SemanticDescriptorA(IRI/URL).

}

18) The receiver CSE sends the modified SPARQL semantic query statement to the CSE hosting the graph store for querying the graph store.
19) The receiver CSE compose Response according to the semantic query results feedback from the CSE hosting the graph store.
In the following part, we give a complete example to explain solution A. The considered resource tree is shown in figure 7.5.1.2-3 where three <semanticDescriptor> (SD) resources are involved.

[image: image23.png]CSEA

Figure 7.5.1.2-3: Considered resource tree in the example

The triples in SD-1, SD-2 and SD-3 are assumed as follows:
· SD-1:
· HomeA
rdf:type
ex:Home

· HomeA
ex:hasLocation
LocationA

· LocationA
ex:hasLatitude
"300"
· LocationA
ex:hasLongitude
"200"
· SD-2:
· DeviceA
rdf:type
m2m:TemperatureSensor

· DeviceA
ex:hasLocation
LocationA

There is a link to SD-1 in SD-2 that indicates Location(class) related information can be retrieved from SD-1.

· SD-3

· DeviceB
rdf;type
ex:DoorLock

· DerviceB
ex:hasLocation
LocationA

The CSEA hosts the graph store. The triples in the graph store will include all the triples in the<semanticDescriptor>, and there will be 4 additional triples (i.e. SD Relationship Triples) for each triple in the<semanticDescriptor>. The total additional triples are given as follows:
· For SD-1:
· atom1 temp:hasSubject HomeA

· atom1 temp:hasObject ex:Home

· atom1 temp:hasProperty rdf:type

· atom1 temp:describedIn SD-1

· atom2 temp:hasSubject HomeA

· atom2 temp:hasObject LocationA

· atom2 temp:hasProperty ex:hasLocation

· atom2 temp:describedIn SD-1

· atom3 temp:hasSubject LocationA

· atom3 temp:hasObject "300"
· atom3 temp:hasProperty ex:Latitude

· atom3 temp:describedIn SD-1

· atom4 temp:hasSubject LocationA

· atom4 temp:hasObject "200"
· atom4 temp:hasProperty ex:hasLongtitude

· atom4 temp:describedIn SD-1

· For SD-2:
· atom5 temp:hasSubject DeviceA

· atom5 temp:hasObject m2m:TemperatureSensor

· atom5 temp:hasProperty rdf:type

· atom5 temp:describedIn SD-2

· atom6 temp:hasSubject DeviceA

· atom6 temp:hasObject LocationA

· atom6 temp:hasProperty ex:hasLocation

· atom6 temp:describedIn SD-2

· For SD-3:
· atom7 temp:hasSubject DeviceB

· atom7 temp:hasObject m2m:DoorLock

· atom7 temp:hasProperty rdf:type

· atom7 temp:describedIn SD-3

· atom8 temp:hasSubject DeviceB

· atom8 temp:hasObject LocationA

· atom8 temp:hasProperty ex:hasLocation

· atom8 temp:describedIn SD-3

It is assumed that an originator sends the query request in which the target URL is the URL of AppA and SPARQL query filter is:
SELECT ?device
WHERE {

?device ex:hasLocation ?Location.

?Location ex:hasLatitude ?val1.

?Location ex:hasLagitude ?val2.

FILTER(?val1=="300" && ?val2 =="200")

}

When receiving this query request, the CSEA will first identify the scope of the <semanticDescriptor>s related to the query as follows.

20) Find that there are two SDs, i.e. SD-2 and SD-3, under the target URL, and then check the ACPs linked to these SDs and find that only SD-2 is allowed to be used by the originator in the query.

21) Find that there is a link (e.g. relatedSemantics attribute of <semanticDescriptor>) in the SD-2 to SD-1 for the class Location, and then check the original SPARQL query and find that class Location is involved.

22) Check the ACP linked to SD-1 and find that SD-1 is not allowed to be used by the originator in the query.

After identifying the scope of the <semanticDescriptor>s (SD_2) related to the query, the CSEA revises the original SPARQL query as:
SELECT ?device
WHERE {

?device ex:hasLocation ?Location.

?Location ex:hasLatitude ?val1.

?Location ex:hasLagitude ?val2.

?agtom1 temp:hasSubject ?device.

?atom1 temp:hasObject ?Location.

?atom1 temp:hasProperty ?hasLocation.

?atom2 temp:hasSubject ?Location.

?atom2 temp:hasObject ?val1.

?atom2 temp:hasProperty ex:hasLatitude.

?atom3 temp:hasSubject ?Location.

?atom3 temp:hasObject ?val2.

?atom3 temp:hasProperty ex:hasLongitude

?atom1 temp:describedIn SD-2

?atom2 temp:describedIn SD-2

?atom3 temp:describedIn SD-2

FILTER(?val1=="300" && ?val2 =="200")

}

The CSEA applies the revised SPARQL query to the graph store, and return the result.

The returned result is no device.

7.5.1.3
Solution B: Graph division based semantic filtering

In the solution descriptions below, some assumptions are considered.

23) There is a centralized graph store to store the triples in all <semanticDescriptor>s.

24) The returned information for query request is in the scope of the triples in all possible <semanticDescriptor>s. The scope may contain more triples (i.e. from <semanticDescriptor>s not explicitely linked to the <semanticDescriptor>s under the original target URL) compared with solution A.
In solution B, the triples in the <semanticDescriptor>s will be stored in separated graphs in the graph store. There are two options for the graph division:
· Option 1:
· Store the triples in the same <semanticDescriptor> in a graph.

· Option 2:
· Store the triples in the semantic descriptors linked to the same ACP in a graph.
For Option 1, there will be many graphs in the graph store and the query speed will be slow when the query across the union of a lot of graphs, but each graph of Option 1 is not necessary to be updated with the update of ACPs. For Option 2, the number of graphs will be small but it needs the synchronization between the graphs and the ACPs.

The procedure of solution B is simple:
Pre-step:
25) The CSE hosting the graph store stores the triples in the separated graphs of graph store as Option 1 or Option 2.

26) The ACP information related to <semanticDescriptor>s in the resource tree(s) of other CSEs should be notified to the CSE hosting the graph store.

Query-step

The query request will be forwarded from the receiver CSE to the CSE hosting the graph store for query:
For Option 1:

· After receiving the forwarded request, the CSE hosting the graph store will:
1)
Find the <semanticDescriptor> which is allowed to be used in the query according to the ACP.

2)
Identify the graphs that correspond to the found <semanticDescriptor> in the previous step.
3)
Apply the SPARQL query on the union of the identified graphs.
4)
Return the query result.
For Option 2:

· After receiving the forwarded request, the CSE hosting the graph store will:
1)
Identify the access permissions of the Originator of the original request before forwarding - according to ACPs, and find the relevant ACPs that includes the Originator to have discovery permissions.

2)
Identify the graphs that corresponds to the found ACPs in the previous step.

3)
Apply the SPARQL query on the union of the identified graphs.

4)
Return the query results.
7.5.2
Direct access control of semantic graph store
7.5.2.1
Introduction
As described in clauses 7.5.1.2 and 7.5.1.3, <accessControlPolicy> specified by the accessControlPolicyIDs attribute of <semanticDescriptor> may be used for access control in the Semantic Graph Store when executing SPARQL operations as a part of semantic queries. One approach is to implement access control policies directly in the Semantic Graph Store, which makes it more efficient and scalable to control the access to a centralized Semantic Graph Store. This approach may contain the following main steps with the following assumptions:
27) There is a centralized Semantic Graph Store.

28) The proposed approach will be used for semantic query over this centralized Semantic Graph Store.

29) Each semantic query matches all semanticDescriptors but not cross multiple semanticDescriptors.

30) There is a need for synchronization of access control policies between the CSE and the Semantic Graph Store:
· Construct Access Control Rules specified by <accessControlPolicy> in the Semantic Graph Store. Note that <accessControlPolicy> is specified by the accessControlPolicyIDs attribute of <semanticDescriptor> resource.

· Associate targeted Semantic Triples (i.e. RDF triples as described by the descriptor attribute of <semanticDescriptor> but stored in the Semantic Graph Store) with their accessControlPolicyIDs or <accessControlPolicy> with related Access Control Rules.

· Semantic triple operations are conducted with the selected semantic triples which are associated with the Access Control Rules allowing the Originator to operate.

Figure 7.5.2.1-1 gives an example of access control policy for two <semanticDescriptor> resources, where there are two access control policies (i.e. <accessControlPolicy1> and <accessControlPolicy2>). The access to <semanticDescriptor1> is controlled by <accessControlPolicy1> and <accessControlPolicy2>, while the access to <semanticDescriptor2> is only controlled by <accessControlPolicy2>.

[image: image24.emf]<semanticsDescriptor1>

accessControlPolicyID:

URI to <accesscontrolPolicy1>

URI to <accesscontrolPolicy2>

descriptor: triple set for

sample 1 and sample 2

<accesscontrolPolicy1>

privileges: (originator; context(optional); operation)

rule-1: AE1, AE2, AE3; Retrieve, Discovery

rule-2: AE1, AE3; Create, Update, Delete

<accesscontrolPolicy2>

privileges: (originator; context(optional); operation)

rule-3: AE1, AE2; Discovery

<semanticsDescriptor2>

accessControlPolicyID:

URI to <accesscontrolPolicy2>

descriptor:

triple set for sample 3

Figure 7.5.2.1-1: Example of access control policy for <semanticDescriptor>
7.5.2.2
Access control modelling in semantic graph store
Examples for access control modelling in the Semantic Graph Store are shown in figure 7.5.2.2-1, figure 7.5.2.2-2, and figure 7.5.2.2-3.

The Access Control Ontology shown in figure 7.5.2.2-1 defines two new classes: accessControlPolicy and accessControlRule. In addition, five new properties (i.e. hasACPRule, hasACOriginator, hasACOperations, hasACContexts and appliedTo) are defined. hasACPRule is used to link an accessControlPolicy instance with an accessControlRule instance. Properties hasACOriginator, hasACOperations and hasACContexts (optional) basically describe an accessControlRule instance and are used to specify who can issue what operations under which conditions. As these triples describe the ACP themselves, they are termed "ACP Triples".
Property appliedTo is used to describe which <semanticDescriptor> resource an accessControlPolicy instance can be applied to As these triples bind <accessControlPolicy> and <semanticDescriptor> they are temed "ACP-SD Binding Triples".
Note that this ontology is defined by following how oneM2M <accessControlPolicy> resource is specified in oneM2M TS-0001 [i.3], where an access-control-rule-tuple consists of parameters such as accessControlOriginators, accessControlOperations, and accessControlContexts.

 SHAPE * MERGEFORMAT

Figure 7.5.2.2-1: Access control ontology model

Figure 7.5.2.2-2 shows an example of the eHealth Ontology Reference Model, which will be used to develop the Semantic Graph Store example in figure 7.5.2.2-3 and SPARQL example in figure 7.5.2.3-1.
[image: image26.emf]eHealthcare Ontology Reference Model

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix ex: <http://example.org/> .

@prefix acp: <http://accessControlPolicy.org/>.

ex:Person a rdfs:Class .

ex:dateOfBirth a rdf:Property ; rdfs:domain ex:Person ; rdfs:range xsd:date ; rdfs:comment "Date of Birth" .

ex:name a rdf:Property ; rdfs:domain ex:Person ; rdfs:range rdfs:Literal ; rdfs:comment "name of the person" .

ex:Patient rdfs:subClassOf ex:Person .

ex:Doctor rdfs:subClassOf ex:Person .

ex:takeCareOf a rdf:Property ; rdfs:domain ex:Doctor ; rdfs:range rdfs:Patient ;

rdfs:comment "doctor take care of (relation) patient" .

ex:MeasurementSample a rdfs:Class .

ex:measureOn a rdf:Property ; rdfs:domain ex:MeasurementSample ; rdfs:range xsd:date ;

rdfs:comment "the date of measurement" .

ex:measureFor a rdf:Property ; rdfs:domain ex:MeasurementSample ; rdfs:range ex:Patient ;

rdfs:comment "sample is measure for which patient" .

ex:unit a rdf:Property ; rdfs:domain ex:MeasurementSample ; rdfs:range rdfs:Literal ;

rdfs:comment "unit of the value" .

ex:BPMeasurementSample rdfs:subClassOf ex:MeasurementSample .

ex:dValue a rdf:Property ; rdfs:domain ex:BPMeasurementSample ; rdfs:range xsd:integer ;

rdfs:comment "value of the diastolic" .

ex:sValue a rdf:Property ; rdfs:domain ex:BPMeasurementSample ; rdfs:range xsd:integer ;

rdfs:comment "value of the systolic" .

ex:resourceGroup a rdf:Class ;

rdfs:comment "contain a list of resources in resource tree" .

ex:containMeasurement a rdf:Property ; rdfs:domain ex:resourceGroup ; rdfs:range ex:MeasurementSample ;

rdfs:comment "resourceGroup contains one or more measurement samples" .

Figure 7.5.2.2-2: eHealth ontology reference model

Figure 7.5.2.2-3 describes an example of RDF triples in the Semantic Graph Store based on the example shown in figure 7.5.2.1-1 and the Access Control Ontology defined in figure 7.5.2.2-1. In this use case, there are two patients Jack and Alice; their doctors are John and Steve, respectively. There are three blood pressure meansurement samples (i.e. Sample1 for Jack, Sample2 and Sample3 for another patient3). Corresponding triples are shown in black text in figure 7.5.2.2‑3, which are generated based on the eHealth Ontology Reference Model in figure 7.5.2.2-2.
The triples in red text in figure 7.5.2.2-3 are added for access control purpose according to the proposed Access Control Ontology model in figure 7.5.2.2-1, when new ACPs are created or updated. In this example, it is assumed two access control polices be created. First, two <semanticDescriptor> are described (i.e. semanticDescriptor1 contains Sample1 and Sample2, while semanticDescriptor2 contains Sample3. Then, two access control policies are defined (i.e. accessControlPolicy1 is applied to semanticDescriptor1, while accessControlPolicy2 is applied to both semanticDescriptor1 and semanticDescriptor2). Next, the detail Access Control Rules for accessControlPolicy1 and accessControlPolicy2 are described:

· AccessControlPolicy1 has two accessControlRules, which states that:

1)
AE-ID-1, AE-ID-2, and AE-ID-3 can RETRIEVE and DISCOVER triples in the semanticDescriptor which accessControlPolicy1 is applied to (i.e. semanticDescriptor1);
2)
AE-ID-1 and AE-ID-3 can CREATE, UPDATE, or DELETE triples in the semanticDescriptor which accessControlPolicy1 is applied to (i.e. semanticDescriptor1).
· For accessControlPolicy2, only one accessControlRule is defined; this accessControlRule states that AE‑ID‑1 and AE-ID-2 can DISCOVER triples in the semanticDescriptor which accessControlPolicy2 is applied to (i.e. semanticDescriptor1 and semanticDescriptor2).

[image: image27.emf]eHealth Semantic Graph Store

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix ex: <http://example.org/> .

@prefix acp: <http://accessControlPolicy.org/>.

ex:Patient1 a ex:Patient ; ex:name "Jack" ; ex:dateOfBirth "2000-08-03"^^xsd:date .

ex:Patient2 a ex:Patient ; ex:name "Alice" ; ex:dateOfBirth "1998-06-03"^^xsd:date .

ex:Doctor1 a ex:Doctor ; ex:name "John" ; ex:dateOfBirth "1944-08-21"^^xsd:date ; ex:takeCareOf

ex:Patient1 .

ex:Doctor2 a ex:Doctor ; ex:name "Steve" ; ex:dateOfBirth "1947-02-11"^^xsd:date ; ex:takeCareOf

ex:Patient2 .

ex:Sample1 a ex:BPMeasurementSample ;

ex:measureOn "2014-08-21"^^xsd:date ; ex:measureFor ex:Patient1 ;

ex:unit "mmHg" ; ex:sValue "150"^^xsd:integer ; ex:dValue "100"^^xsd:integer .

ex:Sample2 a ex:BPMeasurementSample ;

ex:measureOn "2014-07-24"^^xsd:date ; ex:measureFor ex:Patient3 ;

ex:unit "mmHg" ; ex:sValue "140"^^xsd:integer ; ex:dValue "96"^^xsd:integer .

ex:Sample3 a ex:BPMeasurementSample ;

ex:measureOn "2012-11-24"^^xsd:date ; ex:measureFor ex:Patient3 ;

ex:unit "mmHg" ; ex:sValue "130"^^xsd:integer ; ex:dValue "57"^^xsd:integer .

Below are triples associating measurement samples with corresponding access control policy

ex:semanticsDescriptor1 a ex:resourceGroup ; ex:containMeasurement ex:Sample1, ex:Sample2 .

ex:semanticsDescriptor2 a ex:resourceGroup ; ex:containMeasurement ex:Sample3 .

acp:accessControlPolicy1 acp:appliedTo ex:semanticsDescriptor1 .

acp:accessControlPolicy2 acp:appliedTo ex:semanticsDescriptor1 .

acp:accessControlPolicy2 acp:appliedTo ex:semanticsDescriptor2 .

Below are triples created for access control policy 1 resource based on access control ontology

acp:accessControlRule1_1 rdf:type acp:accessControlRule.

acp:accessControlRule1_2 rdf:type acp:accessControlRule.

acp:accessControlPolicy1 rdf:type acp:accessControlPolicy.

acp:accessControlPolicy1 acp:hasACPRule acp:accessControlRule1_1, acp:accessControlRule1_2 .

acp:accessControlRule1_1 acp:hasACOriginator "AE-ID-1", "AE-ID-2", "AE-ID-3" .

acp:accessControlRule1_1 acp:hasACOperations "RETRIEVE", "DISCOVERY" .

acp:accessControlRule1_2 acp:hasACOriginator "AE-ID-1", "AE-ID-3" .

acp:accessControlRule1_2 acp:hasACOperations "CREATE", "UPDATE", "DELETE" .

Below are triples created for access control policy 2 resource based on access control ontology

acp:accessControlRule2_1 rdf:type acp:accessControlRule.

acp:accessControlPolicy2 rdf:type acp:accessControlPolicy.

acp:accessControlPolicy2 acp:hasACPRule acp:accessControlRule2_1 .

acp:accessControlRule2_1 acp:hasACOriginator "AE-ID-1", "AE-ID-2" .

acp:accessControlRule2_1 acp:hasACOperations "DISCOVERY" .

Figure 7.5.2.2-3: eHealth triples in semantic graph store

7.5.2.3
Examples of SPARQL query procedure

When the CSE receives SPARQL query from Originator, it will add the access control related patterns according to the ID of the Originator and the request operation of the query into the received SPARQL statement, and use the revised SPARQL statement to make query on the semantic graph store.

For example, in the scenario of the example in figure 7.5.2.2-3, when AE-ID-3 sends the following SPARQL query request to the CSE:
select distinct ?sample ?sValue ?dValue
where

{

 ?sample rdf:type ex:BPMeasurementSample .

 ?sample ex:sValue ?sValue .

 ?sample ex:dValue ?dValue .

}

The CSE will add some access control related statements according to the ID (i.e. AE-ID-3) of the Originator and the request operation (i.e. DISCOVERY) of the query, the revised SPARQL query can be given as:
select distinct ?sample ?sValue ?dValue
where
{

 ?accessControlRule acp:hasACOriginator "AE-ID-3" .

 ?accessControlRule acp:hasACOperations "DISCOVERY" .

 ?accessControlPolicy acp:hasACPRule ?accessControlRule .

 ?accessControlPolicy acp:appliedTo ?semanticDescriptor .

 ?semanticDescriptor ex:containResource ?sample .
?sample rdf:type ex:BPMeasurementSample .

 ?sample ex:sValue ?sValue .

 ?sample ex:dValue ?dValue .
}
Alternatively, using the approach which is described in clause 7.5.1 for the association between the semantic descriptor and semantic triples, the revised SPARQL query can be given as:
select distinct ?sample ?sValue ?dValue
where
{

 ?accessControlRule acp:hasACOriginator "AE-ID-3" .

 ?accessControlRule acp:hasACOperations "DISCOVERY" .

 ?accessControlPolicy acp:hasACPRule ?accessControlRule .

 ?accessControlPolicy acp:appliedTo ?semanticDescriptor .

 ?atom1 temp:describedIn ?semanticDescriptor.

 ?atom1 temp:hasSubject ?sample.

 ?atom1 temp:hasObject ?sValue.

 ?atom1 temp:hasProperty ex:sValue.

 ?atom2 temp:describedIn ?semanticDescriptor.
 ?atom2 temp:hasSubject ?sample.

 ?atom2 temp:hasObject ?dValue.

 ?atom2 temp:hasProperty ex:dValue.

 ?atom3 temp:describedIn ?semanticDescriptor.
 ?atom3 temp:hasSubject ?sample.

 ?atom3 temp:hasObject ex:BPMeasurementSample.

 ?atom3 temp:hasProperty rdf:type.

}

Figure 7.5.2.3-1 shows the SPARQL query result in the above example over the eHealth Semantic Graph Store in figure 7.5.2.2-3. According to the access control triples added to the Semantic Graph Store (i.e. red text in figure 7.5.2.2-3), AE-ID-3 is only allowed to DISCOVER samples included in semanticDescriptor1 (i.e. Sample1 and Sample2). As a result, the returned result for SPARQL query in figure 7.5.2.3-1 presents the selected content of Sample1 and Sample2.
[image: image28.png]Query Result (1-2 of 2)

Download format: | BINARY | | Download
Resuls per page: 200
Results offset: Previous 200 | [Next 200

Show cata types & language tags: (¥]

sample. Svalue | DValue
exSomples 150 |00
exSomples |10 |96

Figure 7.5.2.3-1: Example for eHealth semantic query result with access control

7.5.3
Access control using temporary semantic graph stores
This clause describes an implementation approach that can be used for implementing the semantic features supported in Release 2 of oneM2M. <semanticDescriptor> resources have been introduced to be able to semantically annotate oneM2M resources of certain resource types, including AE, Container, ContentInstance, FlexContainer and more. Semantic functionalities have been added for filtering and selectively updating the semantic information stored in the descriptor attribute of the <semanticDescriptor> which is represented in the form of RDF triples. The SPARQL language has been selected as the most suitable for specifying the filter and selective update operations.

For implementing the SPARQL-based semantic functionality, a SPARQL-engine is needed and such engines are typically provided on top of semantic graph stores. Thus, it is a straight-forward implementation choice to use such a semantic graph store.

 <semanticDescriptor> resources as any other oneM2M resources have associated access policies which determine whether a requester is allowed to access the content of the resource. These access policies also apply for the semantic description stored in a <semanticDescriptor> resource and have to be adhered to when executing SPARQL requests on and across semantic information contained in these <semanticDescriptor> resources. So even when storing the semantic information in semantic graph stores and accessing them using SPARQL requests, the access control policies have to be applied. Approaches for translating and applying access control policies within the semantic graph store are described in clause 7.5.2.

In this clause, we show how the SPARQL-based functionality needed for oneM2M Release 2 can be implemented using temporary semantic graph stores. For an incoming SPARQL request, the access control policies are applied when accessing the relevant <semanticDescriptor> resource(s) for populating the temporary semantic graph store. Once this has happened, the SPARQL query can be executed without further access control checks.

Figure 7.5.3-1 shows the different steps in the case of a single <semanticDescriptor> resource being accessed to enable the execution of a SPARQL request on its semantic content.

[image: image29.emf]SPARQL request targeting directly

(e.g. SPARQL update) or indirectly

(e.g. filter on parent resource)

<semanticDescriptor> resource

Check whether

Originator is allowed to

access

<semantic Descriptor>

Initialize and populate Semantic

Graph Store with semantic content

Forward SPARQL request

Execute SPARQL

Request

Return result

...

Originator Hosting CSE

Temporary

Semantic

GraphStore

Figure 7.5.3-1: Execute SPARQL request on single <semanticDescriptor>
When receiving the request with the SPARQL content, the Hosting CSE checks the access control policy applying to the <semanticDescriptor> resource. If the originator of the request is allowed to access it, it retrieves the semantic information from its descriptor attribute, initializes the Temporary Semantic Graph Store, and populates it with the semantic information. Then it forwards the SPARQL request to the Temporary Semantic Graph Store to be executed. Note that the Temporary Semantic Graph Store in this context is seen as an implementation component and not an architectural component according to the oneM2M architecture.

Figure 7.5.3-2 shows the case that, in addition to the targeted <semanticDescriptor> resource, a set of related <semanticDescriptor> resources needs to be included before executing the SPARQL request. This is described in oneM2M TS‑0034 [i.12] Caluse 7.4.3 and oneM2M TS-0001 [i.3], clause 10.2.35.2.2. The relevant <semanticDescriptor> resources are identified through the relatedSemantics attribute.

[image: image30.emf]SPARQL request targeting directly

(e.g. SPARQL update) or indirectly

(e.g. filter on parent resource)

<semanticDescriptor> resource

Check whether

Originator is allowed to

access

<semantic Descriptor>

Initialize and populate Semantic

Graph Store with semantic content

Forward SPARQL request

Execute SPARQL

Request

Return result

...

Check and if allowed

retrieve all content from

<semanticDesriptor>

resources in

relatedSemantics

Update Semantic Graph Store

Originator Hosting CSE

Temporary

Semantic

GraphStore

Figure 7.5.3-2: Execute SPARQL request on <semanticDescriptor> plus
those identified through relatedSemantics attribute

In addition to the steps shown in figure 7.5.3-1, the Hosting CSE attempts to retrieve the semantic content of the <semanticDescriptor> resources identified by the relatedSemantics attribute and updates the Temporary Semantic Graph Store accordingly. The respective access control policies are checked as part of the retrieval as in any other resource access. Only once all the identified (and accessible) content has been added is complete, the SPARQL request is forwarded for execution.

Figure 7.5.3-3 shows the case that the semantic content of the targeted <semanticDescriptor> resource contains links to further <semanticDescriptor> resoruces identified by resourceDescriptorLink properties. This annotation-based approach is described in oneM2M TS-0034 [i.12] clause 7.4.2 and in oneM2M TS-0001 [i.3], clause 10.2.35.2.1.

[image: image31.emf]SPARQL request targeting directly

(e.g. SPARQL update) or indirectly

(e.g. filter on parent resource)

<semanticDescriptor> resource

Originator Hosting CSE

Temporary

Semantic

GraphStore

Check whether

Originator is allowed to

access

<semantic Descriptor>

Initialize and populate Semantic

Graphh Store with semantic content

Forward SPARQL request

Execute SPARQL

Request

Return result

...

Check and if allowed

retrieve all content from

requested

<semanticDesriptor>

Update Semantic Graphh Store

Continue SPARQL

Request Execution

Request content from

additional <SemanticDescriptor>

optional,

0..n times

Figure 7.5.3-3: Execute SPARQL request on <semanticDescriptor> plus those encountered
during the execution in form of resourceDescriptorLink properties

In this case, the modified SPARQL engine of the Temporary Semantic Graph Store may encounter elements with resourceDescriptorLink properties when matching variables as part of the execution of the SPARQL request. In this case the execution will be halted and the engine requests the content of the <semanticDescriptor> resource identified by the resourceDescriptorLink property before continuing execution on the merged content. This can happen 0 to n times during the execution. Note that the Temporary Semantic Graph Store is not an architectural oneM2M component and logically is to be seen as part of the Hosting CSE. The semantic content is requested on behalf of the original Originator with its access rights. The advantage of the implementation with the Temporary Semantic Graph Store is that no special care has to be taken with respect to access control policies. Access control policies are evaluated in the usual way when accessing the semantic content on which the SPARQL request is to be executed. The disadvantage is of course that a Temporary Semantic Graph store has to be initialized and populated each time a SPARQL request is to be executed.
8
Semantic functionalities

8.1
Introduction

The clauses 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9, 8.10 and 8.11introduce the semantic functionalities that a oneM2M system requires to address the identified semantics-related requirements. Semantic annotations are at the basis for all semantic functionalities. For correct operation, the validation of semantic information is important and it is required to have the respective ontologies according to which the semantic information is modelled. Thus the oneM2M system needs to be able to manage ontologies. Semantic resource discovery and semantic query are key functionalities to find and utilize information stored in the system. Semantic mashups are an advanced functionality that enables combining and processing existing semantic information according to a mashup function to dynamically create new semantic information. Further advanced functionalities like semantic reasoning and semantics-based analytics have been identified, but have not been covered in Release 3.
8.2
Semantic annotations

8.2.1
Overview

As identified in the requirements, Semantic Annotation within the oneM2M platform is of key importance for supporting semantic functionalities within the oneM2M platform.
8.2.2
Semantic instance management

8.2.2.1
Overview

The management of semantic instances stored in the <semanticDescriptor> resource is one of key semantic functionalities, including the create, update and delete operations against semantic instances. A simple way to deal with the update of semantic instances is to overwrite the whole <semanticDescriptor> resource which might lead to data redundancy problems, but a more efficient approach is needed to handle the management of semantic instances. An approach using functions e.g SPARQL HTTP POST, SPARQL HTTP PUT etc provided by SPARQL to update or create semantic instances is proposed.

8.2.2.2
Concrete example of managing semantic instance

In the oneM2M system, in order to change a semantic instances in the <semanticDescriptor> resources, the system has to change the whole semantic descriptor.

[image: image32.png]Apllication

Host: example.com
Method: POST

<body>data

<rdf:RDF

"http://www.tno.com/sareffWASH LG 123">
<rdf:type

rdf.resource="http://www.tno.com/saref#WashingMachine"/>
<saref-hasManufacturer>Samsung</saref:hasManufacturer>
</rdf:Description>

oneM2M Resource Structure

Device A

Operation A

V.

e = = e
<rdf:RDF>
<rdf:Description rdf:about="http://www.tno.com/saref{WASH LG 123">

<rdf:type rdf:resource="http

.tno.com/saref#fWashingMachine”/>

<saref-hasManufacturer>LG</saref-hasManufacturer>
</rdf:Description>

<After>
<rdf:RDF>
<rdf:Description rdf:about="htt,

/www.tno.com/sarefSWASH_LG_123">

<rdf:type rdf:resource="http:

'www.tno.com/saref#WashingMachine"/>

<saref:hasManufacturer>Samsung</saref:hasManufacturer>
</rdf:Description>

Figure 8.2.2.2-1: Concrete example of managing semantic instance in the oneM2M system
8.2.2.3
Managing semantic instances using SPARQL update operation

A semantic description consisting of semantic instances is contained in the <semanticDescriptor> resource. In order to manage semantic instances using the SPARQL update operation, it is assumed that the semantic description is stored in the <semanticDescriptor> resource as depicted in figure 8.2.2.3-1.

[image: image33.png]oneM2M Resource Structure

e
-

| <rdfDescription rdf:about="http://www.tno.com/saref¥WASH_LG_123">
! <rdfitype rdfiresource="http://www.tno.com/saref#WashingMachine"/>
' <sarefhasManufacturer>LG</sarefhasManufacturer>
~al <saref:hasDescription>Very cool Washing Machine</saref:hasDescription>
' <sarefhasLocation rdf:resource="http://www.tno.com/saref#Bathroom"/>
H <msm:hasService rdf:resource="http://www.tno.com/saref#WashingService_123"/>
! <msm:hasService rdf:resource="http://www.tno.com/saref#StateService_123"/>
1 </rdf:Description>

I onevizM Resource

<semanticDesriptor> resource

Figure 8.2.2.3-1: Representation of a semantic description in a <semanticDescripor> resource
To manage the semantic instances, the SPARQL update operation has to be mapped to the oneM2M UPDATE (U) procedure. The UPDATE procedure can be used by an AE Originator to manage the semantic instances stored in the <semanticDescriptor> resource on a Receiver CSE (also called the Hosting CSE).

Originator is responsible for sending requests to update semantic instances stored in the <semanticDescriptor> resource by using the UPDATE method.

Hosting CSE processes the update procedures against the requested semantic instances if the originator is allowed to do the update operation. Figure 8.2.2.3-2 shows the interaction between Originator and Receiver and the procedures are processed as follows.

[image: image34.png]Originator
(AE)

001: UPDATE Request

Originator requests update of a semantic instance

in <semanticDescriptor> resource

Receiver
(Hosting CSE)

003: UPDATE Response
Receiver responds to update Request

002: Receiver
Processing

Figure 8.2.2.3-2: Procedure for managing the semantic instances
using oneM2M UPDATE operation
Step 001: The Originator can include mandatory parameters and partial or whole optional parameters in the Request message for UPDATE operation. In Step 001, different SPARQL statements can be used in order to update (i.e. add, delete, and modify) an existing semantic description in a target <semanticDescriptior> resource at the Receiver as shown in the following cases.

· Case 1: This case is to add semantic instances (e.g. RDF, triples) to an existing semantic description in a target <semanticDescriptor> resource in the Receiver. In this case, the Originator can include INSERT DATA or INSERT SPARQL statements in a Request as shown in the block below. The INSERT DATA statement can add semantic instances using the RDF PAYLOAD to the semantic description in a target <semanticDescriptor> resource. Thus, RDF PAYLOAD in an INSERT DATA SPARQL statement disallows blank nodes or variables. On the other hand, an INSERT SPARQL statement can add semantic instances corresponding to a template by copying semantic instances from a source <semanticDescriptor> resource to a target <semanticDescriptor> resource based on a pattern. Accordingly, a template in the INSERT statement allows blank nodes or variables with conditional SPARQL statements. Examples 1 and 2 give examples using INSERT DATA and INSERT SPARQL statements, respectively.

	======================== INSERT DATA statement =========================

INSERT DATA

{GRAPH <Target URI of <semanticDescriptor> resource> {RDF PAYLOAD} }

========================== INSERT statement ============================

INSERT {
GRAPH <Target URI of <semanticDescriptor> resource 1> {template} }

WHERE {GRPAH <Target URI of <semanticDescriptor> resource 2> {pattern} }

EXAMPLE 1:
Add semantic instance to a <semanticDescriptor> resource using INSERT DATA statement:

	INSERT DATA

{
GRAPH <http://<Hosting CSE address>/<CSEBase>/<AE>/<semanticDescriptor>>

{saref:WASH_LG_123 msm:hasOperation saref:WashingOperation_123}
}

EXAMPLE 2:
Add semantic instance to a <semanticDescriptor> resource using INSERT statement:

	INSERT {
GRAPH <http://<Hosting CSE address>/<CSEBase>/<AE>/<semanticDescriptor1>>
{?a saref:hasManufacturer ?c}

}

WHERE {
GRAPH <http://<Hosting CSE address>/<CSEBase>/<AE>/<semanticDescriptor2>>
{?a saref:hasManufacturer ?c}

}

· Case 2: This case is to remove any of the semantic instances from an existing semantic description in a target <semanticDescriptor> resource in the Receiver. In this case, the Originator can include two different SPARQL statements including DELETE DATA statement or DELETE statement in the Request as shown in the block below.
The DELETE DATA statement can remove specific semantic instances using RDF PAYLOAD from an existing semantic description in a target <semanticDescriptor> resource. Hence, the RDF PAYLOAD in the DELETE DATA SPARQL statement is not allowed to contain blank nodes or variables. However, the DELETE SPARQL statement can remove semantic instances corresponding to the template through matching semantic instances based on a pattern. Accordingly, the template in the DELETE SPARQL statement is allowed to contain blank nodes or variables with conditional SPARQL statements. Examples 3 and 4 give examples using DELETE DATA and DELETE SPARQL statements, respectively.

	======================== DELETE DATA statement =========================

DELETE DATA

{GRAPH <Target URI of <semanticDescriptor> resource> {RDF PAYLOAD} }

========================== DELETE statement ============================

WITH <Target URI of <semanticDescriptor> resource>

DELETE {template }

WHERE {pattern}

EXAMPLE 3:
Remove semantic instances in the <semanticDescriptor> resource using DELETE DATA statement:

	DELETE DATA

{
GRAPH <http://<Hosting CSE address/<CSEBase>/<AE>/<semanticDescriptor>>

{saref:WASH_LG_123 msm:hasService saref:StateService_123}
}

EXAMPLE 4:
Remove semantic instance in the <semanticDescriptor> resource using DELETE statement:

	WITH <http://<Hosting CSE address/<CSEBase>/<AE>/<semanticDescriptor>>

DELETE {?a msm:hasService saref:StateService_123}

WHERE {?a saref:hasManufacturer 'LG'}

· Case 3: This case is to modify any of the semantic instances from the semantic description in a target <semanticDescriptor> resource in the Receiver. In this case, the Originator can include DELETE/INSERT SPARQL statements with template1 and template2 in the Request as shown in the block below. At this time, blank nodes or variables are allowed in each template.

	WITH <Target URI of <semanticDescriptor> resource>

DELETE {template1} INSERT {template2}

WHERE {pattern}

EXAMPLE 5:
Modify semantic instances in a <semanticDescriptor> resource using DELETE/INSERT operation:

	WITH http://<Hosting CSE address/<AE>/<semanticDescriptor>

DELETE {?a saref:hasManufacturer 'LG'}

INSERT {?a saref:hasManufacturer 'SAMSUNG'}

WHERE {?a saref:hasManufacturer 'LG'}

Step 002: The Receiver will verify the existence (including Filter Criteria checking, if it is given) of the requested resource first and whether the Originator has the appropriate privilege to update the requested resource. On successful validation, the Receiver can update the semantic instances according to the SPARQL statements in the Request message. The update procedures are processed as follows:

· According to Case 1: If the INSERT DATA SPARQL statement is included in Request message, the RDF PAYLOAD in the statement will be added to the target <semanticDescriptor> resource. However, if the RDF PAYLOAD already exists in the target <semanticDescriptor> resource, then the Receiver will return a failure request status with additional error information through Step 003. If the INSERT SPARQL statement included in the Request message, the Receiver adds semantic instances corresponding to template by copying semantic instances from the source <semanticDescripor> resource to the target <semanticDescriptor> resource based on the pattern. At this time, if there are no existing semantic instances corresponding to template or matched semantic instances based on pattern, the Receiver will return a failure request status with additional error information through Step 003. The blocks below show the processing result of Example 1 and Example 2 presented in Case 1.

Result of Examples 1 and 2 presented in Case 1 using semantic description in figure 8.2.2.3-1.

Description before:
	<rdf:RDF

 <rdf:Description rdf:about="http://ontology.tno.nl/saref#WASH_LG_123">

 <rdf:type rdf:resource="http://ontology.tno.nl/saref#WashingMachine"/>

 <saref:hasManufacturer>LG</saref:hasManufacturer>

 <saref:hasDescription>Very cool Washing Machine</saref:hasDescription>

 <saref:hasLocation rdf:resource="http://ontology.tno.nl/saref#Bathroom"/>

 <msm:hasService rdf:resource="http://ontology.tno.nl/saref#WashingService_123"/>

 <msm:hasService rdf:resource="http://ontology.tno.nl/saref#StateService_123"/>
 </rdf:Description>

</rdf:RDF>

Description after:

	<rdf:RDF

 <rdf:Description rdf:about="http://ontology.tno.nl/saref#WASH_LG_123">

 <rdf:type rdf:resource="http://ontology.tno.nl/saref#WashingMachine"/>

 <saref:hasManufacturer>LG</saref:hasManufacturer>

 <saref:hasDescription>Very cool Washing Machine</saref:hasDescription>

 <saref:hasLocation rdf:resource="http://ontology.tno.nl/saref#Bathroom"/>

 <msm:hasService rdf:resource="http://ontology.tno.nl/saref#WashingService_123"/>

 <msm:hasService rdf:resource="http://ontology.tno.nl/saref#StateService_123"/>

 <msm:hasOperationrdf:resource="http://ontology.tno.nl/saref#WashingOperation_123"/>

 </rdf:Description>

</rdf:RDF>

· According to Case 2: If the DELETE DATA SPARQL statement is included in Request message, then the RDF PAYLOAD in the statement will be removed from the target <semanticDescriptor> resource. At this time, if the RDF PALOAD does not exist in the resource, then the Receiver can return a failure request status with additional error information through Step 003. If the DELETE SPARQL statement is included in the Request message, the Receiver will remove all of semantic instances corresponding to the template based on a pattern. Accordingly, if there are no existing semantic instances corresponding to template or matched semantic instances base on pattern, then the Receiver will return a failure request status with additional error information through Step 003. The block below shows the processing result of Example 3 and Example 4 presented in Case 2.

Result of Example 2 presented in Case 2 using semantic description in figure 8.2.2.3-1.

Description before:
	<rdf:RDF

 <rdf:Description rdf:about="http://ontology.tno.nl/saref#WASH_LG_123">

 <rdf:type rdf:resource="http://ontology.tno.nl/saref#WashingMachine"/>

 <saref:hasManufacturer>LG</saref:hasManufacturer>

 <saref:hasDescription>Very cool Washing Machine</saref:hasDescription>

 <saref:hasLocation rdf:resource="http://ontology.tno.nl/saref#Bathroom"/>

 <msm:hasService rdf:resource="http://ontology.tno.nl/saref#WashingService_123"/>

 <msm:hasService rdf:resource="http://ontology.tno.nl/saref#StateService_123"/>
 </rdf:Description>

</rdf:RDF>

Description after:
	<rdf:RDF

 <rdf:Description rdf:about="http://ontology.tno.nl/saref#WASH_LG_123">

 <rdf:type rdf:resource="http://ontology.tno.nl/saref#WashingMachine"/>

 <saref:hasManufacturer>LG</saref:hasManufacturer>

 <saref:hasDescription>Very cool Washing Machine</saref:hasDescription>

 <saref:hasLocation rdf:resource="http://ontology.tno.nl/saref#Bathroom"/>

 <msm:hasService rdf:resource="http://ontology.tno.nl/saref#WashingService_123"/>

 </rdf:Description>

</rdf:RDF>

· According to Case 3: If the target semantic instance included in the Request message exists in the <semanticDescriptor> resource, then the Receiver will remove all semantic instances corresponding to template1 from the <semanticDescriptor> resources, and then the Receiver will create new semantic instances corresponding to template2 in the <semanticDescriptor> resource base on pattern. In case that either the target semantic instance corresponding to template1 requested to be removed does not exist in the <semanticDescriptor> resource or the target semantic instance corresponding to template2 requested to be added to the <semanticDescriptor> resource already exists, the Receiver will return a failure request status with additional error information through Step 003. The block below shows the processing result of Example 3 presented in Case 3.

Result of Example 3 presented in Case 3 using semantic description in figure 8.2.2.3-1.

Description before
	<rdf:RDF

 <rdf:Description rdf:about="http://ontology.tno.nl/saref#WASH_LG_123">

 <rdf:type rdf:resource="http://ontology.tno.nl/saref#WashingMachine"/>

 <saref:hasManufacturer>LG</saref:hasManufacturer>

 <saref:hasDescription>Very cool Washing Machine</saref:hasDescription>

 <saref:hasLocation rdf:resource="http://ontology.tno.nl/saref#Bathroom"/>

 <msm:hasService rdf:resource="http://ontology.tno.nl/saref#WashingService_123"/>

 <msm:hasService rdf:resource="http://ontology.tno.nl/saref#StateService_123"/>
 </rdf:Description>

</rdf:RDF>

Description after:
	<rdf:RDF

 <rdf:Description rdf:about="http://ontology.tno.nl/saref#WASH_LG_123">

 <rdf:type rdf:resource="http://ontology.tno.nl/saref#WashingMachine"/>

 <saref:hasManufacturer>SAMSUNG</saref:hasManufacturer>

 <saref:hasDescription>Very cool Washing Machine</saref:hasDescription>

 <saref:hasLocation rdf:resource="http://ontology.tno.nl/saref#Bathroom"/>

 <msm:hasService rdf:resource="http://ontology.tno.nl/saref#WashingService_123"/>

 <msm:hasService rdf:resource="http://ontology.tno.nl/saref#StateService_123"/>
 </rdf:Description>

</rdf:RDF>

Step 003: The Receiver will include all mandatory parameters and partial or whole optional parameters in the Response message for the UPDATE operation.
8.3
Semantic validation

8.3.1
Problem statement

The <semanticDescriptor> resource contains a descriptor attribute which can store any RDF triples as the semantic description (i.e. annotation) of the associated resource (usually the parent resource of the <semanticDescriptor>). In the same time, <semanticDescriptor> resource contains a ontologyRef attribute, which is a reference (URI) of the ontology used to represent the information that is stored in the descriptor attribute.
Normally, the triples stored in the descriptor attribute should be compliant with the ontology referenced by the ontologyRef attribute. However, there is no guarantee that an issuer (e.g. a 3rd party AE) which creates or updates the <semanticDescriptor> will always provide the consistent information. In case the semantic description (as triples in descriptor attribute) is not compliant with the referneced ontology, it basically means the <semanticDescriptor> is not valid and cannot be used by the AE and/or CSE properly. For example, it may cause a consumer application to mis-interpret the data semantics and types (e.g. termperature vs. humidity) so that lead to a wrong re-action (turn on/off a heater vs. a humidifier). This will undermine the benefits of semantic annotation for the IoT data and will hinder the usage of more advanced features of semantic enablement e.g. reasoning and mash-up.

Following are two detailed examples showing the potential inconsistency between the <semanticDescriptor> resources and the referenced ontology. Common assumption is described below.
The referenced ontology is called 'OntologyH', which represent the ontology of humidity sensor of domain X. The graphical representation of 'OntologyH' is show in figure 8.3.1-1. Besides that, OntologyH holds the following statement: " controllingFunction ow:disjointwith measuringFunction", meaning a 'controllingFunction' cannot be a 'measuringFunction' instance at the same time.

 SHAPE * MERGEFORMAT

Figure 8.3.1-1: OntologyH (humidity sensor ontology of domain X)

A humidity sensor named 'sensor12' is reprented as an AE resource with its child resources as shown in figure 8.3.1-2. The semantic description of 'sensor12' is represented in the <semanticDescrptorX> child resource, where the ontologyRef attribute points to 'OntologyH'.
 SHAPE * MERGEFORMAT

Figure 8.3.1-2: oneM2M resource representation of humidity sensor 'sensor12'
Case 1: stand-alone <semanticDescriptor>

In this case, all semantic description about 'sensor12' is self-contained in the <semanticDescriptorX> resource. Figure 8.3.1-3 further illustrate the RDF triples of the descriptor attribute of <semanticDescriptorX>.

 SHAPE * MERGEFORMAT

Figure 8.3.1-3 RDF triples of <semanticDescriptorX> - case 1

Note that in the descriptor, it claims that 'sensor12' has the function 'humidityContainer' as an instance of class 'controllingFunction', while according to the renferece 'OntologyH', 'humidityContainer' can only be the instance of class 'measuringFunction'. This causes the inconsistency issue.

Case 2: linked <semanticDescriptors>

Case 2 has a similar setup as Case 1, the difference is that in Case 2, the descriptor attribute of <semanticDescriptorX> resource contains m2m:resourceDescriptorLink pointing to another <semanticDescriptorR> resource, which is the semantic description of a remote resource 'roomA'. A similar case could be that the <semanticDescriptorR> resource is linked by the relatedSemantics attribute of <semanticDescriptorX> resource. The RDF triples of both resources are shown in figures 8.3.1-4 and 8.3.1-5 respectively.

 SHAPE * MERGEFORMAT

Figure 8.3.1-4: RDF triples of <semanticDescriptorX> - case 2

 SHAPE * MERGEFORMAT

Figure 8.3.1-5: RDF triples of <semanticDescriptorR> - case 2

Note that in <semanticDescriptorX>, 'humidityContainer' has 'roomA/tempAspect' as the quantified aspect and in <semanticDescriptorR> 'roomA/tempAspect' is claimed as an instance of class 'TemperatureAspect'. However, according to 'OntologyH', the measurement of 'sensor12' can only quantify instances of class 'HumidityAspect'. This also causes the inconsistency issue.
8.3.2
Proposed solution

To solve the issues mentioned above, a semantic description validation common services function (CSF) is proposed to validate a <semanticDescriptor> resource against the referenced ontology. The end-to-end flow for semantic description validation is shown in figure 8.3.2-1. The extention to the resource structure is defined in clauses 7.3.1 and 7.3.2.

Message flow
[image: image1.png]

 SHAPE * MERGEFORMAT

Figure 8.3.2-1: Message flow for semantic description validation
Step 1. The issuer (e.g. an AE or a CSE) sends to CSE-1 an operation request (CREATE, UPATE or RETRIEVE) pertaining to the <semanticDescriptor> resource hosted by CSE-1. In the case of CREATE or UPDATE, the request contains the <semanticDescriptor> resource representation, which includes the semantic description (triples in descriptor attribute), the URI to the referenced ontology (i.e. ontologyRef) and potential links to other <semanticDescriptor> resources (as in relatedSemantics attribute, or in the triples with m2m:resourceDescriptorLink in descriptor attribute). In the case of RETRIEVE, the request contains the URI of the <semanticDescriptor> resource.

Optionally, the request may contain a parameter (e.g. needValidation, which is to be specified) to indicate that the addressed <semanticDescriptor> needs to be validated before creation, update or retreival. Such indication may alternatively (e.g. in the case of CREAET and UPATE) be indicated by setting an extended attribute validationEnable of the <semanticDescriptor> resource as defined in clause 7.3.1.
Step 2. CSE-1 receives the operation request and check if the addressed <semanticDescriptor> resource is linked to any other remote <semanticDescriptor> resources (i.e. check if the addressed <semanticDescriptor> resource contains relatedSemantics attribute, or triples with m2m:resourceDescriptorLink in descriptor attribute). If no, the procedure goes to Case 1 (step 3a to 4a), otherwise, goes to Case 2 (step 3b to 6b). In the case of RETRIEVE, CSE-1 may only trigger the following steps if the addressed <semanticDescritpor> resource is not yet validated (by checking the semanticValidated attribute as defined in clause 7.3.1).

Case 1: stand-alone <semanticDescritpor> (see also clause 8.3.1 Case 1)
Step 3a. CSE-1 retrieves the ontology reprentation according to the URI in the ontologyRef attribute of the addressed <semanticDescriptor> resource from IN-CSE (which hosts the referenced ontology) . In case CSE-1 cannot retrieve the ontology reprensentation (due to access right control or other exceptional reasons), skip Step 4a.
Step 4a. CSE-1 performs semantic validation of the semantic description (the triples in descriptor attribute) of the addressed <semanticDescriptor> resource against the retrieved ontology.
Case 2: linked <semanticDescritpor> (see also clause 8.3.1 Case 2)
Step 3b. CSE-1 sends a semantic validation request to IN-CSE (the hosting CSE of the referenced ontology according to ontologyRef) with the addressed <semanticDescriptor> resource representation (which includes descriptor, ontologyRef and URIs to other linked <semanticDescriptor> resources) to validate the semantic description of the addressed <semanticDescriptor> resource (together with the linked <semanticDescriptor> resources) against the referenced ontologies of the addressed and the linked <semanticDescriptor> resources.

The Ontology Repository resource on the IN-CSE may need to be extended with an additional attribute or sub‑resource (e.g. <semanticValidation> as defined in clause 7.3.2) as the RESTful interface to accept the semantic validation request.

Step 4b. After receiving the semantic validation request from CSE-1, IN-CSE retrieves the linked <semanticDescriptor> resources (including the semantic description in descriptor attribute and the URI of the referenced Ontology in ontologyRef attribute). In case the linked <semanticDescriptor> resources also contain URIs linking to other <semanticDescriptor> resources, IN-CSE may repeat this step iteratively to retrieve all linked <semanticDescriptor> resources. In case IN-CSE cannot retrieve the linked <semanticDescriptor> resources (due to access right control or other exceptional reasons), skip Step 5b.
Step 5b. IN-CSE validates the semantic description of the addressed <semanticDescriptor> resource and the retrieved linked <semanticDescriptor> resources against the referenced ontologies of the addressed and the linked <semanticDescriptor> resources.
Step 6b. IN-CSE returns the validation response to CSE-1. In case Step 5b succeeds, the response code is successful, otherwise (including Step 5b is skipped due to Step 4b fails), the response code is failed.

Step 7. CSE-1 performs normal operation (CREATE, UPDATE or RETRIEVE) on the addressed <semanticDescriptor> resource according to the original request from the issuer following existing procedures. In addition, based on the validation result of Step 4a (in Case 1) or the validation response received in Step 6b (in Case 2), CSE-1 updates the validation status (validated or not) of the addressed <semanticDescriptor> resource accordingly. If Step 4a is skipped due to Step 3a fails, it's also considered as not validated.

To do this, <semanticDescriptor> resource needs be extended with an additional attribute semanticValidated to represent the validation status as defined in clause 7.3.1.

Step 8. CSE-1 returns operation (CREATE, UPDATE or RETRIEVE) response to the issuer.
NOTE:
Current assumption is that all referenced ontologies are hosted by the IN-CSE, no matter how the ontololgies are physicaly stored (in the IN-CSE, in a seperate database, or on an external website).

8.3.3
Aspects to be checked in semantic validation

Several aspects need to be checked in order to make sure that the semantic description consists of valid RDF triples and they are indeed capable of interoperating semantically with other oneM2M resources. Taking into account the nature of semantically annotated data, we can distinguish four levels of validation:
31) Lexical check. This level of check consists of verifying the correctness of RDF serialization regarding to the declared type. For example, the <semanticDescriptor> resource is marked in XML representation (according to the descriptorRepresentation attribute) whereas the semantic annotation (in the descriptor attribute) is indeed serialized in JSON, or the XML document contains some error that the parser cannot accomplish its job, the lexical check fails.

32) Syntactic checks. After the basic lexical checks, the syntactic check consists of verifying the correctness of the "syntax" of the RDF triples, more specifically:

a)
Untyped of resources and literals. Here resource refers to instances of a class, and literal refers to a textual or numerical value. The type of resource or literal is the link of an annotation to the ontology which enables the semantic capabilities. Any un-typed element presented in an annotation is problematic towards the semantic interoperability.

b)
Ill-formed URIs. URI is essential and critical for identification of a resource. They should be checked against RFC3968 which defines the generic syntax of URI.

c)
Problematic prefix and namespaces. Namespaces play the role of linking the annotation to the reference ontologies and vocabularies. If the URI of the namespace is problematic (e.g. wrong URI, URI contains illegal character), it may cause others to mis-interpret the data semantics and types. Prefix is a unique reference to replace the namespaces in the local file. A one-to-one mapping between the prefix and namespace is essential to ensure a correct reference.

d)
Unknown classes and properties. A prerequisite of semantic interoperability is that all the resources use a common and agreed vocabulary. As consequence, if any resource uses in its annotation a class or property that is not defined in the reference ontology(ies), other resources would have no way to understand it, so that the semantic interoperability is impossible.

33) Semantic checks. Following a successful syntactic validation, the semantic check consists of verifying the logical consistence of the semantic annotation regarding to the reference ontology(ies):

a)
Cardinality inconsistency. If the ontology defines that class A can have one and only one instance of child class B, and in the annotation, there are two instances of B related to one instance of A, there is a problem.

b)
Problematic relationship or inheritance. Following the relationship defined in the reference ontology, if an instance of a class A is wrongly annotated to be at same time an instance of class B which is disjoint from class A, there is a conflict and the instance cannot be resolved by the semantic engine. A concrete example in detailed in clause 8.3.1.
The validation response returned to the issuer depends on the result of each of the above tests. To conclude that an annotation is validated, ideally all the above checks need to be performed and passed. However, as several tests are independent from others (for example: 3.a and 3.b do not have an impact on each other), several "validated profiles" can be defined by choosing to include different aspects to be checked.
8.4
Semantic filtering and discovery

Semantic filtering is about using a semantic filter expressed in SPARQL [i.14] on the semantic annotation of a resource. The semantic annotation is contained in a <semanticDescriptor> child resource. The goal of applying the filter is to determine whether the (parent) resource fits the criteria specified in the filter. It is used for the purpose of discovery, i.e. if the SPARQL query applied to the semantic content of the <semanticDescriptor> resource returns a non-empty result, its parent resource is part of the discovery result, otherwise not. In some cases, not the complete semantic annotation is contained in a single <semanticDescriptor>resource, e.g. to avoid having to replicate the same information in many different places. In this case, the <semanticDescriptor> resource can contain links to related <semanticDescriptor> resource whose content is also to be taken into account when applying the filter. Two approaches are supported, an annotation-based method, where the links are embedded in the semantic information itself, and a resource link-based, where the links are included in an attribute of the <semanticDescriptor> resource, which may also include a group resource that groups a number of <semanticDescriptor> resources.
Semantic discovery is part of the general request procedure description in oneM2M TS-0001 [i.3], clause 8.1.2, using the discovery option with a semanticsFilter set. The details of how the linking to other <semanticDescriptor> resources is used for discovery is described in oneM2M TS-0034 [i.12], clause 7.4.
8.5
General semantic queries

8.5.1
Introduction

In Release 2, the only semantic operation supported by oneM2M is semantic resource discovery. As a result of a semantic resource discovery on a resource, the addresses of the child resources are returned that have a semantic descriptor resource ,which (together with possibly linked other semantic descriptor resources) fits the provided semantic filter.The semantic filter is specified in form of a SPARQL query. Below an example for a semantic resource discovery is provided:

· Semantic discovery (R2): Give me the resources that can provide occupancy information for meeting rooms.
Once the addresses of the resources are known, their semantic descriptor resources and the related content information can be retrieved by the application. The drawback is that this requires a potentially huge number of interactions and the application has to retrieve a lot of resource content which may be irrelevant in the end. If only the information is required, it would be much easier to directly ask for the information:

· Semantic query: What are the meeting rooms for which I can retrieve the current occupancy information.
It would even be more useful to not just be able to access the (meta) information contained in the <semanticDescriptor> resource, but to also access the actual content - in this case the occupancy information - at the same time:
· Semantic query including content: Give me the current occupancy information for meeting rooms.
If not all information is relevant, but it depends on the actual content, it would be even more useful to allow restrictions, which could be specified in SPARQL:
· Semantic query including content with restriction: Give me the meeting rooms whose current occupancy is "empty".
To keep the discussion about semantic queries independent of the discussion of what kinds of resources containing semantic information should exist in oneM2M, we will use the term semantic resource in the remainder of clause 8.5. Semantic resources currently include <smanticDescriptor> resources, but could in the future contain other semantic resources, e.g. semantic content resources, semantic container resources, etc. The discussion here should cover all supported semantic resources.

8.5.2
Semantic query vs. semantic resource discovery

In general, semantic queries enable the retrieval of both explicitly and implicitly derived information based on syntactic, semantic and structural information contained in data (such as RDF data). Currently oneM2M already supports semantic resource discovery through semantic filter. However, some essential differences between semantic query and semantic resource discovery need to be taken into consideration when realizing the semantic query feature, which is listed in table 8.5.2-1 from several aspects.

Table 8.5.2-1: Comparison semantic query and semantic resource discovery

	Aspects
	Semantic Query
	Semantic Resource Discovery

	Objective
	The objective of Semantic Query is to extract "useful knowledge" over a set of "RDF data basis".
	Semantic resource discovery is mainly targeted for discovering resources for further resource accessing (e.g. CRUD operations).

	Technical Focus
	Semantic Query is a more advanced semantic-centric feature. For example, the query result can include any derived knowledge based on the query statement.
	Semantic resource discovery is a more resource-oriented feature to leverage semantics to enable sophisticated resource discovery.

	Processed Result
	The semantic query result (in term of "knowledge") can be returned as semantic information to answer the query, i.e. not just resources URIs.
	The processed result of a semantic resource discovery is mainly to include a list of identified resource URIs.

Below is an example from W3C (see https://www.w3.org/2009/Talks/0615-qbe/), which illustrates the above perspectives:
Query Example: Find me all the people in Tim Berners-Lee's FOAF (Friend of a friend) file that have names and email addresses. Return each person's URI, name, and email address.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT *

WHERE {

 ?person foaf:name ?name .

 ?person foaf:mbox ?email .

}

Query Expected Results:
	Person
	Name
	Email

	<http://www.w3.org/People/karl/karl-foaf.xrdf#me>
	"Karl Dubost"
	<mailto:karl@w3.org>

	<http://www.w3.org/People/Berners-Lee/card#amy>
	"Amy van der Hiel"
	<mailto:amy@w3.org>

	<http://www.w3.org/People/Berners-Lee/card#edd>
	"Edd Dumbill"
	<mailto:edd@xmlhack.com>

8.5.3
Introduction to semantic graph scoping (SGS)

To complete a given semantic query operation, two parts have to be in place:

34) The Query Statement: A semantic query is normally initialized by a semantic query user based on his/her needs, which can be specified as a SPARQL query.
35) The RDF Data Basis: This is the RDF triples where the semantic query is to be executed on, in order to yield the query result.
Given the oneM2M resource-oriented architecture, semantic query may need to be done directly over distributed semantic descriptors when there is no centralized Triple Store available. In particular, a unique situation is that the RDF data basis needed by a given semantic query may be dispersed in the resource tree and stored in different <semanticDescriptor> resources. Note that, those <semanticDescriptor> resources are often the child resources of normal oneM2M resources, and their major purpose currently is for semantic annotation and supporting semantic resource discovery, not directly for semantic query.
More importantly, a desirable query result for a given semantic query can be efficiently yielded only if the query is conducted over an "appropriate" RDF data basis, such a fundamental process for forming a RDF data basis is called a "Semantic Graph Scoping (SGS)" process. For example, as an illustration shown in figure 8.5.3-1., a given SPARQL query can be executed on a RDF data basis, which is formed through a SGS process and is constituted by the RDF triples from three <semanticDescriptor> resources, i.e. <SD_1>, <SD_2> and <SD_3>. It is worth noting that the query result in terms of derived knowledge of this query will be limited to the information included in those three <semanticDescriptor> resources.

[image: image41.emf]... ...

oneM2M Normal Resource

oneM2M <semanticDescriptor> Resource

RDF

Data Basis

SD_n

SD_1

SD_1 SD_2

SD_3

SD_2

SD_3

Semantic Graph

Scoping (SGS)

A SPARQL Query

Statement

Executed on

Returns

Figure 8.5.3-1: Semantic descriptor discovery needed by semantic query
over distributed semantic descriptors

Note that, SGS is an essential process for supporting semantic query feature over distributed semantic descriptors. For example, in the semantic resource discovery, semantic descriptors are mainly leveraged as "utilities" in order to identify normal oneM2M resources. In comparison, SGS is to discover the semantic descriptor themselves such that they can form a RDF data basis for a given semantic query.

In addition, semantic query has more stringent requirements compared to the semantic resource discovery. For example, the originator of a semantic resource discovery can decide where the resource discovery starts by specifying a start point using the "To" parameter in an oneM2M request message, and the worst case is that the resource discovery cannot return any satisfied resource URI. In comparison, for a given semantic query, the quality of the query result sometimes may be limited if it is not able to form an appropriate RDF data basis for this query by employing appropriate SGS.

For example, consider an example shown in figure 8.5.3-2 and the semantic query is formulated as "return me how many devices that their OperationA have the operation status larger than 60". To answer this query (the desired answer is 3 since the operation status of all the Device12, Device34 and Device56 are larger than 60 now), ideally the SGS process should collect all of three involved <semanticDescriptor> child resources of Device12, Device34 and Device56 (assuming that the access control is not an issue), which forms the appropriate RDF data basis for answering this query. Otherwise, the quality of the query result may be limited to the RDF data basis formed by a SGS process if it does not include all of the three <semanticDescriptor> resources. Therefore, it can be seen that how SGS could potentially collect the involved <semanticDescriptor> resources needs to be specified, which is introduced in a later clause.

[image: image42.emf]Device12

hasFunctionality

...

hasService

Service23

hasMethod

...

...

Device12

OperationA

<AE>

<semanticDescriptor>

hasOperation

OperationA

CompanyA

Device34

OperationA

<AE>

<semanticDescriptor>

Device34

hasFunctionality

...

hasService

Service23

hasMethod

...

...

hasOperation

OperationA

CompanyB

<remoteCSE>

<remoteCSE>

CSEBase

Device56

OperationA

<AE>

<semanticDescriptor>

Device56

hasFunctionality

...

hasService

Service23

hasMethod

...

...

hasOperation

OperationA

hasOperationStatus

“200”

hasOperationStatus

“120”

hasOperationStatus

“90”

Figure 8.5.3-2: A semantic query example over distributed semantic descriptors

8.5.4
Solutions to semantic graph scoping

In this clause, several potential solutions are specified for the SGS process, and each of them has their own methodology, as well as pros/cons, which are discussed in details. Two major entities are involved, i.e. the originator (i.e. a semantic query user sending a query request message), and the receiver that is to conduct the semantic query processing and yield the query result.

Solution-1: Solution-1 is a straightforward solution in that the SGS is conducted at a local CSE. In particular, when an originator sends a semantic query to a receiver, it directly targets to the <CSEBase> resource. Accordingly, the SGS process at the receiver side will discover all the <semanticDescriptor> resources under <CSEBase> as the RDF data basis for this query as long as access control policy is allowed. Note that, this is a best-effort approach in the sense that the SGS will try to form a data basis as wide as possible, in which it is also possible that the triples from many <semanticDescriptor> resources may not be relevant to the query. In particular, such an SGS may also incur considerable processing cost when trying to traverse the whole resource tree.

By examining the working procedures of existing semantic resource discovery over distributed descriptors as specified in clause 8.5.5, the following two enhanced solutions are introduced.
Solution-2: Solution-2 highly follows the existing practice on semantic resource discovery in the sense that the SGS may still start with the URI as specified by the "To" parameter and how semantic descriptors can be collected is similar with the process as done in the semantic resource discovery as introduced in clause 8.5.5. During the SGS process, some existing practices adopted by the existing semantic resource discovery can also be leveraged. For example, when SGS discovers <semanticDescriptor> resources for forming a RDF data basis, the existing resourceDescriptorLink property (and other similar utilities) can also be leveraged. For example, similar to the semantic resource discovery, when a SGS discovers a specific <semanticDescriptor> resource, it is possible that this resource may be linked with other <semanticDescriptor> resources in the local or remote CSEs through the resourceDescriptorLink property. Accordingly, the SGS can also follow the resourceDescriptorLink in order to add other linked <semanticDescriptor> resources into the RDF data basis.

Regarding to another unique aspect related to query result quality, this solution allows for the case when the SGS cannot form an appropriate RDF data basis. Accordingly, the following mechanism can be adopted. For example, in order to enable the originator to tolerate or be aware of the quality of the query result, one thing at the receiver side could do is to not only return the query result, but also piggyback certain query summary information as a feedback in order to enable the originator to have some sense regarding how to interpret/evaluate the query result. For example, the summary information could explain how the query was processed, the overview of the RDF data basis used for this query, e.g. how many <semanticDescriptor> resources were involved in this query, etc.
Solution-3: In this approach, the semantic query process is decoupled with the SGS process. For example, without processing any semantic query, at the receiver side, it may proactively aggregate some related <semanticDescriptor> resources together by using existing <group> and/or < semanticGroup> resources (as defined in existing oneM2M TS‑0001 [i.3] and oneM2M TR-0007 [i.13]). Still taking the same example used previously, as shown in figure 8.5.4‑1, the receiver or any other 3rd party entity may proactively create a <Group-1> resource, in which the members are the <semanticDescriptor> child resources of all the devices. The <semanticDescriptor> resource of the <Group-1> itself can be used to give the description about this group.

[image: image43.emf]<Group-1>

memberIDs

<semanitcDescriptor> child resources

of <Device12> <Device34>

<Device56>

Describing that this resource includes

all the devices

<semanticDescriptor>

Explicitly Specifying a RDF

data basis

….

RDF

Data Basis

Figure 8.5.4-1: Use <group> resource for explicitly specifying an RDF data basis
For the originator, it may first discover various <group> resources to see which one have the most appropriate RDF data basis for the query to be launched. After such a <group> resource is selected, the originator may send its semantic query to the selected <group> resource. At the receiver side, the semantic query will be executed on the member resources of the selected <group> resource, which will be the data basis of this query (More general, it is also possible that the originator can form a RDF data basis by selecting more than one <group> resource). Last, the partial query results from each of member resources will be combined together as the final query result before being sent back to the originator. It is worth noting that the advantages for this approach include:

36) the receiver side can leverage its own knowledge on the resource tree to form some useful RDF data basis candidates;

37) the originator can have a clear understanding on the RDF data basis where the intended query is to be conducted. The disadvantage is that it is required that the receiver side needs to create different <group> or <semanticGroup> resources in order to form different RDF data basis candidates that may potentially be needed by various semantic queries.

It is worth noting that although this solution also proposes to leverage the <group> and/or <semanticGroup> resources for SGS, it has the fundamental differences compared to how those resources are used in the existing semantic resource discovery. For example, in semantic resource discovery, <group> resources are mainly used "internally" by the receiver when conducting a semantic resource discovery (i.e. the originator does not know any details regarding to how semantic descriptors are being organized/linked and collected, which is only known/used by the receiver side). By comparison, in Solution-3, the <group> resources and its contents can be directly exposed to the originator as RDF data basis candidates. In other words, those <group> resources are representing RDF data basis candidates and are visible to the originator (i.e. not just being used internally by the receiver) such that the originator now is also involved in the SGS process, which is a different working procedure compared to the existing semantic resource discovery.

Overall, the table 8.5.4-1 has summarized the pros/cons for each of the proposed solutions as discussed above, respectively. As can be seen from the table that, Solution-2 and Solution-3 have their own advantages, and both of them outperform the native Solution-1.

Table 8.5.4-1: Pros/cons of solutions

	Solutions
	Pros
	Cons

	Solution-1
	· Simple implementation.
· Best effort discovery with wide search scope.
	· Considerable discovery cost due to full-traversal of whole resource tree.
· Considerable query processing due to a large data basis.

	Solution-2
	· Follow the current practice on semantic resource discovery.
· Less discovery cost due to a controllable discovery scope.
· The originator may have some sense on the quality of the query result with the help of result summary.
	· Relevantly more complex implementation is needed, compared to Solution-1.

	Solution-3
	· Fully decouple SGS with the query processing stage.

· The RDF data basis candidates can be proactively created at the receiver side.

· The originator has its own options to flexibly choose the appropriate RDF data basis candidate for its intended query, based on its subjective needs.
· The originator may have clear understanding what data basis the query is to be executed on.
	· Relevantly more complex implementation is needed, compared to Solution-1.

8.5.5
Implicitly scoped semantic queries

8.5.5.1
Introduction

Implicitly-scoped semantic queries are those that are based on a target resource in the oneM2M resource tree and the semantic query is executed relative to this target resource. This is the same as for other oneM2M requests, e.g. in the case of a discovery request, the child resources of the target resource which fit the filters specified in the request are returned. In the same way, a semantic query is assumed to be executed with respect to the semantic content that is available in the aggregation of the semantic information included in the semantic resources that are descendants of the target resource, e.g. <semanticDescriptor> resources of the target resource, its child resources and further descendants. Thus, by targeting a resource in the resource tree, the scope of the semantic query is implicitly defined as this aggregation of semantic information.This situation is depicted in figure 8.5.5.1-1.

[image: image44]
Figure 8.5.5.1-1: Implicitly scoped semantic queries

In Release 2 of oneM2M, there is no way of requesting the execution of a semantic query and directly getting the resulting semantic information back. There are two options of achieving these - either by extending the parameters of the general RETRIEVE requests and the corresponding results to enable specifying a semantic query - in SPARQL as it is done in the semantic filter for the discovery information, and the results, enabling the returning of SPARQL results instead of the usual resource content, or by introducing a speficic virtual resource (similar to the already existing <semanticFanOutPoint>) clause 8.5.5.2 presents the option proposing a new virtual resource type.

8.5.5.2
Semantic query based on virtual resource

Instead of executing a semantic query directly on the resource that is the root of the targeted subtree, a virtual resource can be introduced. The motivation is that, logically, it is not the content of the root resource and its children directly that are addressed, but the semantic information contained in all the semantic resources in the targeted subtree, including possible links to other resources. The result to be returned after executing the semantic query is then the subset of the total semantic information contained in the subtree and which is selected by the semantic query. This is depicted in figure 8.5.5.2-1.

[image: image45]
Figure 8.5.5.2-1 <semanticQuery> virtual resource

In Release 2 of oneM2M, the <semanticFanOutPoint> virtual resource was introduced as a child resource of the <group> resource that, given a semantic query in SPARQL, would first gather the semantic information from the semantic descriptors that are members of the group, then execute the SPARQL query on the aggregated result, and finally return the SPARQL result. The same general approach is proposed here, except that instead of having an explicit set of group members whose information is to be used as the basis for the query, the information is gathered from all semantic resources that are descendants of the parent resource or linked from there. This is the implicitly given scope of the query.

In the following the proposed Resource Type <semanticQuery> is described, in analogy to the <semanticFanOutPoint> already introduced:

· The <semanticQuery> resource is a virtual resource because it does not have a representation. It can be the child resource of any resource who can have semantic resources as child resources or whose descendants can have semantic resources as child resources.

· Whenever a semantic query request is sent to the <semanticQuery> resource, the host determines the semantic resources in the subtree rooted by its parent resources and retrieves the semantic information form them, taking into account explitly contained links, e.g. given in the relatedSemantics attribute. All semantic descriptors are accessed based on the respective access control policies.

· Once all of the related semantic information has been retrieved, it is added to the content on which the SPARQL request is being executed. The full content subject to the SPARQL request is provided to the SPARQL engine for processing.

· The <semanticQuery> resource uses the accessControlPolicyIDs attribute of the parent resource for access control policy validation.

The virtual resource <semanticQuery> is used for processing semantic query requests. As such, this virtual resource is the target of RETRIEVE requests only. The <semanticQuery> resource is created and deleted at the same time as the parent resource.
This RETRIEVE procedure is used for performing a semantic query using the semantic information from all the semantic resources that are descendants of the parent resource of the <semanticQuery> resource.

Table 8.5.5.2-1: <semanticQuery> RETRIEVE

	<semanticQuery> RETRIEVE

	Associated Reference Point
	Mca, Mcc and Mcc'

	Information in Request message
	According to clause 10.1.2 of oneM2M TS-0001 [i.3]

	Processing at Originator before sending Request
	The Originator requests a semantic query to be performed using the semantic information from all the semantic resources that are descendants of the parent resource. The Originator is either an AE or CSE

	Processing at Receiver
	The Receiver does the following steps:
· Check if the Originator has RETRIEVE privilege in the <accessControlPolicy> resource referenced by the accessControlPolicyIDs in the parent resource
· Upon successful validation, obtain the URIs of all the semantic resources that are descendants of the parent resource and thosed linked through the relatedSemantics attribute
· All semantic resources are accessed based on the respective access control policies

· Once all the semantic information from the semantic resources has been retrieved, the SPARQL request is being executed on the combined content

	Information in Response message
	The result of the SPARQL request executed on the semantic information contained in/linked from the semantic resources that are descendants of the parent resource.

	Processing at Originator after receiving Response
	According to clause 10.1.2 oneM2M TS-0001 [i.3]

	Exceptions
	According to clause 10.1.2 oneM2M TS-0001 [i.3]

Adding a new resource type needs to be carefully considered, but alternatively if the support of semantic queries is added to the generic RETRIEVE operation, there are other issues to be taken into account. Semantic queries are rather specific RETRIEVE requests that require the possibility of adding a SPARQL request and being able to return SPARQL result content. A new parameter with the SPARQL request could only be used for RETRIEVE requests and in combination with requesting SPARQL result content (a new parameter value for result content). For neither the parameter containing the SPARQL request nor the parameter value requesting SPARQL result content it makes sense to use it on its own and they cannot be combined with any other parameters / parameter values. This restriction of use has to be carefully explained, making the already complex description of the general RETRIEVE request even more complex.

Also the general idea of REST is that (part of) the content of a resource is returned, possibly including descendant resources. In the case of using a semantic query as part of the general RETRIEVE this principle would be stretched as only some partial content of some descendant resources is going to be returned. With the virtual resource whose content is the aggregation of all relevant information, the RETRIEVE would simply return the part of the content that fits the SPARQL query, which is a kind of filter on the content of the <semanticQuery> resource, i.e. it is closer to the REST principle.

Finally, as the support of semantic queries on arbitrary subtrees may become expensive, the creation of <semanticQuery> resources could be restricted by policies, i.e. for a particular oneM2M instantiation it could be decided where to allow <semanticQuery> resources, providing flexibility.

A summary of the advantages and drawbacks of this approach are presented in table-8.5.5.2-2.

Table 8.5.5.2-2: Advantages and drawbacks of <semanticQuery>resource
	Advantages
	Drawbacks

	General RETRIEVE operation does not have to be touched, as the needs for semantic queries are rather specific and need new request parameter(SPARQL) and result content (SPARQL result).
	Introduces a new resource

	Closer to REST as (subset) of resource content is returned
	

	Flexibility where to allow the creation of resource (e.g. policy based)
	

8.5.5.3
Semantic query based on request parameter

Semantic query is a special request operation, which is different from but similar to the semantic resource discovery as described in the clause 8.5.2. According to oneM2M TS-0001, semantic resource discovery is triggered by a RETRIEVE operation containing a semanticsFilter condition tag included in Filter Criteria request parameter. Semantic query needs to be differentiated from semantic resource discovery, but using the same triggering principle; it is proposed that the following new parameter shall be included in a RETRIEVE request in order to retrieve a semantic query.
· Semantic Query Indicator: This parameter indicates that the request containing this parameter is to be processed as semantic query for semantically querying/retrieving the required information or knowledge based on some RDF triples.
When a CSE receives a RETRIEVE request which contains this new parameter, the CSE shall trigger a semantic query operation based on the SPARQL statement contained in the semanticsFilter condition tag.
Table 8.5.5.3-1 describes how this parameter relates to the request operation.

Table 8.5.5.3-1: New Request Message Parameters

	Request message parameter
	Operation

	
	Create
	Retrieve
	Update
	Delete
	Notify

	Optional
	Semantic Query Indicator - A flag to indicate this request message is a semantic query request
	N/A
	O
	N/A
	N/A
	N/A

Table 8.5.5.3-2 provides an assessment of this approach.

Table 8.5.5.3-2: Pros and Cons of Semantic Query based on Request Parameter

	Pros
	Cons

	· No need to define any new resource/attribute or to create it prior to the query.

· No impact on existing resources and/or attributes.

· Follows the same principle for triggering a semantic resource discovery.

· Query scope can be adjusted dynamically by changing the addressed resource.

· No explicit query scope needs to be indicated before the operation, either by creating a new resource or otherwise.
	· Extra overhead for processing a RETRIEVE operation due to the new request parameter (not high since the parameter is optional).
· Need to specify the interaction with other request parameters applicable to RETRIEVE operations.

8.5.5.4
Conclusion

It was decided to enhance the request operation itself to support semantic queries. For this purpose, the existing semanticsFilter parameter is used to take the semantic query in SPARQL [i.14] and a new semantic-content result content was added to take the SPARQL query results. This is described in oneM2M TS-0001 [i.3], clause 8.1.2.

8.5.6
Explicitly scoped semantic queries

8.5.6.1
Using <semanticFanOutPoint> for semantic queries

The resource type semanticFanOutPoint has been introduced in Release 2 to support semantic discovery using semantic information that is contained in a set of different <semanticDescriptor> resources. The relevant <semanticDescriptor> resources in this case are the members of a group, which are represented as a <group> resource, which is the parent of the virtual <semanticFanOutPoint> resource. The proposal here is to extend the use of the <semanticFanOutPoint> resources to also support explicitly scoped semantic queries, i.e. the explicit scope of the query will be the semantic resources which are the members of the parent group. Also, we envision the introduction of additional semantic resources as mentioned in Section 8.5.1, so the description is generalized to cover semantic resources in general.
In the following minor modifications to the <semanticFanOutPoint> resource are proposed that enable this extension.

· The <semanticFanOutPoint> resource is a virtual resource because it does not have a representation. It is the child resource of a <group> resource with members of type <semanticDescriptor> whose members are semantic resources.

· Whenever a semantic discovery query request is sent to the <semanticFanOutPoint> resource the host uses the memberIDs attribute of the parent <group> resource to retrieve all the related descriptors semantic information. If there are descriptors stored on different CSEs, individual RETRIEVE requests are sent to each CSE for retrieving the semantic information from the external descriptors resources. All semantic descriptors resources are accessed based on the respective access control policies.

· Once all of the related semantic information<semanticDescriptor>(s) have has been retrieved, the content of each of the descriptor attributes it is added to the content on which the SPARQL request is being executed. The full/enlarged content subject to the SPARQL request is provided to the SPARQL engine for processing.

· The <semanticFanOutPoint> resource uses membersAccessControlPolicyIDs attribute in the parent <group> resource for access control policy validation.

The virtual resource <semanticFanOutPoint> is used for processing semantic discovery query requests. As such, this virtual resource is the target of RETRIEVE requests only. The <semanticFanOutPoint> resource is created and deleted at the same time as the parent <group> resource.
This RETRIEVE procedure is used for performing a semantic discovery procedure using the descriptor content of all member <semanticDescriptor> semantic resources belonging to an existing <group> resource.

Table 8.5.6.1-1: <semanticFanOutPoint> RETRIEVE

	<semanticFanOutPoint> RETRIEVE

	Associated Reference Point
	Mca, Mcc and Mcc'

	Information in Request message
	According to clause 10.1.2 oneM2M TS-0001 [i.3]

	Processing at Originator before sending Request
	The Originator requests a semantic discovery query request to be performed using the content of the semantic descriptors semantic information of all member resources belonging to an existing <group> resource. The Originator may be is either an AE or CSE

	Processing at Receiver
	The Receiver does the following steps:

· Check if the Originator has RETRIEVE privilege in the <accessControlPolicy> resource referenced by the membersAccessControlPolicyIDs in the parent <group> resource. In the case membersAccessControlPolicyIDs is not provided, the access control policy defined for the parent <group> resource is be used

· Upon successful validation, obtain the URIs of all the member <semanticDescriptor> semantic resources from the memberIDs attribute of the parent<group> resource

· If there are <semanticDescriptor> semantic resources stored on different CSEs, individual RETRIEVE requests are sent to each CSE for retrieving the descriptors, otherwise the descriptor attributes are the semantic information is simply retrieved for all the <semanticDescriptor> semantic resources hosted locally. All semantic descriptors resources are accessed based on the respective access control policies

· Once all of the related descriptor attributes have semantic information has been retrieved, the SPARQL request is being executed on the combined content

	Information in Response message
	The result of the SPARQL request executed on the combined content of the members' descriptors semantic information

	Processing at Originator after receiving Response
	According to clause 10.1.2 oneM2M TS-0001 [i.3]

	Exceptions
	According to clause 10.1.2 oneM2M TS-0001 [i.3]

8.6
Query scopes

The scoping of semantic queries has been discussed as part of the discussion on semantic queries in clause 8.5.
8.7
Semantic reasoning

8.7.1
Semantic reasoning definition
RDF data/triple is the type of semantic metadata used in oneM2M system, which is in the form of 3-tuple representation, i.e., “subject-predicate-object”. The RDF data is usefully written based on various ontologies, which define formal vocabularies (i.e., class) and their relationships for different application domains. Semantic reasoning can be leveraged to analyse RDF data and it is a mechanism to derive implicit facts that are not explicitly expressed in the existing knowledge/facts by leveraging a set of reasoning rules. There are several key concepts that are involved with semantic reasoning:

1. Existing facts – An existing fact is an already-known knowledge or an assertion.
2. Reasoning rules (RR) – A RR has an IF-THEN construct. When a given RR is applied over the existing facts, if the condition (i.e., the IF part) is true, then the conclusion (the THEN part) also holds.
3. Inferred facts – The output of a reasoning process, which is the reasoning result derived from the existing facts by applying RR.
As an example, a RDF triple, like “Flipper is-a Dolphin”, describes an existing fact about a dolphin named Flipper (i.e., Flipper is an instance of class Dolphin defined in an Animal ontology). In the meantime, the Animal ontology may declare another fact: every Dolphin is also a Mammal, which is a fact about a subclass relationship between two classes (i.e., Dolphin class and Mammal class). Giving a reasoning rule stating that “IF X is an instance of class Y and Y is a subclass of class Z, THEN X is also an instance of class Z (here X, Y and Z are variables and can be replaced with specific instance/class names)”, the following fact can be derived by applying this reasoning rule over the above two facts: Flipper is-a Mammal, which is an implicit knowledge inferred from the two existing facts.
To implement a semantic reasoning process for above example, a Semantic Reasoner (SR) is needed. Typically, a SR (also called reasoning engine, rules engine, or simply a reasoner) is a piece of software that is able to infer logical consequences from a set of facts using a set of reasoning rules.
8.7.2
Hospital facility surveillance use case
8.7.2.1
Use case description
Figure 8.7.2-1 illustrates a hospital facility surveillance use case in the smart city scenario. In order to enforce surveillance and facility management purpose, a large hospital with many buildings has monitoring cameras installed in the rooms of those buildings. The hospital facilities are integrated into the city infrastructure (e.g., as an initiative for realizing smart city) such that external users (e.g., from city fire department, city health department, etc.) can also manage, query, operate and monitor facilities of the hospital. In each hospital building, rooms are used for different purposes. For example, some rooms (e.g., Room-232) are to store blood testing samples while other ones are to store medical oxygen cylinders. Due to the different usages of rooms, the hospital has defined several “Management Zones (MZ)” and each MZ likely comprises multiple rooms. Note that, the division of MZs is not necessarily based on geographical locations only, but also based on other room properties (e.g., room usage purpose). For example, MZ-1 includes all the rooms that store blood testing samples. Accordingly, those rooms will be more interested by city health department since the city health department may need to access the cameras deployed in the rooms belonging to MZ-1. Similarly, MZ-2 could consist of all the rooms, which store medical oxygen cylinders and accordingly will be more interested by city fire department. In addition, rooms in each MZ may be changed over time due to room rearrangement or re-allocation by the hospital facility team. For example, Room-232 may belong to MZ-2 when it starts to be used for storing medical oxygen cylinders, i.e., not storing blood test samples any more.
[image: image46.jpg]Building-X
(with MIN-CSE)

o

Smart City Users

(City Fire Department, City Health Department, etc.)

L .

Semantic-based operations (semantic

/ camera discovery, semantic query, etc.) Building-2
' "
Building-1 (with MN-CSE)
(with MN-CSE) EEE
(=l
HOSP|TAL =l %
BECOON .
|coe - Sl ; """""" ; | """" e
| ooms belonging to ,
Camera-11_ | L@ . -« g Management Zone (MZ)-1..-
(with Semantjc) [[AME e IR e e
Annotations T T e R
—JEM;RJG!CY. . Rooms’ . Pl RO;n‘iS
Room-232 ‘ § | i o :
. - § belonging tq/. .-« M belonging to
M mz2 [] MZ-3.~"

Figure 8.7.2-1: Hospital Facility Surveillance Use Case

8.7.2.2
The needs for semantic reasoning in oneM2M
In the following, two examples, based on the hospital facility surveillance use case, are described to demonstrate why oneM2M system needs semantic reasoning feature. Unique challenges for enabling semantic reasoning in oneM2M systems are also discussed. Both examples mainly focus on Camera-11 as shown in Figure 8.7.2-1, which is deployed in the Room-232 of Building-1. The following assumptions are made:

· The hospital has adopted an oneM2M-based platform to manage its facilities including cameras.

· Each building hosts an MN-CSE.
· Each camera deployed inside a building registers to the corresponding MN-CSE of the building.

· Each camera is represented as a service layer resource at the MN-CSE. For example, Camera-11 deployed in Room-232 of Building-1 has a <Camera-11> resource representation hosted on the MN-CSE of Building-1, which is an <AE> resource.
· The <Camera-11> resource is annotated with some metadata by adding a <semanticDescriptor> resource as its child resource. In particular, the <semanticDescriptor> child resource stores two RDF triples (as existing facts):
· RDF Triple #1 (i.e. Fact-1): Camera-11 is-a ontologyA:VideoCamera (where “VideoCamera” is a class defined by ontology A.

· RFC Triple #2 (i.e. Fact-2): Camera-11 is-located-in Room-232-of-Building-1.
Example 1: Consider that a user needs to retrieve real-time images from all the rooms. In order to so, the user first needs to perform semantic resource discovery to identify the cameras using the following SPARQL Statement-1:

SELECT ?device

WHERE {

?device is-a ontologyB:VideoRecorder

}

In reality, it is very likely that the semantic annotation of <Camera-11> and SPARQL Statement-1 may use different ontologies since they can be provided by different parties. For example, with respect to the semantic annotation of <Camera-11>, the ontology class “VideoCamera” used in Fact-1 is from Ontology A. In comparison, the ontology class “VideoRecorder” used in SPARQL Statement-1 is from another different Ontology B. Since semantic reasoning capability is missing, the system cannot figure out that ontologyA:VideoCamera is indeed as same as ontologyB:VideoRecorder. As a result, <Camera-11> resource cannot be identified as a desired resource during the semantic resource discovery process since the basic SPARQL processing is based on pattern matching (but in this example, the Fact-1 cannot match the pattern “?device is-a ontologyB:VideoRecorder” in the SPARQL Statement-1).
Example 2: A more complicated case is illustrated in this example, where the user just wants to retrieve real-time images from the rooms “belonging to a specific management zone (e.g., MZ-1)”. Then, the user also needs to first perform semantic resource discovery using the following SPARQL Statement-2:

SELECT ?device

WHERE {

?device is-a ontologyA:VideoCamera

?device monitors-room-in MZ-1

}

Similar to Example-1, due to the missing of semantic reasoning support, <Camera-11> resource cannot be identified as a desired resource either (at this time, Fact-1 matches the pattern “?device is-a ontologyA:VideoCamera” in the SPARQL Statement-2, but Fact-2 cannot match the pattern “?device monitors-room-in MZ-1”).
This example shows another reality that the semantic annotation of the devices may only include low-level metadata such as physical locations, and does not include high-level information such as the MZ-related fact in this example. However, the user may be just interested in rooms under a specific MZ (e.g., MZ-1), regardless of their physical locations. In the meantime, the user likely uses high-level ontology classes in their query statement (such as the predicate “monitors-room-in” in SPARQL Statement-2) while the semantic annotation of the devices may only use low-level ontology classes/relationships (such as the predicate “is-located-in” in Fact-2). Note that, such a phenomenon is very common due to the usage of “abstraction” technology in the sense that the query from upper-layer user is based on high-level concepts while lower-layer physical resources are annotated with low-level metadata. As an example, when a human user checks a file in a specific folder on her laptop, the operating system needs to locate the physical blocks of this file on the hard drive, which is fully transparent to the human user.

Example 2 also illustrates a critical semantic reasoning issue due to the lack of sufficient fact inputs for a reasoning process. For example, even if it is assumed that semantic reasoning is enabled and the following reasoning rule (i.e., RR-1) can be utilized:

· RR-1: IF X is-located-in Y && Y is-managed-under Z, THEN X monitors-room-in Z

Still, no inferred fact can be derived by applying RR-1 over Fact-2 through a semantic reasoning process. The reason is that Fact-2 can only match the “X is-located-in Y” part in RR-1 (i.e., to replace X with <Camera-11> and replace Y with “Room-232-of-Building-1”). However, in addition to Fact-1 and Fact-2, there is no further fact can be utilized to match “Y is-managed-under Z” part in RR-1 (i.e., there is no sufficient facts for using RR-1). In fact, the fact missing here is about hospital room allocation. The hospital room allocation records could be a set of RDF triples defining which rooms belong to which MZs, e.g., the following RDF triple describes that Room-232 of Building-1 belongs to MZ-1:

· Fact-3: Room-232-of-Building-1 is-managed-under MZ-1

· …..

Without Fact-3, semantic reasoning still cannot help in this example due to lack of sufficient facts as the inputs of reasoning process.

Overall, it is worth noting that in oneM2M system, it is highly possible that facts are often fragmented or distributed in different places. For example, the <semanticDescriptor> child resource of <Camera-11> may only store a limited amount of information about the camera itself and it does not make sense to stored RDF triples about hospital room allocation records directly in it (especially when room usage re-allocation happens from time to time). Therefore, there should be an efficient way to organize/integrate related “fact silos” in order to make all the facts ready when they are needed for a semantic reasoning process.

8.7.3
Semantic reasoning function (SRF)
This section describes the key features of Semantic Reasoning Function (SRF) in oneM2M system and the different type of functionalities that SRF shall support.

[image: image47.emf]Semantic

Reasoner

Semantic

Reasoner

Fact Set (FS)

(e.g., data stored in <ontology>,

<semanticDescriptor>)

Fact Set (FS)

(e.g., data stored in <ontology>,

<semanticDescriptor>)

Reasoning Rule

Set (RS)

Reasoning Rule

Set (RS)

input input

produces

Other oneM2M

Semantic Functions

(such as semantic query/discovery)

Ă

Other oneM2M

Semantic Functions

(such as semantic query/discovery)

Ă

optimize

oneM2M Semantic Reasoning Related Data

Reasoning Results Reasoning Results

Semantic Reasoning Function (SRF)

oneM2M Users

(AEs/CSEs)

discover, publish/

share, utilize

trigger

trigger

further utilize

enrich/

augment

Figure 8.7.3-1: Key Features of Semantic Reasoning Function (SRF)

The key features of SRF is shown in Figure 8.7.3-1, In general, the SRF mainly includes the following features:

Feature-1: Enabling semantic reasoning related data

The major functionality of Feature-1 is to enable the semantic reasoning related data (referring to facts and reasoning rules) by making those data be discoverable, publishable/sharable across different entities in oneM2M system (which is illustrated as the dark yellow arrow in the Figure 8.7.3-1). The semantic reasoning related data can be a Fact Set (FS) and/or a Rule Set (RS). A FS refers to a set of facts. For example, each RDF triple can describe a fact, and accordingly a set of RDF triples stored in a <semanticDescriptor> resource is regarded as an FS. In general, a FS can be used as an input for a semantic reasoning process (i.e. an input FS) or it can be a set of inferred facts as the result of a semantic reasoning process (i.e. an inferred FS). A RS refers to a set of semantic reasoning rules.

To execute a specific semantic reasoning process A, the following two types of data inputs are essentially needed:

· An input FS (denoted as inputFS), and

· A RS.

The output of the semantic reasoning process A includes:

· An inferred FS (denoted as inferredFS), which is the semantic reasoning results of reasoning process A.

Note that, the inferredFS generated by a reasoning process A can further be used as an inputFS for another semantic reasoning process B in the future. Therefore, in the following descriptions, the general term FS will be used if applicable.

It is worth noting that, facts are not limited to semantic annotations of normal oneM2M resources (e.g., the RDF triples stored in <semanticDescriptor> resources). Facts can refer to any valuable information or knowledge that is made available in oneM2M system and can be accessed by others. For example, an ontology description stored in an oneM2M <ontology> resource can be a FS. Another case, a FS could also be an individual piece of information (such as the RDF triples describing hospital room allocation records as discussed in the previous use case in Figure 8.7.1.2-1), and such a FS is not either describing an ontology or as semantic annotation of another resource (i.e., the FS describing hospital room allocation records can individually exist and not necessarily be as the semantic annotations of other resources).
With regard to the RS, users have needs to design many customized (or user-defined) semantic reasoning rules for supporting various applications, since oneM2M system is designed to be a horizontal platform that enables applications across different domains. Accordingly, various user-defined RSs shall be made available in oneM2M system and can be accessed/shared by others. Note that, such user-defined semantic reasoning rules significantly improve the system flexibility since in many cases, the user-defined reasoning rules may be just used locally or temporarily (e.g., to define a new/temporary relationship between two classes in an ontology), which does not have to modify the ontology definition.

Overall, Feature-1 involves with enabling the publishing/discovering/sharing semantic reasoning related data (including both FSs and RSs) through appropriate oneM2M resources. The general flow of Feature-1 is that oneM2M users (as originator) can send requests to certain receiver CSEs in order to publish/discover/update/delete the FS/RS-related resources through the corresponding CRUD operations. Once the processing is done, the receiver CSE will send the response back to the originator.

Feature-2: Optimizing other semantic operations with background semantic reasoning support

Based on the two examples discussed in clause 8.7.2.2, the existing semantic operations supported in oneM2M system (e.g., semantic resource discovery and semantic query) may not yield desired results without semantic reasoning support. The major functionality of Feature-2 of SRF is to leverage semantic reasoning as a “background support” to optimize other semantic operations (which are illustrated by the pink arrows in the Figure 8.7.3-1). In this case, users trigger/initiate specific semantic operations (e.g., a semantic query). During the processing of this operation, semantic reasoning may be further triggered in the background, which is however fully transparent to the user. For example, a user may initiate a semantic query by submitting a SPARQL query to a SPARQL query engine. It is possible that the involved RDF triples (denoted as FS-1) cannot directly answer the SPARQL query. Accordingly, the SPARQL engine can further resort to a SR, which will conduct a semantic reasoning process. The SR shall determine and select the appropriate reasoning rule sets (as RS) and any additional FS if FS-1 (as inputFS) is insufficient, for instance, based on certain access rights. Finally, the semantic reasoning results in terms of inferredFS shall be delivered to the SPARQL engine, which can further be used to answer/match user’s SPARQL query statement.

By leveraging Feature-2, SRF can address the issue as illustrated in Example-1 in clause 8.7.2. For example, a reasoning rule (RR-2) can be defined as:

· RR-2: IF X is an instance of ontologyA:VideoCamera, THEN X is also an instance of ontologyB:VideoRecorder.

Here X is a variable and will be replaced by a specific instance (e.g., <Camera-11> in Example-1) during the reasoning process. When the SPARQL engine is processing the SPARQL Statement-1 defined in clause 8.7.2.2, it can further trigger a semantic reasoning process at the SR, which will apply the RR-2 (as RS) over the Fact-1 (as inputFS) as defined in clause 8.7.2.2. As a result, an inferredFS can be produced, which includes the following new fact:

· Inferred Fact-1: Camera-11 is-a ontologyB:VideoRecorder

The SPARQL engine now is able to use Inferred Fact-1 to match the pattern “?device is-a ontologyB:VideoRecorder” in the SPARQL Statement-1. As a result, with the help of SRF, <Camera-11> resource can now be identified as a desired resource during the semantic resource discovery.

The Feature-2 of SRF can also address the issue as illustrated in Example-2 in clause 8.7.2.2. For example, when the SPARQL engine processes SPARQL Statement-2 as defined in clause 8.7.2.2, it can further trigger a semantic reasoning process at the SR. In particular, the SR determines that RR-1 defined in clause 8.7.2.2 (as RS) should be utilized. In the meantime, the local policy of SR may be configured that in order to successfully apply the RR-1, the existing Fact-2 is not sufficient and additional Fact-3 should also be used as the input of the reasoning process (i.e., Fact-3 is a hospital room allocation record defining that Room-232 of Building-1 belongs to MZ-1). In this case, inputFS is further categorized into two parts: initial_InputFS (i.e., Fact-2) and additional_InputFS (i.e., Fact-3). As a result, by applying RR-1 over “the combined inputFS” (i.e., Fact-2 and Fact-3), an inferredFS can be produced, which includes the following new fact:

· Inferred Fact-2: Camera-11 monitors-room-in MZ-1

The SPARQL engine now is able to further use Inferred Fact-2 to match the query pattern “?device monitors-room-in MZ-1” in SPARQL Statement-2. As a result, <Camera-11> now can be successfully identified in the semantic resource discovery operation in Example-2 in clause 8.7.2.2.

Overall, the general flow of Feature-2 is that oneM2M users (as originator) can send requests to certain receiver CSEs for the desired semantic operations (such as semantic resource discovery, semantic query, etc.). During the request processing, the receiver CSE can further leverage reasoning capability. By using the reasoning result, the receiver CSE will further produce the final result for the semantic operation as requested by the originator (e.g., the semantic query result, or semantic discovery result) and then send the response back to the originator.

Feature-3: Enabling individual semantic reasoning process
In addition to the use cases as supported by Feature-2, semantic reasoning process may also be triggered individually by oneM2M users (which are illustrated by the blue arrows in the Figure 8.7.3-1). In other words, the semantic reasoning process is not necessarily coupled with other semantic operations as considered in Feature-2). With Feature-3, oneM2M users may directly interact with SRF by triggering semantic reasoning process. In order to do so, oneM2M user shall first identify the interested facts (as initial_inputFS) as well as the desired reasoning rules (as RS) based on their application needs. When the inputFS and RS are identified, the oneM2M user shall send a request to SR for triggering a specific semantic reasoning process by specifying the reasoning inputs (i.e., the identified initial_inputFS and RS). The SR will initiate a semantic reasoning process based on the inputs as indicated by the user. Similar to Feature-2, the SR may also determine what additional FS or RS needs to be leveraged if the inputs from the user are insufficient. Once the SR works out the semantic reasoning result, it will be returned back to the oneM2M user for its need. Typically, the following cases can be supported by Feature-3:

· Case-1: The oneM2M user may use SRF to conduct semantic reasoning over the low-level data in order to obtain high-level knowledge. For example, a health monitoring application (as an oneM2M user) can ask SRF to perform a semantic reasoning process over the real-time vital data (such as blood pressure, heart beat, etc.) collected from a specific patient A by using a heart-attack diagnosis/prediction reasoning rule. In this process, the heart-attack diagnosis/prediction reasoning rule is a user-defined rule, which can be highly customized based on patient A’s own health profile and his/her past heart-attack history. In this way, the health monitoring application does not have to deal with the low-level vital data (i.e., blood pressure, heart beat, etc.), and can get away from the determination of patient A’s heart-attack risk (since all the diagnosis/prediction business logics have already been defined in the reasoning rule used by SRF). As a result, the health monitoring application just needs to utilize the reasoning result (i.e., the patient A’s current heart-attack risk, which is a “ready-to-use or high-level” knowledge) and send an alarm to doctor or call 911 for an ambulance if needed.

· Case-2: The oneM2M user may use SRF to conduct semantic reasoning to enrich the existing data. Still using the Example-1 in clause 8.7.2.2 as an example, an oneM2M user (e.g., the owner of the Camera-11) may proactive trigger a semantic reasoning process over the semantic annotation of <Camera-11> (i.e., Fact-1 and Fact-2 as existing facts defined in 8.7.2) by using Feature-3 and RR-2. The semantic reasoning result (Inferred Fact-1, i.e., Camera-11 is-a ontologyB:VideoRecorder) is also a low-level semantic metadata about <Camera-11> and is a “long-term-effective” fact; therefore, such new/inferred fact can be further added/integrated into the semantic annotations of <Camera-11>. In other words, the existing facts now is “enriched or augmented” by the inferred fact. As a result, <Camera-11> can get more chance to be discovered by future semantic resource discovery operations. Another advantage from such enrichment is that future semantic resource discovery operations do not have to further trigger semantic reasoning in the background every time as supported by Feature-2, which helps reduce processing overhead and response delay. However, it is worth noting that it might not be applicable for integrating the inferred facts with existing facts in all the use cases. Taking the Example-2 in clause 8.7.2.2 as an example, the Inferred Fact-2 (i.e., “Camera-11 monitors-room-in MZ-1”) is relatively high-level knowledge, which may not be appropriate to be integrated with low-level semantic metadata (i.e., Fact-1 and Fact-2). In the meantime, since the hospital room allocation may get re-arranged from time to time, the Inferred Fact-2 may just be a “short-term-effective” fact. For instance, after a recent room re-allocation, Camera-11 does not monitor a room belonging to MZ-1 although Camera-11 is still located in Room-232 of Building-1 (i.e., Fact-1 and Fact-2 are still valid) but this room is now used for another purpose and then belongs to a different MZ (i.e., Inferred Fact-2 is no longer valid anymore and needs to be deleted). Therefore, it does not make sense to directly integrate such type of inferred fact or knowledge into the semantic annotations of massive cameras, otherwise it potentially leads to considerable annotation update overhead. Based on above discussion, it can be seen that both Feature-2 and Feature-3 are the necessary features of SRF and each of them is to support different use cases respectively.

Overall, the general flow of Feature-3 is that oneM2M users (as originator) can send requests to certain receiver CSEs that has the reasoning capability. Accordingly, the receiver CSE will conduct a reasoning process by using the desired inputs (i.e., inputFS and RS) and produce the reasoning result and finally send the response back to the originator.

8.7.4
Triggering An Individual Semantic Reasoning Process
This clause introduces the detailed descriptions on how to enable an individual semantic reasoning process.
8.7.4.1
Logical role definitions
When executing a specific semantic reasoning process A, it will be involved with the following aspects:

· Who is the initiator to trigger this specific reasoning process A?

· Who has the reasoning capability for conducting the reasoning processing?

· What are the input Fact Set (FS) and Rule Set (RS) to be used as the inputs for this reasoning process A?

· Where are those input FS and RS stored?

Accordingly, the following “logical roles” are defined in order to describe the roles of the entities that are involved in a specific semantic reasoning process:

· Fact Host (FH) or Rule Host (RH): Since oneM2M is a resource-oriented system, in general a FS or a RS is represented as oneM2M resource and hosted by a CSE. Accordingly, it is defined that a CSE has the role of FH (or RH) if this CSE hosts a FS (or a RS), respectively. It is possible that a given CSE can act as a FH as well as a RH if this CSE hosts both FS and RS related resources.

· Semantic Reasoner (SR): If a CSE has the semantic reasoning capability, such a CSE can act as a SR.

· Reasoning Initiator (RI): An originator acts as a RI (e.g., a CSE or a AE) if it sends a request to a SR for triggering a specific reasoning process.

8.7.4.2
Procedure for triggering an individual semantic reasoning process

Figure 8.7.4.2-1 illustrates the procedure for triggering an individual semantic reasoning process. The procedure can be used in the scenario e.g.: a RI has identified some interested FS and RS and would like to initiate a reasoning process at a SR in order to discover some new knowledge. For easy illustration, in Figure 8.7.4.2-1, the logical roles as defined in clause 8.7.4.1 are taken by different entities. The following steps are performed:

[image: image48.emf]Rule Host-2

(RH-2)

Rule Host-2

(RH-2)

Fact Host-2

(FH-2)

Fact Host-2

(FH-2)

Step 2: RI-1 sends a

reasoning request to SR-1,

along with the information

about FS-1 and RS-1.

Step 7: SR-1 send back the

reasoning result to RI-1.

Reasoning Initiator -1

(RI-1)

Reasoning Initiator -1

(RI-1)

Semantic Reasoner -1

(SR-1)

Semantic Reasoner -1

(SR-1)

Fact Host-1

(FH-1)

Fact Host-1

(FH-1)

Rule Host-1

(RH-1)

Rule Host-1

(RH-1)

Step 1: RI-1 intends to use

FS-1 and RS-1 as inputs to

trigger a reasoning process at

SR-1.

Step 4: SR-1 may also decide whether

additional FS and/or RS can be utilized.

Step 5: SR-1 retrieves an additional FS-2 from FH-2 and/or an additional RS-2 from RH-2.

Step 6: With all the input FS and RS, SR-1

executes a reasoning process and yields the

reasoning result.

Pre-condition: RI-1 has identified FS-1 on FH-1 and RS-1 on RH-1 through oneM2M resource discovery.

Step 3: SR-1 retrieves FS-1 from FH-1 and RS-1 from RH-1 respectively.

Figure 8.7.4.2-1: Procedure for Triggering an Individual Semantic Reasoning Process
Pre-condition: Through resource discovery, RI-1 has identified an interested FS-1 on FH-1 (this FS is denoted as “initial inputFS”) and RS-1 on RH-1 (this RS is denoted as “initial RS”).

Step 1: RI-1 intends to use FS-1 and RS-1 as inputs to trigger a reasoning process at SR-1 for discovering new knowledge.

Step 2: RI-1 sends a semantic reasoning request to SR-1, along with the information about FS-1 and RS-1 (e.g. their URIs).

Step 3: Based on the information sent from RI-1, SR-1 retrieves FS-1 from FH-1 and RS-1 from RH-1, respectively.

Step 4: In addition to the inputs provided by RI-1, optionally SR-1 may also decide whether additional FS and/or RS can be used. For example, the reasoning request sent from RI-1 can indicate that whether SR-1 could incorporate additional FS/RS if needed. This may happen when the initial inputFS as identified by RI-1 also has reference/link to other related facts. For example, if FS-1 is a <semanticDescriptor-A> resource, the related ontology definition as referenced by the “ontologyRef” attribute of this <semanticDescriptor-A> resource may also be needed by SR-1 as another piece of input FS for this reasoning process. In other words, such ontology definition is an “additional inputFS, besides the initial FS-1 as identified by RI-1.

In general, SR-1 can be locally configured in order to decide which additional FS and RS can be utilized in a given semantic reasoning process. For example, SR-1 can be configured such that as long as it detects that certain key words (such as certain ontology terms/concepts/predicates) appear in the initial inputFS and/or RS, it could further retrieve additional FS and RS as further inputs if needed. For example, a SR-1 can keep a local configuration table to record a list of key words and each key word is associated with a number of related FSs and RSs. Accordingly, for any key word appeared in the initial inputFS and/or in RS, SR-1 shall check its local configurations to find out the associated FSs and RSs of this key word. Those associated FSs and RSs may be further added as additional FSs and RSs for this reasoning process.

Step 5: SR-1 retrieves an additional FS (i.e., FS-2) from FH-2 and an additional RS (i.e., RS-2) from RH-2.

Step 6: With all the FS and RS (i.e., those initial ones identified by RI-1 and additional ones further added by SR-1), SR-1 executes a reasoning operation and yields the reasoning result (i.e., inferredFS).

Step 7: SR-1 sends the inferredFS back to RI-1.
8.7.4.3
Examples usage of procedure for triggering an individual semantic reasoning process

In this clause, two real examples show how the procedure introduced in clause 8.7.4.2 can be used in different scenarios (the steps shown below are as same as the steps shown in Figure 8.7.4.2-1).

· Example 1. In the hospital facility surveillance use case as introduced in clause 8.7.2.1, an external User-1 (e.g., city police department) intends to identify which cameras are equipped with backup power. Accordingly, User-1 plans to utilize semantic reasoning mechanism for this purpose (In other words, User-1 now acts as a RI in this example).

It is assumed that User-1 has identified two cameras (e.g., Camera-11, Camera-22) and the available semantic annotations for those two cameras (represented by oneM2M AE resources) include the following two facts (which will be the initial inputFS for the reasoning process):

· RDF Triple #1 (as Fact-1): Camera-11 hasBrandName XYZ

· RDF Triple #2 (as Fact-2): Camera-22 is-located-in Building-1

User-1 also identified a semantic reasoning Rule-1 (which is the initial RS), which can be used to infer whether a given camera has backup power if such an information is not explicitly described in the original semantic annotation:

· Rule-1: IF A hasBrandName “XYZ”, THEN A isEquippedWith BackupPower

The Rule-1 basically describes a domain knowledge that holds in the real world, i.e., if a given device has the brand name of “XYZ”, then it is known that this device has the backup power since this is a default feature of the products of the “XYZ” brand.

Step 1: User-1 intends to use a FS (including Fact-1 and Fact-2) and a RS (including Rule-1) as inputs to trigger a reasoning process at SR-1 in order to infer whether Camera-11 and Camera-22 have backup power.

Step 2: User-1 sends a reasoning request to SR-1, along with the information about the storing locations of Fact-1, Fact-2, and Rule-1.

Step 3: Based on the information sent from User-1, SR-1 retrieves Fact-1, Fact-2, and Rule-1.

Step 4: In addition to the inputs provided by User-1, optionally SR-1 may also decide whether additional FS and/or RS can be used. For example, when SR-1 receives Fact-2, it detects that “Building-1” appears in Fact-2 (i.e., “Building-1” is an interested key word for SR-1), then SR-1 may choose to add additional facts about Building-1, such as Fact-3 shown below:

· Fact-3: Building-1 isEquippedWith BackupPower

By further checking Fact-3, SR-1 finds another key word, i.e., the predicate “isEquippedWith” appears in Fact-3, which triggers SR-1 to further add an additional rule (i.e., Rule-2 shown below):

· Rule-2: IF A is-located-in B && B isEquippedWith BackupPower, THEN A isEquippedWith BackupPower

Step 5: SR-1 retrieves the additional FS (i.e., Fact-3) and the additional RS (i.e., Rule-2) based on their storing locations as recorded in the local configurations of SR-1.

Step 6: With all the input FS and RS, SR-1 will execute a reasoning operation and yield the reasoning result.

For example, with only Fact-1, Fact-2 and Rule-1, SR-1 can only yield one piece of new fact:

· Inferred Fact-1: Camera-11 isEquippedWith BackupPower

However, with Fact-2 plus the additional Fact-3 and Rule-2, SR-1 can yield one more piece of new fact:

· Inferred Fact-2: Camera-22 isEquippedWith BackupPower

Those two inferred facts (i.e., Inferred Fact-1 and Inferred Fact-2) will be the semantic result, i.e., inferredFS.

Step 7: SR-1 sends the reasoning result back to User-1. With this information, User-1 will know that both Camera-11 and Camera-22 have backup power.

· Example 2. This example further shows that how the semantic reasoning can be leveraged during a semantic annotation process.

Assuming that Camera-11 (as a oneM2M AE) is already deployed in a room and the owner of Camera-11 also wants to add some semantic annotations to the corresponding <Camera-11> AE resource. However, the owner only has the limited knowledge in mind, which is described by the following Fact-1:

· Fact-1: Camera-11 is-a ontologyA:VideoCamera (where “VideoCamera” is a class defined by ontology A)

In this example, the owner may not even know which reasoning rule can be used due to its limited knowledge scope.

Step 1: The owner of Camera-11 intends to use Fact-1 as inputs to trigger a reasoning operation at SR-1 for identifying whether more semantic annotations can be added to <Camera-11> resource.

Step 2: The owner (which acts as a RI now) sends a reasoning request to SR-1, along with the Fact-1.

Step 3: This step is not needed in this example since the owner already sent Fact-1 to SR-1 during Step 2.

Step 4: SR-1 finds that “OntologyA” appears in Fact-1, then SR-1 decides to retrieve the definition of Ontology A as an additional inputFS, which includes a fact describing a class mapping relationship between two concepts in Ontology A and Ontology B, i.e.:

· Fact-2: ontologyA:VideoCamera is-same-as ontologyB:VideoRecorder

In the meantime, SR-1 further decides that the following Rule-1 can be utilized for a reasoning process:

· Rule-1: IF A is-a B && B is-same-as C, THEN A is-a C

Step 5: SR-1 retrieves an additional FS (i.e., Fact-2) and a RS (i.e., Rule-1) from their storing locations respectively.

Step 6: With all the input FS and RS, SR-1 will execute a reasoning process and yield the reasoning result. For example, with Fact-1, Fact-2 and Rule-1, SR-1 can yield the following new fact:

· Inferred Fact-1: Camera-11 is-a ontologyB:VideoRecorder

Step 7: SR-1 sends the reasoning result back to User-1. Now, in additional to the original Fact-1, the Inferred Fact-1 can also be added as the semantic annotations of <Camera-11>, which can facilitate the future semantic resource discovery on this resource.

8.7.5
Initiating A Continuous Semantic Reasoning Process
This clause introduces the detailed descriptions on how to enable a continuous semantic reasoning process.
8.7.5.1
Procedure for initiating a continuous semantic reasoning process

In certain scenarios, a RI may need to initiate a “continuous” reasoning process over the interested inputFS and RS. The reason is that sometimes the inputFS and RS may get changed/updated over time, and accordingly the previously- inferred facts may not be valid anymore and a new reasoning operation shall be executed over the latest inputFS and RS to generate up-to-date inferred knowledge. Figure 8.7.5.1-1 illustrates the procedure for initiating a continuous semantic reasoning process. For easy illustration, in Figure 8.7.5.1-1, the logical roles as defined in clause 8.7.4.1 are taken by different entities. The following steps are performed:

[image: image49.emf]Rule Host-2

(RH-2)

Rule Host-2

(RH-2)

Fact Host-2

(FH-2)

Fact Host-2

(FH-2)

Step 2: RI-1 sends a reasoning

request to SR-1, along with the

information about FS-1 and RS-1.

Step 7: SR-1 sends back the

reasoning result to RI-1, along with

the job ID of RJ-1.

Reasoning Initiator -1

(RI-1)

Reasoning Initiator -1

(RI-1)

Semantic Reasoner -1

(SR-1)

Semantic Reasoner -1

(SR-1)

Fact Host-1

(FH-1)

Fact Host-1

(FH-1)

Rule Host-1

(RH-1)

Rule Host-1

(RH-1)

Step 1: RI-1 intends to use FS-1 and RS-1

as inputs to Initiate a ͞continuous͟�

reasoning process at SR-1.

Step 4: SR-1 may also decide whether

additional FS and/or RS can be utilized.

Step 5: SR-1 retrieves an additional FS-2 from FH-2 and/or an additional RS-2 from RH-2. Similarly, SR-1 also makes

subscriptions on each of them.

Step 6: SR-1 creates a reasoning job (denoted as RJ-1),

which includes all the involved inputFS and RS. Then,

RJ-1 will be executed and yield the reasoning result.

Pre-condition: RI-1 has identified FS-1 on FH-1 and RS-1 on RH-1 through oneM2M resource discovery.

Step 3: SR-1 not only retrieves FS-1 from FH-1 and RS-1 from RH-1 respectively, but also makes subscriptions on each of them.

Step 10: SR-1 sends back the new

reasoning result to RI-1.

Step 8: FH-1 sends a notification

about the changes on FS-1.

Step 9: SR-1 retrieves the latest FS-1 and executes a new

reasoning process for RJ-1 to generate new reasoning result.

The semantic reasoning processes of RJ-1 will continue as long as RJ-1 is a valid semantic reasoning job.

Any changes on inputFS and RS will trigger a new reasoning process of RJ-1

(Steps 8-10 is an example)

Figure 8.7.5.1-1: Procedure for Initiating a Continuous Semantic Reasoning Process
Pre-condition: Through resource discovery, RI-1 has identified an interested FS-1 on FH-1 (this FS is denoted as “initial inputFS”) and RS-1 on RH-1 (this RS is denoted as “initial RS”).

Step 1: RI-1 intends to use FS-1 and RS-1 as inputs to trigger a “continuous” reasoning process at SR-1 for discovering new knowledge.

Step 2: RI-1 sends a semantic reasoning request to SR-1, along with the information about FS-1 and RS-1 (e.g. their URIs). In the meantime, RI-1 also indicates that it would like to initiate a continuous reasoning process, instead of a one-time reasoning process (as introduced in clause 8.7.4.2).
Step 3: Based on the information sent from RI-1, SR-1 retrieves FS-1 from FH-1 and RS-1 from RH-1, respectively. In the meantime, SR-1 also makes subscriptions on FS-1 and RS-1 in order to receive notifications about their future changes.
Step 4: In addition to the inputs provided by RI-1, optionally SR-1 may also decide whether additional FS and/or RS can be used. For example, the reasoning request sent from RI-1 can indicate that whether SR-1 could incorporate additional FS/RS if needed.

Step 5: SR-1 retrieves an additional FS (i.e., FS-2) from FH-2 and an additional RS (i.e., RS-2) from RH-2. Similarly, SR-1 also makes subscriptions on FS-2 and RS-2 in order to receive notifications about their future changes.
Step 6: SR-1 creates a reasoning job (denoted as RJ-1), which includes all the involved inputFS and RS. Then, RJ-1 will be executed and yield the reasoning result for the first time. After that, as long as any of inputFS and RS is changed, SR-1 will initiate a new reasoning process for RJ-1 in order to generate the new reasoning result (i.e., the new inferred facts) based on the latest inputFS and RS.

Step 7: SR-1 sends the reasoning result back to RI-1. As an alternative solution, a new reasoning process for RJ-1 may also be initiated by RI-1 itself. In this alternative, SR-1 is not necessarily to make subscriptions on the involved inputFS and RS. Instead, RI-1 may proactively send initiating requests to SR-1, which includes the job ID of RJ-1. Accordingly, every time SR-1 receives such a request from RI-1, SR-1 shall check the involved inputFS and RS of RJ-1 to see if there is an update (if so, a new reasoning process will be triggered.).

Any future changes on inputFS and RS will trigger a new reasoning process of RJ-1 (Steps 8-10 is an example)
Step 8: FH-1 sends a notification about a change on FS-1.

Step 9: SR-1 retrieves the latest FS-1 and executes a new reasoning process for RJ-1 to generate new reasoning result.

Step 10: SR-1 sends back the new reasoning result to RI-1.
The semantic reasoning processes of RJ-1 will continue as long as RJ-1 is a valid semantic reasoning job.

8.7.5.2
Examples usage of procedure for initiating a continuous semantic reasoning process

In this clause, a real example shows how the procedure introduced in clause 8.7.5.1 can be used. In particular, a heart attack risk monitoring example as illustrated in clause 8.7.3 is a nice application scenario where the proposed procedure for initiating a continuous semantic reasoning process can be applied.

In this example, the heart attack risk monitoring application (as an oneM2M AE) can ask SRF to perform semantic reasoning process over the real-time vital data (such as blood pressure, breathing rate, heartbeat, etc.) collected from a specific patient A. In particular, the vital data of patient A will be the input FS while the RS to be used is a specific heart-attack diagnosis/prediction reasoning rule. Note that, such a reasoning rule can be highly customized based on patient A’s own health profile and his/her past heart-attack history. Since the vital data of patient A may change from time to time (due to the different daily activities such as walking, sleeping, etc.), the reasoning processes needs to be conducted constantly based on the latest vital data of patient A, in order to evaluate patient A’s current heart-attack risk (which is the reasoning result).
It is assumed that the heart attack risk monitoring application (as RI-1) has identified two medical devices associated with patient A, i.e. a blood pressure monitor (represented by <BloodPressureMonitor-1>, which is a <AE> type of resource) and a breathing rate monitor (represented by <BreathingMonitor-1> resource). The real-time readings of those two devices are stored in two oneM2M <container> resources respectively, and each of them have a <semanticDescriptor> child resources as their semantic annotations. In particular, in each of those <semanticDescriptor> child resources, there is one RDF triple (as a fact) that describes the latest reading of those two devices (and every time a new reading is received, this corresponding RDF triples will also be updated accordingly to reflect the latest reading):

· RDF Triple #1 (as Fact-1): BloodPressureMonitor-1 hasLastestReading “Systolic: 130 Diastolic: 85”

· RDF Triple #2 (as Fact-2): BreathingMonitor-1 hasLastestReading “Breath rate/min: 16”

In the meantime, the heart attack risk monitoring application has also identified a customized semantic reasoning Rule-1, which is specifically designed for evaluating whether patient A currently has a high risk for a heart attack:

· Rule-1: IF Systolic > 154 and Diastolic > 94 AND BreathingRate > 22, THEN “Patent-A is-in high-risk-for heart-attack ”

The Rule-1 basically describes a domain knowledge that is specifically holds for patient A, i.e., if patient A’s systolic reading is larger than 154, the diastolic reading is larger than 94, and the breathing rate is larger than 22 per minute, then it is inferred that patient A now has a high risk for heart attack.
The procedure proposed in Figure 8.7.5.1-1 will have the following actions for this application (the steps shown below are as same as the steps shown in Figure 8.7.5.1-1):

Pre-condition: Through resource discovery, RI-1 (i.e., the heart attack risk monitoring application) has identified an interested FS-1 (which includes two facts/triples that respectively describe the latest readings of a blood pressure monitor and a breathing monitor associated with patient A) and RS-1 (which is a reasoning rule that can evaluate whether patient A currently has a high risk for heart-attack based on his/her blood pressure and breathing rate).

Step 1: The heart attack risk monitoring application intends to use FS-1 (including Fact-1 and Fact-2) and RS-1 (including Rule-1) as inputs to trigger a continuous reasoning process at SR-1 in order to consistently evaluate the heart attack risk of patient A (In other words, this application can provide 7×24 remote heart attack monitoring service for patient A).

Step 2: RI-1 sends a reasoning request to SR-1, along with the information about the storing locations of Fact-1, Fact-2, and Rule-1.

Step 3: Based on the information sent from RI-1, SR-1 retrieves Fact-1, Fact-2, and Rule-1. In the meantime, SR-1 also make subscriptions on them. For example, a <subscription> child resource will be created respectively for each of the two <container> resources that store the readings of those two medical devices.
In this example, no additional FS and RS is needed, so Steps 4 and 5 are omitted.

Step 6: SR-1 creates a reasoning job (denoted as RJ-1), which corresponds to the specific 7×24 remote heart attack monitoring service for patient A. Then, RJ-1 will be executed and based on the current information described in Fact-1 and Fact-2. It is inferred that patient A now is not in a high risk for heart attack using Rule-1.

Step 7: SR-1 sends the reasoning result back to heart attack risk monitoring application. Since patient A now is not in a high risk for heart attack, no further action will be triggered.
Any future changes on patient A’s vital data will trigger a new reasoning process of RJ-1 (Steps 8-10 is an example)
Step 8: SR-1 receives notifications about the changes on Fact-1 and Fact-2, e.g., a new blood pressure or a new breathing rate reading just becomes available.

Step 9: SR-1 retrieves the new reading(s) and executes a new reasoning process for RJ-1 in order to re-evaluate the heart attack risk of patient-A.

Step 10: SR-1 sends back the new reasoning result to the heart attack risk monitoring application. For example, if this time the reasoning result is that patient A is now in a high risk for heart attack, the heart attack risk monitoring application will automatically send an alarm to the family doctor of patient A or call 911 for an ambulance if needed.
8.7.6
Initiating a Semantic Operation with Reasoning Support

8.7.6.1
Introduction

This clause introduces solutions for how the existing semantic operations (such as semantic query, semantic resource discovery, etc.) can benefit from semantic reasoning.
In general, it is assumed that in addition to SR, there is also a Semantic Engine or SE (e.g., a SPARQL engine) in the system. Accordingly, oneM2M users can send requests to the SE in order to initiate specific semantic operations, using SPARQL statements to describe the user’s needs. When processing a specific received request (e.g., a semantic resource discovery request)the SE needs to collect the Involved Data Basis (IDB), which is a set of RDF triples that the SPARQL statement is to be executed on.

 In some cases the original IDB (without semantic reasoning support) does not match well with the SPARQL statement (e.g., the RDF triples in IDB are described using a different ontology than the ontology adopted in the SPARQL query statement sent from the user, see ontology mapping use cases in [i.16]). In these cases no result can be obtained when executing the SPARQL statement over the original IDB.

In a first approach, semantic reasoning enhancements enable the SE to further utilize the semantic reasoning capability provided by a SR (as a background support) in order to augment the original IDB with additional/implicit facts (i.e., the obtained reasoning result) which optimizes the processing of the semantic operation at SE. An alternative approach uses reasoning support to modify the query statement of the semantic operation based on the applicable reasoning rules and the modified query statement will be executed on the original IDB.

These two solutions are described in clauses 8.7.6.1 and 8.7.6.2 respectively. For both solutions SE and SR are depicted as separate entities to allow for additional procedural detail, with co-location as an implementation choice It is assumed that in a system supporting both solution the decision on the approach to be used for each individual query request is based on local policies and/or implementation.

Editor’s note: separation of SE/SR entities and specification of the interface between them is FFS.
Examples usage of the procedures are provided in each of the two respective clauses, assuming the same initial conditions, and with the goal of producing the same query results. Depending on implementation the two approaches may offer different advantages and optimizations, as described in Table 8.7.6.1.-1.

Table 8.7.6.1-1: Overview of semantic operations with reasoning support approaches

	Approaches
	Pros
	Cons

	Solution 1: IDB Augmentation through Semantic Reasoning

	· A generic approach for supporting any query statement

· Inferred facts obtained through semantic reasoning can be used to augment original IDB and reused

· Straightforward implementation
	· Overhead introduced by IDB augmentation

· Possible extended processing times if IDB augmentation is done in an online manner.

	Solution 2: Query Modification w/o Semantic Reasoning

	· Does not need to trigger a reasoning operation to get inferred facts

· Only needs to utilize applicable reasoning rules to modify the original query

	· Need to conduct query modification

· May not work for complex queries.

8.7.6.2
Solution 1: Initiating a semantic operation with reasoning support via IDB augmentation

8.7.6.2.1
Procedure for initiating a semantic operation with reasoning support via IDB augmentation

Figure 8.7.6.2.1-1 illustrates the proposed procedure for initiating a semantic operation with reasoning support and the key idea is that by utilizing the reasoning capability, the original IDB determined by the SE will be further augmented by integrating inferred facts (i.e., the reasoning result) with the existing facts in the IDB. Accordingly, the SPARQL statement will be executed on the “Augmented IDB”. Figure 8.7.6.2.1-1 illustrates the proposed procedure and the detailed descriptions are as follows:

Step 1: An oneM2M User-1 intends to initiate a semantic operation, which may refer to a semantic query operation, a resource discovery operation, etc. Accordingly, User-1 will compose a request message, in which a corresponding SPARQL statement is also included.

Step 2: User-1 sends the request to SE-1 in order to initiate the intended semantic operation. The request may include, in addition to a SPARQL statement, indications or information for semantic reasoning use. For example: there may be explicit or implicit indication to include reasoning, the user may identify itself as a preferred user in regard to semantic reasoning leverage, the user may identify specific reasoning rules to be used, etc.
Step 3: Based on the request from User-1, SE-1 starts the related processing. The first step is to determine the IDB for this request, on which the SPARQL statement is to be executed.

Below are the two examples of IDB for two different semantic operations (one is for semantic resource discovery operation and the other is for semantic query operation):

· In case of semantic resource discovery, User-1 may send a resource discovery request to a semantic-capable CSE (hosting a SE) and the “To” parameter indicates where the discovery should start, e.g., a specific resource <Resource-1>. In particular, for each of the normal resources which is a descendant of <Resource-1> (e.g., <Resource-2>), its <semanticDescriptor> child resource (if exists) will be evaluated in order to decide whether <Resource-2> should be included in the discovery result. In other words, when evaluating a specific resource (e.g. <Resource-2>), its IDB includes the RDF triples stored in its <semanticDescriptor> child resource. Then, the SPARQL statement will be executed over its <semanticDescriptor> child resource (if exists) in order to decide whether <Resource-2> should be included in the discovery result.

· In case of semantic query, User-1 may send a semantic query request to a semantic-capable CSE (hosting a SE) and the “To” parameter may refer to a specific resource <Resource-1>, which also defines the query scope of this request. It means that all the semantic-related descendant resources (e.g., <semanticDescriptor> resources) of <Resource-1> are constituted as the IDB for this semantic query operation. This scope may be further enlarged if <semanticDescriptor> resources in scope are linked (e.g. via relatedSemantics attributes) with others, by adding the linked resources to the IDB. Accordingly, the SPARQL statement will be executed over the aggregated RDF triples collected from those semantic-related resources.

The SE-1 also needs to decide whether semantic reasoning should be used for processing this request, which may have but not limited to the following potential ways:

· Based on an explicit indication included in the request (e.g. SE-1 needs to provide a reasoning-based discovery result), SE-1 leverages the semantic reasoning procedure.

· Based on local policies, if certain conditions occur while processing the request on the original IDB. For example, no resources are found during the initial processing of a resource discovery SE-1 may be configured to further leverage semantic reasoning.

· If User-1 is a preferred user (e.g. SE-1 needs to provide high-quality discovery result to User-1), SE-1 may decide to further leverage semantic reasoning.

· SE-1 can also be configured such that as long as it finds certain ontologies or the interested terms/concepts/properties adopted in the RDF triples included in the original IDB or in the SPARQL statement, SE-1 may decide to further leverage semantic reasoning.

As a result, if SE-1 decides to leverage semantic reasoning based on the above approaches, it will further contact SR-1 (Note that, the SE-1 and SR-1 may be hosted on the same CSE or can also be hosted by different CSEs).

Step 4: SE-1 sends a request to SR-1 to initiate a semantic reasoning operation. SE-1 may also include in the request the Fact Set (FS), Reasoning Rule Set (RS) and relevant information such as ontology mapping information . For example, the original IDB determined during Step 3 is the initial inputFS for the reasoning operation to be done by SR-1.

Step 5: In addition to the inputs provided by SE-1, optionally SR-1 may also decide whether additional FS and/or RS can be used. Then, SR-1 will collect all the needed FSs and RSs.

Step 6: SR-1 executes a semantic reasoning operation and yields the inferred facts (denoted as inferredFS-1).

Step 7: SR-1 sends back the inferredFS-1 to SE-1.

Step 8: SE-1 integrates the inferredFS-1 with the original IDB to generate an “Augmented IDB”, and executes the SPARQL statement over the augmented IDB to yield the corresponding result for the intended semantic operation required by User-1.

Step 9: When completing the processing, SE-1 sends back the processing result to User-1.

[image: image50.emf]Step 2: User-1 sends a request

to SE-1 to initiate an intended

semantic operation.

Step 9: SR-1 sends back the

processing result to User-1 for its

intended semantic operation.

User-1

Semantic Reasoner-1

(SR-1)

Semantic Engine-1

(SE-1)

Step 1: User-1 intends to

initiate a semantic operation.

Step 5: SR-1 determines and collects all the

needed facts and reasoning rules for the

semantic reasoning operation to be executed.

Step 8: SE-1 integrates the reasoning result with

the original IDB to generate an augmented IDB,

and executes the SPARQL statement over the

augmented IDB and yields the processing result.

Step 3: SE-1 determines the original

Involved Data Basis (IDB) for this request

and also decides whether to further

leverage semantic reasoning function.

Step 4: SE-1 sends a request to SR-1

in order to initiate a semantic

reasoning operation.

Step 6: SR-1 conducts the semantic

reasoning operation and yields the reasoning

result.

Step 7: SR-1 sends back the

reasoning result to SE-1.

Figure 8.7.6.2.1-1: Procedure for Initiating a Semantic Operation with Reasoning Support via IDB Augmentation

8.7.6.2.2
Examples usage of procedure for initiating a semantic operation with reasoning support via IDB augmentation

In this clause, a real example shows how the procedure introduced in Figure 8.7.6.2.1-1 can be used. In particular, a hospital facility surveillance use case as illustrated in clause 8.7.2 is reused here.

In the hospital facility surveillance use case, due to the different usages of rooms, the hospital has defined several “Management Zones (MZ)” and each MZ likely comprises multiple rooms. For example, MZ-1 includes all the rooms that store blood testing samples.
Now, User-1 intends to retrieve real-time images from the rooms “belonging to a specific management zone (e.g., MZ-1)”. For this purpose, User-1 needs to first discover those related cameras using oneM2M semantic resource discovery mechanism. As a result, the following steps will be conducted (the steps shown below are as same as the steps shown in Figure 8.7.6.2.1-1):

Step 1: User-1 intends to initiate a semantic resource discovery operation. For example, User-1 is looking for cameras monitoring the rooms belonging to a specific management zone (e.g., MZ-1). The SPARQL query statement in this semantic resource discovery request can be written as follows:

SELECT ?device

WHERE {

?device is-a ex:Camera

?device monitors-room-in MZ-1

}

Step 2: User-1 sends a request to SE-1 in order to initiate an intended semantic resource discovery operation.

Step 3: Based on the request from User-1, SE-1 starts the related processing. The first step is to determine the IDB for this request, on which the SPARQL statement is to be executed.

In this example, it is assumed that now <Camera-11> is one of the candidate resources to be evaluated. When evaluating <Camera-11>, all the RDF triples stored in the <semanticDescriptor> child resource of <Camera-11> is the IDB (denoted as IDB-1). For example, IDB-1 may include the following two facts:

•
Fact-1: Camera-11 is-a Camera

•
Fact-2: Camera-11 is-located-in Room-232-of-Building-1

In the meantime, SE-1 is configured such that as long as it finds that building/room number and/or a specific predicate “is-located-in” appears in the RDF triples as included in the IDB, SE-1 may decide to further leverage semantic reasoning.

Step 4: SE-1 sends a request to SR-1 in order to initiate a semantic reasoning operation. SE-1 also indicates that IDB-1 is the input FS for the reasoning operation, which includes Fact-1 and Fact-2.

Step 5: In addition to the inputs provided by SE-1, SR-1 may also decide whether additional FS and/or RS can be used. In this example, SR-1 finds that there is a key word “is-located-in” in Fact-2 and a key word “is-managed-under” in the SPARQL statement, accordingly SR-1 may decide that MZ definition and room allocation knowledge may be beneficial for this semantic reasoning operation and should be utilized. In particular, this knowledge may include the following fact:

•
Fact-3: Room-232-of-Building-1 is-managed-under MZ-1

For the same reason, SE-1 also decides the following reasoning result can be utilized:

•
Rule-1: IF A is-located-in B && B is-managed-under C, THEN A monitors-room-in C

Step 6: SR-1 executes a semantic reasoning operation and yields the reasoning result. In particular, by using Fact-2, Fact-3 along with Rule-1, the following inferred fact can be obtained:

•
Inferred Fact-1: Camera-11 monitors-room-in MZ-1

Step 7: SR-1 sends back the Inferred Fact-1 to SE-1.

Step 8: SE-1 integrates Inferred Fact-1 with the original IDB (i.e., Fact-1 and Fact-2) to generate an augmented IDB, and executes the SPARQL statement over the augmented IDB to yield the corresponding discovery result. In this example, there will be a match when executing the SPARQL statement over the augmented IDB (since now the Inferred Fact-1 can match the pattern “?device is-managed-under MZ-1” in the SPARQL statement and Fact-1 can match the pattern “?device is-a ex:Camera”) and therefore the URI of <Camera-11> will be included in the discovery result). After that, SE-1 completes the evaluation of <Camera-11> and will continue to evaluate the next candidate resource if exists.

Step 9: When completing the processing, SE-1 sends back the processing result to User-1. In this example, due to the utilization of semantic reasoning, the URI of <Camera-11> is included in the discovery result and sent back to User-1.

8.7.6.3
Solution 2: Initiating a semantic operation with reasoning support via query modification

8.7.6.3.1
Procedure for initiating a semantic operation with reasoning support via query modification

In this alternative solution, the key idea is that by utilizing the reasoning capability, the original query statement specified in a semantic query or semantic resource discovery request will be modified. Accordingly, the modified query will be applied over the original IDB in order to produce the result. Figure 8.7.6.3.1-1 illustrates the proposed procedure and the detailed descriptions are as follows:

Step 1: Same as Step 1 as in clause 8.7.6.3.1 (Figure 8.7.6.3.1-1).

Step 2: Same as Step 1 in clause 8.7.6.3.1 (Figure 8.7.6.3.1-1).Step 3: Based on the request from User-1, SE-1 starts the related processing. The SE determines the IDB on which the SPARQL statement is to be executed and determines to leverage the semantic reasoner SR-1 for possible SPARQL query modification/re-writing.

Similarly to the processing in clause 8.7.6.2.1 the decision to use semantic reasoning may be based on reasoning-specific information included in the Step 2 request, e.g. explicit or implicit indications to include reasoning, user preferred status in regard to semantic reasoning leverage, specific reasoning rules provided by the user, etc.

Step 4: SE-1 sends a request to SR-1 in order to ask SR-1 to modify the original SPARQL query statement. SE-1 sends a request to SR-1 to initiate a semantic reasoning operation. SE-1 may also include in the request the Fact Set (FS) and relevant information such as ontology mapping information. For example, the original IDB determined during Step 3 is the initial inputFS for the reasoning operation to be done by SR-1.

Step 5: SR-1 determines which reasoning rules that can be used for the request sent from SE-1. Optionally, the SR-1 can also decide which additional facts can be used for this request, if the original IDB is not sufficient.

Step 6: SR-1 modifies the original SPARQL statement based on the applicable reasoning rules.

Step 7: SR-1 sends back the modified SPARQL statement to SE-1. Alternatively, the SR-1 may send back all the applicable reasoning rules to SE-1 and let SE-1 conduct the query statement modification by its own.
Step 8: SE-1 executes the modified SPARQL statement over the IDB and yields the processing result.

Step 9: Same as Step 9 in clause 8.7.6.3.1 (Figure 8.7.6.3.1-1).

[image: image51.emf]Step 2: User-1 sends the request

to SE-1 in order to initiate an

intended semantic operation.

Step 9: SR-1 sends back the

processing result to User-1 for its

intended semantic operation.

User-1

Semantic Reasoner -1

(SR-1)

Semantic Engine-1

(SE-1)

Step 1: User-1 intends to

initiate a semantic operation.

Step 5: SR-1 determines and collects

reasoning rules that can be used for the

request sent from SE-1.

Step 8: SE-1 executes the modified SPARQL

statement over the IDB and yields the processing

result.

Step 3: SE-1 determines the Involved

Data Basis (IDB) for this request and also

decides whether to further leverage

semantic reasoning function.

Step 4: SE-1 sends a request to SR-1

in order to ask SR-1 to modify the

original SPARQL query statement.

Step 6: SR-1 modifies the original SPARQL

statement based on the applied reasoning

rules.

Step 7: SR-1 sends back the modified

SPARQL statement to SE-1.

Figure 8.7.6.3.1-1: Procedure for Initiating a Semantic Operation with Reasoning Support via Query Modification

8.7.6.3.2
Examples usage of procedure for initiating a semantic operation with reasoning support via query modification

In this clause a hospital facility surveillance use case as illustrated in clause 8.7.2 is used to exemplify how the procedure proposed in clause 8.7.6.3.1 can be applied.

In the hospital facility surveillance use case, due to the different usages of rooms, the hospital has defined several “Management Zones (MZ)” and each MZ likely comprises multiple rooms. For example, MZ-1 includes all the rooms that store blood testing samples.
 User-1 intends to retrieve real-time images from the rooms “belonging to a specific management zone (e.g., MZ-1)”. In order to the so, User-1 needs to first discover those related cameras using oneM2M semantic resource discovery mechanism. As a result, the following steps (corresponding to Figure 8.7.6.3.1-1) will be conducted:

Step 1: User-1 initiates a semantic resource discovery operation. For example, User-1 is looking for cameras monitoring the rooms belonging to a specific management zone (e.g., MZ-1). The SPARQL query statement in this discovery request will can be written as follows:

SELECT ?device

WHERE {

?device is-a ex:Camera

?device monitors-room-in MZ-1

}

Step 2: User-1 sends a request to SE-1 in order to initiate an intended semantic resource discovery operation.

Step 3: Based on the request from User-1, SE-1 starts the related processing by determining the IDB for this request, on which the SPARQL statement is to be executed.

In this example, it is assumed that now <Camera-11> is one of the candidate resources to be evaluated. When evaluating <Camera-11>, all the RDF triples stored in the <semanticDescriptor> child resource of <Camera-11> is the IDB (denoted as IDB-1). For example, IDB-1 may include the following two facts:

•
Fact-1: Camera-11 is-a Camera

•
Fact-2: Camera-11 is-located-in Room-232-of-Building-1

Step 4: SE-1 sends a request to SR-1 in order to solicit applicable reasoning rules for modifying the original query statement. including related information about involved facts (i.e., Fact-1 and Fact-2 so far) and SPARQL statement.

Step 5: SR-1 decides which RS can be used. In this example, SR-1 finds that there is a key word “monitors-room-in” appeared in the SPARQL statement, accordingly SR-1 may decide that the following reasoning rule may be applicable since it also has a predicate “monitors-room-in”:

•
Rule-1: IF A is-located-in B && B is-managed-under C, THEN A monitors-room-in C

Step 6: SR-1 modifies the original SPARQL statement based on the applicable Rule-1:

SELECT ?device

WHERE {

?device is-a ex:Camera

?device monitors-room-in MZ-1

?device is-located-in ?room

?room is-managed-under MZ-1

}

As an optional step, SE-1 may decide that whether additional facts should be incorporated into the original IDB due to the modification on the original SPARQL statement.

Note that, in Solution 2, those additional facts just refer to existing facts, i.e., they do not refer to inferred facts, which are mainly obtained through the semantic reasoning operations as done Solution 1 This is based on the differences between the two solutions, which may be summarized as follows: : Solution 1 is designed to conduct semantic reasoning operations to find inferred facts, which further augment IDB for possible future use, and query statements never get modified. Solution 2 does not conduct semantic reasoning operations, it only utilizes applicable reasoning rules to modify the query statement.
For example, in order to match the newly-added pattern “?room is-managed-under MZ-1” in the modified query statement, SE-1 may decide that MZ definition and room allocation knowledge should be added as additional facts. For example, the following Fact-3 is one piece of MZ definition about Room-232-of-Building-1:

Fact-3: Room-232-of-Building-1 is-managed-under “MZ-1”
Step 7: SR-1 sends back the modified SPARQL statement to SE-1, as well as an advice about whether additional facts should be used, e.g., the Fact-3 in this case.
Step 8: SE-1 integrates the additional Fact-3 (as suggested by SR-1) with the original IDB (i.e., Fact-1 and Fact-2), and executes the modified SPARQL statement and yields the corresponding result. In this example, there will be a match when executing the modified SPARQL.

Step 9: When completing the processing, SE-1 sends the processing result back to User-1. In this example, due to the utilization of SPARQL statement modification based on applicable reasoning rules, the URI of <Camera-11> is included in the discovery result and sent back to User-1.

8.8
Semantic mash-up

8.8.1
Introduction

8.8.1.1
Semantic mashup definition
Existing semantic resource discovery in oneM2M can help in discovering various IoT devices and their data. However, in many application scenarios, the discovered data needs to be further processed (e.g. integrated/orchestrated/combined) based on a certain application business logic. For example, users may just be interested in a metric called "weather comfortability index", which cannot be directly provided by physical sensors, and in fact can be calculated based on the original sensory data collected from multiple types of physical sensors (e.g. temperature and humility sensors).

In general, the above process is called "Semantic Mashup", which is defined as a process to discover and collect data from more than one source as inputs, conduct a kind of business logic-related mashup function over the collected data, and eventually generate meaningful mashup results. In particular, semantic mashup emphasizes on leveraging semantic-related technologies during the entire mashup process. For example, in the oneM2M context, an normal resource (e.g. a <AE> resource representing a temperature sensor) may be annotated by semantic descriptions and then they could be discovered and identified as a potential data source for a specific mashup application through the semantic resource discovery.
The above definition also indicates a fact that a complete semantic mashup process may involve multiple stages and multiple entities for each stage, which will be illustrated and discussed in details through the following sections.

8.8.1.2
Semantic mashup example: smart parking application

Smart parking is one of the major applications in a smart city. In the smart city, each parking spot (e.g. inside parking buildings and any street parking spot) is equipped with a parking sensor. The parking sensor provides real-time parking spot information including the real-time status about its associated parking spot (i.e. occupied or not), the geographic location of the associated parking spot, as well as the real-time parking rate of the associated parking spot. All those information can be described in a semantic form, such as RDF triples. As shown in figure 8.8.1.2-1, there are some parking buildings (whose parking sensors are registered to Server-A) as well as street parking spots (whose parking sensors are registered to Server-B) around Building-A.
For a given user/client who wants to find a suitable parking spot near her/his destination (e.g. Building-A), she/he may send a parking request (indicating e.g. her/his destination and/or parking preference, etc.) to Server-C, which provides real-time parking assistance. In order to process this parking request, a mashup process will be triggered in Server-C. For example, by leveraging semantic-related technologies Server-C will first collect the needed information from multiple places, which include:

38) Real-time parking spot information from Server-A for the parking buildings;
39) Real-time parking spot information from Server B for the street parking spots.

Then, Server-C will process and mashup all these collected information in order to find the most suitable parking spot according to a certain mashup function, which could have been provisioned to Server-C. For instance, the mashup function can define the most suitable parking spot as the one having the minimum parking rate or having the most convenient location (e.g. having the shortest walking distance to the elevator). Finally, the mashup result (i.e. the most suitable parking spot) will be returned to the user.

[image: image52.emf]Building-A

Street Parking

Spot-1

Street Parking

Spot-2

Street Parking

Spot-n

Client/User

(Destination: Building-A)

Parking

Space

Sensor

Parking

Building YY

Parking

Building XX

Server-C

(Providing Smart

Parking Assistance)

Server-A

(Hosting Real-time

Parking Info. for

Parking Buildings)

Server-B

(Hosting Real-time

Parking Info. for Street

Parking Spots)

Parking Request

Suitable Parking Spot

...

...

Parking

Building ZZ

Figure 8.8.1.2-1: Smart Parking Assistance Realized Through Semantic Mashup

8.8.2
Problem statement

8.8.2.1
Entities involved in sematic mashup

From the above smart parking example, it can be seen that multiple entities are involved in the mashup process, which include:

· Mashup Requestor (MR): The entity which initiates a mashup request to Semantic Mashup Function (as introduced next) for a certain need. For example, a client/user looking for the suitable parking spot is the mashup requestor in the smart parking use case. In the context of oneM2M, an AE or a CSE can be an MR.

· Resource Host (RH): The entity which hosts data source(s) for a given mashup process. For example, in the smart parking use case, Server-A and Server-B are RHs, which host data sources in terms of many parking sensors. In the context of oneM2M, a data source is typically represented by a oneM2M resource (e.g. a temperature <AE> resource) and a RH will be a CSE that hosts oneM2M resources.
· Semantic Mashup Function (SMF): The entity which is responsible for collecting the data inputs from data sources hosted on RHs and mashing them up to generate the mashup result based on a certain business logic. For example, in the smart parking use case, Server-C provides an SMF and one of mashup applications run by the SMF is the smart parking assistance. In the context of oneM2M, SMF is a Common Service Function.
8.8.2.2
Technical analysis of semantic mashup

It is worth noting that there are many-to-many relationships between different MRs, RHs and SMFs in reality. Typically, a RH may provide the same data inputs for different mashup applications. For example, the same outdoor temperature sensors can not only provide inputs for a weather reporting mashup application, but also for a travel planning mashup application. Similarly, a single SMF may provide and support various mashup applications. For example, in the smart parking use case, the SMF hosted by Server-C may also support the shopping guidance mashup application besides the smart parking assistance; accordingly, an MR may resort to Server-C in order to not only find the most suitable parking spot near Building-A (supported by smart parking assistance mashup application) but also get the most recent coupons provided by the shops in Building-A (supported by the shopping guidance mashup application). In addition, for a given mashup application, different MRs may trigger individual mashup processes/instances to be conducted by SMF. For example, in the smart parking use case, different users as MRs may resort to Server-C for finding their respective parking spots given their different destinations, and each of their requests may trigger an individual mashup process for the same smart parking assistance mashup application.

Considering the multiple entities involved in a mashup process as well as their potential many-to-many relationships as discussed above, a common SMF needs to be included in a service layer in order to provide generic semantic mashup support for various application scenarios. In particular, in the context of oneM2M service layer, this SMF could be a CSF since data inputs mainly come from oneM2M resources and MRs mainly refer to service layer entities such as AEs/CSEs. In comparison, when there is no such a common SMF in the system, alternative ways to realize semantic mashup likely will be inefficient/non-optimal. For example, all mashup-related tasks could be handled by MRs themselves (i.e. MRs need to fully understand business logics, identify the qualified data sources, collect data inputs, and mashup those data inputs in order to derive the mashup result), which may have the following potential issues:

· An MR has to collect data inputs from original resources. However, in most of cases, an MR does not really care about original resources and it is only interested in the mashup result. Furthermore, the MR needs to have various domain knowledge if data inputs to be collected are from different domains. Accordingly, all the mashup-related processing needs to be handled by the MR itself, which increases the implementation complexity for the MR.

· Some resources (as data sources) hosted by RHs may be sensitive due to various access control policies. In other words, certain resources may not be exposable to an MR or not allowed to be retrieved directly by an MR. In comparison, a common SMF may have more privileges for collecting and accessing data inputs.

· Different MRs may conduct mashup operations individually without any collaboration, which may lead to considerable/unnecessary overhead (e.g. repetitive data retrieval from the same data source). In comparison, a common SMF could retrieve and feed a data input to multiple mashup processes if they need the same data input(s), which can significantly reduce the related overhead.
8.8.3
Semantic Mashup Function (SMF)

8.8.3.1
High-level architecture

This section describes the high-level architecture of Semantic Mashup Function (SMF) and the high-level operations of SMF that are needed during the execution of a semantic mashup process. In the meantime, this section also introduces various semantic mashup paradigms in the real world and the details on how this SMF can be tailored in order to support those different paradigms, which demonstrates the improved flexibility, reusability, and system efficiency of SMF.

[image: image53.emf]SMF: Semantic Mashup Function

SMJP: Semantic Mashup Job Profile

SMI: Semantic Mashup Instance

MR: Mashup Requestor

Semantic Mashup Job

Profile (SMJP) Library

Semantic Mashup

Function (SMF)

Functionality:

// Finding Suitable Parking Spot (Human Understandable Description)

smp-001 is-a ex:smartParkingAssistance

Input Needed from MR:

ex:MRInput1 is-a ex:currentVehiclePosition

ex:MRInput2 is-a ex:destination (e.g., Building A)

ex:MRInput3 is-a ex:parkingPreference

Output (Mashup Result):

ex:output1 is-a ex:parkingSpotID

ex:output2 is-a ex:parkingSpotPosition

Data Sources Criteria/Filter:

//Data Source Type-1:

ex:source1 is-a ex:parkingSpotInParkingBuilding

ex:source1 is-close-to ex:MRInput2 (i.e., MR’s destination)

//Data Source Type-2:

ex:source2 is-a ex:streetParkingSpot

ex:source2 is-close-to ex:MRInput2 (i.e., MR’s destination)

Mashup Function:

ex:function1 is-a ex:cheapestCostBasedSpotSelectionAlgorithm (default)

ex:function2 is-a ex:parkingPreferenceBasedSpotSelectionAlgorithm

SMJP-001 (smpID)

(Smart Parking Assistance)

SMP Semantic Description

Utility or

Runnable

Code Block

SMJP -002

SMJP -001

SMI -001

smjpID:

SMJP-001

Identified Data

Sources

Mashup Result

SMJP-002

(Shopping Guidance Application)

…..

Identified Data Sources

Source 1: Parking Spots in Building XX,

Source 2: Parking Spots in Building YY

Source 3: Parking Spots on Main Street …

Source 4: Parking Spots on 5

th

Avenue

…..

SMP Reference

Injected

into

Triggered by MR-1

Triggered by MR-2

Example

Example

Mashup Result

Suitable Parking Spot ID: Parking Spot-16

Position: Parking Building XX, 1

st

floor, 3

rd

Row

Mashup

Engine

SMI

Instantiation

& Management

SMI -003

smjpID:

SMP-001

SMI -002

smjpID:

SMP-002

Semantic Mashup

Instance (SMI) -001

smjpID:

SMP-001

SMJP Semantic Description (RDF Triples)

Figure 8.8.3.1-1: High-level architecture of Semantic Mashup Function

The high-level architecture of an SMF is shown in figure 8.8.3.1-1, In general, the SMF is designed in a modular way and mainly includes the following components:

· Semantic Mashup Job Profile (SMJP): Each specific semantic mashup application has a corresponding SMJP, which not only provides functionality/interaction details for external entities to discover (e.g. MRs), but also defines the internal working details regarding how to realize this mashup application (e.g. the criteria of how to select the qualified data sources as well as the definition of mashup function). To be more specifically, an SMJP includes the following parts:
· SMJP Semantic Description: In general, an MR first needs to discover a desired SMJP based on its need before sending a request to an SMF for triggering a real mashup process for this SMJP. Since there could be various mashup applications supported by an SMF, the mashup applications' corresponding SMJPs could be stored in a repository called SMJP Library for MRs to browse and discover. An MR can evaluate the semantic descriptions (e.g. RDF triples) of an SMJP in order to identify whether an SMJP meets its need.

The semantic descriptions can include the information regarding to what is the functionality that can be realized by executing this SMJP, how to interact with or run this SMJP, e.g. what inputs are needed from MR side and what is the expected mashup result (as output) of this SMJP, etc. Taking the example shown in figure 8.8.3.1-1, the semantic descriptions of the SMJP (which has the smjpID of SMJP-001) indicate that:

1)
this is a "smart parking assistance mashup application";

2)
an MR needs to provide its current location, destination and/or parking preference as user inputs in order to trigger a real mashup process for applying this SMJP; and

3)
the mashup result will be a suitable parking spot (including the spot's ID/name and location).

The semantic descriptions can also specifies the "internal" operation details regarding to how to execute and realize a semantic mashup process, which defines the following aspects:

-
Data Sources Criteria: The potential data sources for an SMJP are described through some criteria filter(s), which defines what types of data sources are eligible or qualified to provide data inputs for this specific mashup application. Taking the smart parking example shown in figure 8.8.3.1-1, Two types of data sources are desired, i.e. the parking spots in any parking buildings near the destination, and the parking spots in any street parking near the destination. Note that, an SMJP only defines the "criteria" for identifying the qualified data sources, which means that it does not refer to any specific data sources. Typically, when a real mashup process of an SMJP is triggered in SMF, SMF will then identify the specific qualified data sources according to the criteria as defined in the SMJP (the details will be discussed later).
-
Mashup Function: For a given semantic mashup process, after the SMF collects data inputs from the qualified data sources, the next step is to mashup those inputs and derive the mashup result, which is described by the mashup function. Taking the smart parking example shown in figure 8.8.3.1-1, after identifying all the parking spots near the destination, various spot selection algorithms can be used as mashup functions in order to determine the best suitable one. For example, the default one is to find the parking spot having the minimum cost.

· Utility or Runnable Code Block: This part mainly stores the related utilities or code blocks for realizing the SMJP. For example, it could include specific mathematical formulas to be used by the parking spot selection algorithms, and the runnable code blocks for realizing the mashup functions as mentioned earlier. Note that, this part is optional in the sense that the implementations of SMJP could be stored separately or just internally hosted by SMF.

· Semantic Mashup Instance (SMI): Once an MR identifies a desired SMJP (which can be analogous to a "job description", but not a real job), it can ask SMF to initialize a real mashup process (which corresponds to a "working instance" of this SMJP and is called Semantic Mashup Instance, or SMI). In order to do so, the SMF will inject the corresponding SMJP into the Mashup Engine of SMF for the SMI instantiation, during which the engine may be involved in:
· Identifying the qualified data sources according to the data source criteria as defined in the SMJP.
· Collecting data inputs from those identified data sources.
· Mashing up the collected inputs by applying mashup functions as defined in the SMJP, and finally deriving the mashup result.
· Typically, an SMI has the following three parts as shown in figure 8.8.3.1-1:
1)
the smjpID, which is the reference to the applied SMJP.
2)
The identified data sources, which indicate where the data inputs can be collected and optionally can also contain the data inputs collected from those data sources; To consider an SMI as a whole, the identified data sources in a SMI can be regarded as the "Mashup Members" of this SMI and accordingly the data source criteria as defined in SMJP is in fact a member filter for determining how to select qualified mashup members for a given SMI. The term "data source" and "mashup member" will be used interchangeably in the rest of sections.

3)
The mashup result derived by this SMI.
· Taking the smart parking example shown in figure 8.8.3.1-1, SMI-1 is an SMI for smart parking assistance mashup application, which is created by MR-1. As can be seen, based on MR-1's inputs (e.g. current location and destination, etc.), the parking spots in parking buildings, i.e. XX and YY, as well as street parking spots on Main Street and 5th Avenue are identified as "qualified data sources". By applying the parking slot selection algorithm, the final mashup result in terms of the suitable parking spot is parking spot -16, which is located in 1st floor, 3rd row of the parking building XX. It can also be seen that, besides the smart parking assistance mashup application, MR-1 may need a shopping guidance mashup result as well, which will trigger another SMI-2 referring to a different SMJP (i.e. SMJP-002, which specifies shopping guidance mashup application). In addition, another MR-2 (having a different destination) may also ask the SMF for its own parking need, which will trigger another SMI-3 (note that, SMI-3 applies the same SMJP as SMI-1, i.e. SMJP-001).

8.8.3.2
High-level operations

With the high-level architecture of an SMF as introduced in clause 8.8.3.2-1, the next question is how those components should work together and how an SMF should interact with other entities, such as RHs (providing potential data sources), and MRs (having various semantic mashup needs). It is worth noting that an SMF may involve in different tasks/operations for realizing a complete semantic mashup process. This clause is to introduce those major SMF operations, and particularly discuss the possible solutions for implementing those operations in the context of oneM2M.

[image: image54.emf]Semantic Mashup Job

Profile (SMJP) Library

SMJP

Injected

into

Mashup

Engine

SMI

instantiation

& Management

Source-1

Resource Hosts

(RH)

Source-2 Source-3

...

SMJP

SMP Semantic

Description

Data Sources

& Business Logic

Semantic Mashup Instance (SMI)

smjpID

Identified Data

Sources

Mashup

Result

Mashup

Requestor-1

(MR-1)

Semantic Mashup Function (SMF)

Source-N

Operation 1: SMJP

Discovery

Operation 2:

SMI Creation

Operation 3: Mashup

Member Identification

Operation 4:

Mashup Result

Retrieval

Operation 5: Data Input

Collection and Mashup Result

Generation

Mashup

Requestor-2

(MR-2)

Operation 6:

SMI Discovery

and Reuse

Figure 8.8.3.2-1: High-level operations for Semantic Mashup Function

The high-level SMF operations are shown in figure 8.8.3.2-1, which is discussed in details as follows:

· Operation 1 - SMJP Discovery: This process is needed when an MR (e.g. MR-1 in figure 8.8.3.2-1) tries to discover a desired SMJP for its need. Since operations in oneM2M context is resource-oriented, an SMJP can be exposed as a oneM2M resource (e.g. <SMJP>) and the semantic descriptions of the SMJP can be put into the <semanticDescriptor> child resource of <SMJP>. Accordingly, the SMJP Discovery can be implemented by leveraging the existing semantic resource discovery mechanism.
· Operation 2 - SMI Creation: This process is needed when an MR already identified a desired SMJP, but there is no corresponding SMI available for use. To implement this operation, an MR can send an SMI creation request targeted to the CSE hosting SMF in order to instantiate a new SMI for the desired SMJP. Alternatively, the SMF can also create a new SMI by itself instead of being triggered by the SMI creation request from MR.

· Operation 3 - Mashup Member Identification: This process is needed when an SMF tries to identify the qualified mashup members (i.e. data sources) for a given SMI, by referring to the criteria as defined in the corresponding SMJP of this SMI. Since in the oneM2M context, data sources (such as sensors) are normally represented as oneM2M resources hosted by RHs, this operation can also be implemented through the existing semantic resource discovery mechanism.
· Operation 4 - Mashup Result Retrieval: This process is needed when an MR tries to retrieve the mashup result from a specific SMI. It is worth noting that for a given SMI, it may involve in multiple rounds for mashup result generation especially when the mashup result needs to be refreshed periodically. For example, an SMI of a weather reporting mashup application for a given area (e.g. New York City Area) may need to re-calculate the mashup result every certain minutes due to real-time weather changes. In order to do so, this SMI first needs to re-collect new data inputs from its identified mashup members (note that, the SMI is not necessary to re-identify the qualified mashup members for every round of mashup result generation if the existing identified mashup members are still qualified). Accordingly, there could be several alternative mechaniSMF for the mashup result generation, e.g.:

· Option 1: The SMF proactively and periodically runs the mashup result generation and as long as the newly mashup result becomes available, it will be exposed as a oneM2M resource for MRs to access. In this approach, Operation 4 is only involved with a normal oneM2M resource retrieval. The benefit of this approach is that the MRs can obtain the mashup results with minimum delay but the overhead is that the SMF needs to proactively and periodically run the mashup result generation no matter whether there is a need.

· Option 2: The SMF will work in a reactive way to generate the mashup result. In this approach, only after receiving a mashup result retrieval request from an MR, SMF will just start to re-collect new data inputs and re-calculate the mashup result (which corresponds to Operation 5 as introduced next). In other words, Operation 4 in this approach will further trigger Operation 5. The benefit of this approach is that SMF will work in an on-demand way, which may reduce overhead as compared to Option 1. However, the downside is that it leads to longer waiting time for an MR before the up-to-date mashup result becomes available because data re-collection and mashup result generation will not be triggered until the SMF receives a request from the MR.

· Operation 5 - Data Input Collection and Mashup Result Generation: This process is needed when an SMF tries to generate a mashup result for a given SMI. Note that, Operation 3 focuses on how to identify the mashup members while Operation 5 focuses on how to collect data inputs from those identified/qualified mashup members, which can be implemented through the normal resource retrieval. In addition, the working mechanism used for Operation 4 as mentioned above will affect how Operation 5 is used by the SMF.

· Operation 6 - SMI Discovery and Re-use: As mentioned earlier, in some scenarios, an SMI can be re-used and shared among different MRs. For example, the same SMI of a weather reporting mashup application for New York City Area can be shared by different users asking weather information for this area. Accordingly, this process is needed when an MR (e.g. MR-2 in figure 8.8.3.2-1) tries to discover whether there is already an available/desired SMI ready for use. Similarly, in the oneM2M context, a given SMI can also be exposed as a resource (i.e. each SMI has a corresponding Semantic Mashup Resource, or called <SMR>), in which the essential parts for describing this SMI can be included, such as the referred smjpID, the identified mashup member list, and/or the mashup result yielded by this SMI. Accordingly, taking the example shown in figure 8.8.3.2-1, MR-2 can find a desired SMI (which is available and was created by MR-1) through an SMI discovery process, which can also be realized by using the existing semantic resource discovery mechanism. After that, MR-2 can ask the discovered SMI for the mashup result, and the SMI will directly leverage the already-identified mashup members. This approach leads to less processing overhead, since MR‑2 does not have to require the SMF to generate a new SMI (therefore Operation 2 and 3 are not needed).
8.8.3.3
Functional paradigms

It is worth noting that although the smart parking mashup application was used in the previous sections for illustrating the details of an SMF, the smart parking assistance is just one of the possible semantic mashup paradigms. This section is to explore the two major semantic mashup paradigms in real world, and to show how an SMF can be tailored in order to well support each of those paradigms.
Paradigm 1: Short-lived Semantic Mashup: Short-lived semantic mashup application basically refers to as the application in which a mashup process will be completed once the corresponding mashup result is produced. The previous smart parking assistance mashup application falls into this paradigm. For example, once a user gets a suitable parking spot from SMF, the whole mashup process is completed. In the meantime, since different users may be towards different destinations and have different parking preferences, the same SMI for serving user A may not be re-used for serving user B. Accordingly, every time when a user needs to find a suitable parking spot for its own use, the SMF may probably need to instantiate a new SMI. With the proposed SMF in clauses 8.8.3.1 and 8.8.3.2, the Operations 1-5 could be adopted as the solution to Paradigm 1.

Paradigm 2: Long-lived Semantic Mashup: Long-lived semantic mashup application basically refers to the application in which a mashup process will last for a relatively long time, during which the corresponding SMI may generate the mashup result for multiple times and the SMI can also be re-used/shared among different MRs. The previous weather reporting mashup application falls into this paradigm. For example, once an SMI has been created for reporting weather information of New York City Area, the mashup result of this SMI will be refreshed by the SMF periodically due to real-time weather changes. In the meantime, the same SMI can be shared and re-used in this paradigm by different MRs, e.g. the users from New York City Area can ask the same SMI for the real-time weather information in the area. With the SMF, the Operations 1-6 could be adopted as the solution to Paradigm 2.

8.8.4
Semantic Mashup Procedure Details

8.8.4.0
Introduction
The clauses 8.8.4.1, 8.8.4.2, 8.8.4.3 and 8.8.4.4 describe procedure details for the mashup operations as listed in the clause 8.8.3.2:
· The clause 8.8.4.1 describes the procedure for semantic mashup job profile discovery and retrieval (i.e. corresponding to Operation 1 in figure 8.8.3.2-1).

· The clause 8.8.4.2 describes the procedure for semantic mashup instance creation (i.e. corresponding to Operation 2 and Operation 3 in figure 8.8.3.2-1).

· The clause 8.8.4.3 describes the procedure for semantic mashup result retrieval (i.e. corresponding to Operation 4 and Operation 5 in figure 8.8.3.2-1).

· The clause 8.8.4.4 describes the procedure for semantic mashup instance discovery (i.e. corresponding to Operation 6 in figure 8.8.3.2-1).

8.8.4.1
Semantic Mashup Job Profile Discovery and Retrieval

As described in the clause 8.8.3.2, an MR first discovers a desired SMJP from SMJP library which could be hosted by a CSE (i.e. Operation 1 in figure 8.8.3.2-1). Figure 8.8.4.1-1 illustrates the procedure for SMJP discovery and retrieval.
Step 1: The MR Requestor sends an SMJP discovery request to the SMF. The SMJP discovery request contains a parameter to indicate and specify the type of desired SMJPs. Remember that since operations in oneM2M context is resource-oriented, an SMJP can be exposed as an oneM2M resource and the semantic descriptions of the SMJP can be put into the <semanticDescriptor> child resource of the resource representing a SMJP. Accordingly, this SMJP discovery request can be implemented by leveraging the existing semantic resource discovery mechanism; as such, semanticsFilter condition tag of the Filter Criteria parameter in an oneM2M request message can be used to indicate the type of desired SMJPs.
Step 2: The SMF sends the response to the MR containing the smjpIDs of the qualified SMJPs, which satisfies the criteria described by the parameter in Step 1.
Step 3: After receiving the smjpIDs of the qualified SMPs, the MR can send an SMJP retrieval request to retrieve one of the discovered SMJPs in Step 2. This request contains the smjpID of the SMJPs to be retrieved.
Step 4: After receiving the SMJP retrieval request, the SMF sends a response, which contains the representations of the corresponding SMJP.

[image: image55.emf]SMF

(e.g. CSEs)

MR

(e.g. AEs)

1. SMJP Discovery Request

2. Response

3. SMJP Retrieval Request

4. Response

Figure 8.8.4.1-1: SMJP Discovery and Retrieval

8.8.4.2
Semantic Mashup Instance Creation

This procedure corresponds to Operation 2 and Operation 3 as described in the clause 8.8.3.2 and in figure 8.8.3.2-1. The steps illustrated in figure 8.8.4.2-1 are used by the MR to create an SMI (corresponding to Operation 2), during which mashup members will be discovered and identified (corresponding to Operation 3).
Step 1: The MR sends an SMI creation request to the SMF. This request contains the URI of the applied SMJP and some input parameters required to create an SMI based on the applied SMJP. In one example, the value of input parameters can be contained in the form of RDF triples. In addition, this creation request may also include a parameter to indicate the way for generating mashup result; for example, mashup result could be generated periodically (corresponding to Paradigm 2- Long-lived Semantic Mashup as described in the clause 8.8.3.3) or only one time when the SMI is created (corresponding to Paradigm 1- Short-lived Semantic Mashup as described in the clause 8.8.3.3).
Step 2: The SMF processes the received SMI creation request. Then, the SMF will conduct Step 3 to first find qualified original resources as mashup members. Here, the qualified resources are defined as the original resources, which meet the data source criteria of the corresponding SMJP.
Step 3: The SMF performs semantic resource discovery to find suitable original resources as mashup members of the SMI to be created in Step 4.
Step 4: The SMF creates a new SMI. Mashup members of this new SMI will be selected from the qualified resources from Step 3. In addition, this SMI will be associated with the corresponding SMJP as indicated in Step 1.
Step 5: After successfully creating the requested SMI, the SMF returns the URI of the SMI to the MR so that the MR can retrieve the content of the SMI at a later time.

[image: image56.emf]SMF

(e.g. CSE)

MR

(e.g. AE)

1. SMI Creation Request

5. Response

4. Create an SMI and associate it with the

corresponding SMJP

2. Process SMI Creation Request

3. Discover Mashup Members

Figure 8.8.4.2-1: SMI Creation

8.8.4.3
Semantic Mashup Result Retrieval

This procedure corresponds to Operation 4 and Operation 5 as described in the clause 8.8.3.2 and in figure 8.8.3.2-1. The steps illustrated in figure 8.8.4.3-1 are used by the MR to retrieve mashup results from a created SMI (corresponding to Operation 4), during which data inputs from mashup members may be collected and mashup results may be re-generated (corresponding to Operation 5).

Step 1: Assume the MR knows the URI of the SMI resource. In order to retrieve its mashup result, the MR send a mashup result retrieval request to the SMF. This request targets the existing SMI (or the mashup result child resource of this SMI resource if there exists such a child resource to store the mashup result of this SMI).

Step 2: The SMF receives the request and locates the targeted SMI resource, from which the SMF knows how the mashup result should be generated for this SMI resource. For example, if the SMI resource indicates that "the mashup result should be re-generated when an MR requests", the SMF needs to retrieve the latest representation of each mashup member resources using Step 3 and Step 4 as described next; otherwise, if the SMI resource indicates that "the mashup result is re-generated periodically by the SMF itself", the SMF will skip Steps 3-5 and simply return the existing mashup result to the MR in Step 6 since the current result is up-to-date.
Step 3: The SMF retrieves the latest data value of each mashup member resource of the targeted SMI resource in Step1.
Step 4: The RH responds with the representations of the corresponding mashup member resource to the SMF.

Step 5: After receiving the representations of all mashup members, the SMF executes the mashup function of corresponding SMJP which is associated with the targeted SMI resource. The SMF stores the calculated mashup result in the SMI (e.g. as its attribute or child resource).
Step 6: The SMF sends the mashup result to the MR as a response to Step1.

[image: image57.emf]SMF

(e.g. CSE)

MR

(e.g. AEs)

1. Mashup Result Retrieve Request

6. Response

5. Generate mashup result according to the mashup function

defined in the corresponding SMJP.

RH

(e.g. CSEs)

3. Member Resource Retrieve Request

4. Response

2. Check the SMI resource to be retrieved and determine

how the mashup result should be generated.

Figure 8.8.4.3-1: Semantic Mashup Result Generation and Retrieval

8.8.4.4
Semantic Mashup Instance Discovery

The created SMI can be discovered by other MRs, who are interested in the service (i.e. mashup result) provided by the SMI. Thus, existing SMI can be reused by other MRs to improve the system efficiency. This corresponds to Operation 6 as described in the clause 8.8.3.2 and in figure 8.8.3.2-1. Once an MR discovers an existing SMI, it can reuse this SMI without creating a new SMI; for example, it can directly employ the procedure in the clause 8.8.4.3 to retrieve mashup result.

The following steps are illustrated in figure 8.8.4.4-1 for SMI discovery.

Step 1: An MR, who is interested in a specific SMI, sends an SMI discovery request to an SMF. This discovery request includes a parameter to indicate the types of desired SMIs to be discovered. This request can be implemented by leveraging the existing semantic resource discovery mechanism since SMIs normally also have its own resource representation; as such, the semanticsFilter condition tag of the Filter Criteria parameter in an oneM2M request message can be used to indicate the types of desired SMIs.

Step 2: After receiving the SMI discovery request, the SMF may build a local semantic graph store, search the RDF triples over the local semantic graph store, and return the list of existing SMI resources which match the types of SMIs as indicated in Step 1. If there is a central semantic graph store at the service layer, the SMF will contact the central semantic graph store, which can search the RDF triples and return the list of the matched SMI resources' URIs to the SMF. Consequently, the SMF sends the list of the matched SMI resources' URIs to the MR.

[image: image58.emf]SMF

(e.g. CSEs)

MR

(e.g. AEs)

1. SMI Discovery Request

2. Response

Figure 8.8.4.4-1: SMI Discovery

8.9
Semantics-based data analytics

Semantics-based data analytics has not been covered in Release 3.
8.10
Ontology management

Ontology management has been introduced in Release 3 with the <ontologyRepository> and <ontology> resources that have been introduced in clauses 7.3.5 and 7.3.6 respectively.
8.11
Semantic Access Control

8.11.1
Synchronizing ACP information between the Resource Tree and the Semantic Graph Store

As described earlier, the Direct Access Control of Semantic Graph Store approach requires synchronization between <accessControlPolicy> resources at the Hosting CSE and ACP Triples at the Semantic Graph Store. In order to maintain such synchronization, the Hosting CSE needs to perform the following tasks:

· When a new <accessControlPolicy> resource is created, the Hosting CSE will generate new ACP Triples according to the ACP ontology and stores these new ACP Triples in the Semantic Graph Store

· When the privileges attribute of an existing <accessControlPolicy> resource is updated, the Hosting CSE will also generate new ACP Triples and update corresponding old ACP Triples at the Semantic Graph Store accordingly

· When an existing <accessControlPolicy> resource is deleted, the Hosting CSE will need to remove the corresponding ACP Triples at the Semantic Graph Store.

Figure 8.11.1-1 illustrates the procedure for creating ACP Triples in Semantic Graph Store, which is triggered when an Originator requests to create an <accessControlPolicy> resource at the Hosting CSE.

[image: image59.emf]Hosting CSE Originator

Sematic Triple

Store

1. Create <accessControlPolicy> Resource

2. Create <accessControlPolicy> resource as

requested in Step 1 if it is allowed.

3. Response

5. SPARQL request e.g. store ACP Triples

7. Response

6. Process SPARQL request

e.g. add ACP Triples to SGS

4. Generate ACP triples according to ACP ontology.

Optionally: Add address of the SGS’s as atribute of new resource

Figure 8.11.1-1: Procedure for creating ACP triples in the Semantic Graph Store

· Step 1: The Originator sends a request to create an <accessControlPolicy> resource to the Hosting CSE. This message contains the representation of <accessControlPolicy> to be created (e.g. the value of privileges attribute).
· Step 2: The Hosting CSE receives the request in Step 1 and, subject the Originator access rights verification, will create the requested <accessControlPolicy> resource.
EXAMPLE 1:
Assume <acp1> to be the newly created ACP resource and its URI "acp1URI". Assuming <acp1> has one access control rule (e.g. acr11) and the URI of the corresponding privileges attribute is "acr11URI". For exemplification, assume also that acr11 allows an AE ("AE-ID-1") to perform DISCOVERY operations.
· Step 3: The Hosting CSE sends a response to the Originator.
EXAMPLE 2:
If Step 1 was successful, "acp1URI" will be contained in this response message.
· Step 4: The Hosting CSE generates corresponding ACP Triples based on the content of <acp1> and the ACP ontology.
EXAMPLE 3:
An example of ACP Triples for <acp1> resource created in Step 1 is illustrated in figure 8.11.1-2.

[image: image60.emf]@PREFIX acp: <http://accessControlPolicy.org> .

acp:acp1 rdf:type acp:accessControlPolicy .

acp:acp1 acp:hasACPRule acp:acr11.

acp:acr11 rdf:type acp:accessControlRule .

acp:acr11 acp:hasACOriginator "AE-ID-1" .

acp:acr11 acp:hasACOperations "DISCOVERY" .

Line#1

Line#2

Line#3

Line#4

Line#5

Line#6

Figure 8.11.1-2: Example ACP triples corresponding to <acp1> resource

· In figure 8.11.1-2:
· line#1 defines prefix "acp" which will used in lines #2-#6.
· line#2 defines a new acp:accessControlPolicy class instance for <acp1> resource. The subject value of this triple (i.e. acp:acp1) is "acp1URI", therefore the subject value of this triple makes it possible to locate the corresponding resource <acp1>. The Hosting CSE can also use "acp1URI" to locate corresponding triples in the Semantic Graph Store (e.g. when updating existing ACP Triples).
· line#3 defines that acp:acp1 instance has an associated access control rule acr11. The object value of this triple (i.e. acp:acr11) is "acr11URI", therefore the object value of this triple, makes it possible to locate the corresponding privileges attribute of <acp1> resource. The Hosting CSE can use "acr11URI" to locate the corresponding triples in the Semantic Graph Store (e.g. when updating existing ACP Triples).
· line#4 defines that acp:acr11 (i.e. the object on line#3) is an acp:accessControlRule class instance.
· line#5 and line#6 give the values of two properties of acp:acr11 based on the assumptions in this example.

NOTE 1:
The triples on lines #4-#6 define the access control rule acr11. If <acp1> has more access control rules, additional access control rules will be defined similarly to those on lines #4-#6.
· Optionally: The Hosting CSE may add the address of the Semantic Graph Store to the <accessControlPolicy> resource created in Step 2 in a new attribute, to enable direct addressing of the triples.

· Step 5: The Hosting CSE sends a SPARQL request to store the ACP Triples created in Step 4 to the selected Semantic Graph Store.

EXAMPLE 4:
The ACP Triples shown in figure 8.11.1-2 will be contained in the SPARQL request.
· Step 6: The Semantic Graph Store receives the SPARQL request, processes it and saves the ACP Triples into its graph store.
· Step 7: The Semantic Graph Store sends a response back to the Hosting CSE to confirm the request in Step 6 is successfully executed.
The procedure for updating ACP Triples in a Semantic Graph Store follows a similar flow to the procedure used when a new <accessControlPolicy> resource is created. In this case the Originator requests to update the privileges attribute of an existing <accessControlPolicy> resource, as shown in figure 8.11.1-3.

NOTE 2:
This procedure applies also for updates of the accessControlPolicyIDs attribute of the <semanticDecriptor> resource.

[image: image61.emf]Hosting CSE Originator

Sematic Graph

Store

1. Update <accessControlPolicy> Resource

2. Update <accessControlPolicy>with its new

representation given in Step 1

3. Response

7. Response

6. Process SPARQL request

e.g. update ACP Triples to SGS

4. Generate new ACP triples according to the new

<accessControlPolicy> resource (i.e. its privilege attribute)

5. SPARQL request e.g. update ACP Triples

Figure 8.11.1-3: Procedure for updating ACP triples in Semantic Graph Store

· Steps 1 - 3: Similar to those describing figure 8.11.1-1, but reflecting normal processing of an UPDATE operation. In this case the Originator triggers an update of the privileges attribute of an existing <accessControlPolicy>.
· Step 4: Based on the new value of the privileges attribute the Hosting CSE generates new ACP Triples.
EXAMPLE 5:
Assume the Originator aims to update the privileges attribute of <acp1> resource from "DISCOVERY" to "DISCOVERY" and "RETRIEVE" as the new accessControlOperations. To implement these changes in figure 8.11.1-3 the Hosting CSE can simply add a new triple e.g. "acp:acr11 acp:hasACOperations "RETRIEVE". Alternatively, the Hosting CSE can replace the triple on Line#6 to the new triple "acp:acr11 acp:hasACOperations "DISCOVERY", "RETRIEVE".".

· Step 5: The Hosting CSE sends a SPARQL request to the Semantic Graph Store to update existing ACP Triples related to <acp1> resource to reflect the update being requested.
EXAMPLE 6:
As described in Step 4, there are two options to implement this.
· The Hosting CSE adds a new triple with the following SPARQL request:

[image: image62.emf]@PREFIX acp: <http://accessControlPolicy.org> .

INSERT DATA

{ acp:acr11 acp:hasACOperations "RETRIEVE" . }

· The Hosting CSE replaces Line#6 in figure 8.11.1-3 with the SPARQL request:

[image: image63.emf]@PREFIX acp: <http://accessControlPolicy.org> .

DELETE

{ ?acr acp:hasACOperations ?operation}

WHERE

{

?acr acp:hasACOperations ?operation .

FILTER(?acr = acp:acr11)

}

INSERT DATA

{ acp:acr11 acp:hasACOperations"DISCOVERY", "RETRIEVE" .

}

· Step 6: The Semantic Graph Store processes the received SPARQL request and updates the corresponding ACP Triples.
· Step 7: The Semantic Graph Store sends a response to the Hosting CSE to inform it whether the request has successfully executed.
The procedure for deleting ACP Triples in a Semantic Graph Store follows a similar flow to the procedure. In this case the Originator requests to delete an existing <accessControlPolicy> resource, as shown in figure 8.11.1-4.

· Steps 1 - 3: Similar to those describing figure 8.11.1-1, but reflecting normal processing of a DELETE operation. In this case the Originator triggers the deletion of an existing <accessControlPolicy> resource.

[image: image64.emf]Hosting CSE Originator

Sematic Graph

Store

1. Delete <accessControlPolicy> Resource

2. Delete <accessControlPolicy>Resource

3. Response

6. Response

5. Process SPARQL request

e.g. remove ACP Triples

4. SPARQL request e.g. delete ACP Triples

Figure 8.11.1-4: Procedure for Deleting ACP Triples in the Semantic Graph Store

· Step 4: The Hosting CSE sends a SPARQL request to the Semantic Graph Store to delete existing ACP Triples.
EXAMPLE 7:
The following SPARQL request implements this request:

[image: image65.emf]@PREFIX acp: <http://accessControlPolicy.org> .

DELETE

{ ?acp ?p ?o

?s ?p2 ?acp

?acr ?p1 ?o1

}

WHERE

{

?acp ?p ?o

?s ?p2 ?acp

?acp acp:hasACPRule?acr

?acr ?p1 ?o1

FILTER (?acp = acp:acp1)

}

· Step 5: The Semantic Graph Store processes the received SPARQL request and removes all requested ACP Triples.

· Step 6: The Semantic Graph Store sends a response to the Hosting CSE to inform it whether the request was successfully executed.
8.11.2
Synchronizing SD-related triples between the Resource Tree and the Semantic Graph Store

8.11.2.1
Introduction

Functionality such as Direct Access Control of the Semantic Graph Store require synchronization between information the resources at the Hosting CSE and the Semantic Graph Store. In addition to ACP Triples, others such as SD Original Triples, ACP-SD Binding Triples and SD relationship triples need to be synchronized.
Several use cases are envisioned:

· When a <semanticDescriptor> is created:

· In this case the Hosting CSE will generate SD Relationship Triples and ACP-SD Binding Triples and then store them in the SGS.
· When the accessControlPolicyIDs attribute of a <semanticDescriptor> resource changes:
· In this case the Hosting CSE will generate new ACP-SD Binding Triples and use them to update corresponding old ACP-SD Binding Triples in the SGS. This case may apply also when the accessControlPolicyIDs attribute of the parent changes.

· When the descriptor attribute of a <semanticDescriptor> resource changes:

· In this case the Hosting CSE will generate new SD Relationship Triples and use them to update old SD Relationship Triples in the SGS.
· When a <semanticDescriptor> resource is deleted:

· In this case the Hosting CSE will delete all corresponding SD Original Triples, SD Relationship Triples and ACP-SD Binding Triples from the SGS.
8.11.2.2
Procedure for Creating ACP-SD binding triples and SD relationship triples in SGS

Figure 8.11.2.2-1 illustrates the procedure for creating ACP-SD Binding Triples and SD Relationship Triples in SGS, which is triggered when an Originator requests to create a new <semanticDescriptor> resource.
After checking the access rights and other related security functions, the Hosting CSE creates the <semanticDescriptor> resource locally (referred to as SD1 and its URI assumed to be sd1URI). Then, the Hosting CSE will store all semantic triples as described in the descriptor attribute of SD1 resource to the SGS. More importantly, the Hosting CSE will generate new SD Relationship Triples and ACP-SD Binding Triples and store them to the SGS as well. Note that if SD1 has no accessControlPolicyIDs attribute, ACP-SD Binding Triples will not be generated.
The following steps are performed:
· Step 1: The Originator sends "Create <semanticDescriptor> Resource" request to the Hosting CSE. It is assumed that the value of descriptor attribute and accessControlPolicyIDs attribute of <semanticDescriptor> resource will be given in this request message:
· Assume the descriptor attribute contains only one SD Original Triple "S1 P1 O1".
· Assume the value of accessControlPolicyIDs is "acp1URI" i.e. the access control policy acp1 will be applied.

· Step 2: The Hosting CSE accordingly creates the <semanticDescriptor> resource (referred to as sd1):
· Assume its URI is sd1URI.

· Step 3: The Hosting CSE sends a response to Originator to inform it if Step 2 is successfully completed.
· Step 4: Bases don the SD Original Triple contained in the descriptor attribute of sd1, the Hosting CSE generates SD Relationship Triples:
· In our example, there is only one SD Original Triple, as shown below:

[image: image66.emf]@PREFIX sd: <http://semanticDescriptor.org> .

sd:sd1 rdf:type sd:semanticDescriptor .

sd:tripleInstance11 rdf:type sd:sdOriginalTriple .

sd:tripleInstance11 sd:describedIn sd:sd1 .

sd:tripleInstance11 sd:hasSubject sd:S1 .

sd:tripleInstance11 sd:hasProperty sd:P1 .

sd:tripleInstance11 sd:hasObject sd:O1 .

Line#1

Line#2

Line#3

Line#4

Line#5

Line#6

Line#7

· Step 5: The Hosting CSE will generate the ACP-SD Binding Triples:
· In our example, since sd1's accessControlPolicyIDs attribute points to acp1 resource as shown below:

[image: image67.emf]@PREFIX acp: <http://accessControlPolicy.org> .

@PREFIX sd: <http://semanticDescriptor.org> .

acp:acp1 rdf:type acp:accessControlPolicy .

sd:sd1 rdf:type sd:semanticDescriptor .

acp:acp1 acp:appliedTo sd:sd1 .

Line#1

Line#2

Line#3

Line#4

Line#5

· Step 6: The Hosting CSE sends a SPARQL request to the SGS to store these SD Relationship Triples and ACP-SD Binding Triples to the SGS.
· Step 7: The SGS processes the SPARQL request and store corresponding SD Relationship Triples and ACP-SD Binding Triples in the SGS.
· Step 8: The SGS sends a response message to the Hosting CSE to inform it if the SPARQL request in Step 6 is successfully executed.

NOTE:
If the <semanticDescriptor> resource being created in Step 2 does not have accessControlPolicyIDs attribute, the accessControlPolicyIDs attribute of the parent resource may be used or system default access privileges may be applied. The new ACP-SD Binding Triples will also be generated using either the parent resource's accessControlPolicyIDs attribute or based on the default privileges.

[image: image68.emf]Hosting CSE Originator SGS

1. Create <semanticDescriptor> Resource

2. Create <semanticDescriptor> Resource and SD Original Triples

3. Response

6. SPARQL request to store SD Original Triples, SD

Relationship Triples, ACP-SD Binding Triples

8. Response

7. Process SPARQL request and

store all triples

4. Generate SD Relationship Triples.

5. Generate ACP-SD Binding Triples.

Figure 8.11.2.2-1: Procedure for creating SD relationship triples and ACP-SD binding triples

8.11.2.3
Procedure for updating ACP-SD binding triples in SGS

Figure 8.11.2.3-1 shows the procedure for updating ACP-SD Binding Triples when the accessControlPolicyIDs attribute of a <semanticDescriptor> resource is updated.
For example, the sd1 resource created earlier has accessControlPolicyIDs changed from acp1 to acp2; with the ACP Triples for the resource acp2 as follows:

@PREFIX
acp:

<http://accessControlPolicy.org>.

acp:acp2
rdf:type

acp:accessControlPolicy .

acp:acp2
acp:hasACPRule

acp:acr21 .

acp:acr21
rdf:type

acp:accessControlRule .

acp:acr21
acp:hasACOriginator
"AE-ID-2" .

acp:acr21
acp:hasACOperations
"RETRIEVE" .
The following steps are performed:

· Step 1: The Originator sends a request to update the resource sd1's accessControlPolicyIDs from the URI of the resource acp1 to the URI of the resource acp2. The URI of the resource acp2 (i.e. acp2URI) is contained in this request. The URI of the resource sd1 (i.e. sd1URI) is also contained in this request.
· Step 2: The Hosting CSE checks access rights. If it is allowed, the Hosting CSE updates sd1's accessControlPolicyIDs with acp2's URI given in Step 1.
· Step 3: The Hosting CSE sends a response back to the Originator to inform it if the request in Step 1 is successful or not.
· Step 4: Since the sd1's accessControlPolicyIDs is changed, the Hosting CSE generates a new ACP-SD Binding Triple ("acp:acp2 acp:appliedTo sd:sd1") to reflect this change. This new ACP-SD Binding Triple will replace the old ACP-SD Binding Triple (i.e. "acp:acp1 acp:appliedTo sd:sd1"):
· (new ACP-SD Binding Triple) acp:acp2
acp:appliedTo
sd:sd1

· (old ACP-SD Binding Triple) acp:acp1
acp:appliedTo
sd:sd1

· Step 5: The Hosting CSE sends an SPARQL request to replace the old ACP-SD Binding Triple in the SGS with the new ACP-SD Binding Triple as shown in above Step 4. This SPARQL request for this example is shown below:

@PREFIX
acp:
<http://accessControlPolicy.org> .

@PREFIX
sd:
<http:semanticDescriptor.org> .

DELETE

{ ?acp
acp:appliedTo sd:sd1 }

WHERE

{

?acp
acp:appliedTo sd:sd1

}

INSERT DATA

{ acp:acp2 acp:appliedTo
sd:sd1 . }

· Step 6: The SGS processes the SPARQL request and updates the specified ACP-SD Binding Triples in Step 5.
· Step 7: The SGS sends a response to the Hosting CSE to inform it if the SPARQL request in Step 5 is successfully performed.

NOTE:
If the accessControlPolicyIDs attribute of the <semanticDescriptor> resource was empty to start with, its parent resource's accessControlPolicyIDs may be enforced. The hosting CSE will apply this step based on updates to the accessControlPolicyIDs attribute of the parent resource.

[image: image69.emf]Hosting CSE Originator SGS

1. Update

accessControlPolicyIDs

for

<semanticDescriptor>

2. Update the accessControlPolicyIDs attribute

with the new value

3. Response

7. Response

6. Process the SPARQL request, update

ACP-SD Binding Triples

4. Generate new ACP-SD Binding Triples to associate the

<semanticDescriptor> resource with new acp

5. SPARQL request to update ACP-SD Binding Triples

Figure 8.11.2.3-1: Procedure for updating ACP-SD binding triples in the SGS
8.11.2.4
Procedure for updating SD relationship triples in SGS

Figure 8.11.2.4-1 shows the procedure for updating SD Relationship Triples when the descriptor attribute of a <semanticDescriptor> resource is changed.
For example, the descriptor of the sd1 resource created earlier is changed to have two SD Original Triples (Old one - "S1 P1 O1"; New one - "S2 P2 O2").

The following steps are performed:

· Step 1: The Originator sends a request to update the resource sd1's descriptor to include one new SD Original Triple (i.e. "S2 P2 O2"). The URI of the resource sd1 (i.e. sd1URI) is also contained in this request.
· Step 2: The Hosting CSE checks access rights. If it is allowed, the Hosting CSE updates sd1's descriptor attribute by adding one new SD Original Triple (i.e. "S2 P2 O2").

· Step 3: The Hosting CSE sends a response back to the Originator to inform it if the request in Step 1 is successful or not.
· Step 4: The Hosting CSE generates new SD Relationship Triples below to reflect this change:
· In our example:

sd:tripleInstance12
rdf:type
sd:sdOriginalTriple .

sd:tripleInstance12
sd:describedIn
sd:sd1 .

sd:tripleInstance12
sd:hasSubject
sd:S2 .

sd:tripleInstance12
sd:hasProperty
sd:P2 .

sd:tripleInstance12
sd:hasObject
sd:O2 .
· Step 5: The Hosting CSE sends an SPARQL request to replace old SD Relationship Triples and/or add new SD Relationship Triple in the SGS with the new SD Relationship Triple generated in above Step 4. This SPARQL request for this example is shown below:

@PREFIX
acp:
<http://accessControlPolicy.org> .

@PREFIX
sd:
<http://semanticDescriptor.org> .

INSERT DATA

{ sd:tripleInstance12
rdf:type

sd:sdOriginalTriple .

 sd:tripleInstance12
sd:describedIn

sd:sd1 .
 sd:tripleInstance12
sd:hasSubject

sd:S2 .

 sd:tripleInstance12
sd:hasProperty
sd:P2 .

 sd:tripleInstance12
sd:hasObject

sd:O2 .

}

· Step 6: The SGS processes the SPARQL request and adds new SD Relationship Triples.
· Step 7: The SGS sends a response to the Hosting CSE to inform it if the SPARQL request in Step 5 is successfully performed.
NOTE 1:
If an old SD Original Triple is removed or updated by a new SD Original Triple, the corresponding SD Relationship Triples related to this old SD Original Triple will be removed from the SGS.

NOTE 2:
The update of triples in the descriptor attribute may be performed also by targeting the semanticOpExec attribute of the <semanticDescriptor> parent resource with a SPARQL query; when this SPARQL query is executed, new SD Original Triples may be added to the descriptor attribute of the <semanticDescriptor> resource. In this case Steps 4 - 7 will be performed. More specifically, SPARQL Update consists of DELETE and ADD operations, so the SD relationship triples associated with the old original triples will be deleted, and the new ones stored.

[image: image70.emf]Hosting CSE Originator SGS

1. Update

descriptor

attribute of a

<semanticDescriptor> resource

2. Update the descriptor attribute and SD

Original triples

3. Response

7. Response

6. Process the SPARQL request, update

triples

4. Generate new SD Relationship Triples

5. SPARQL request to update SD Original triples, SD

Relationship Triples

Figure 8.11.2.4-1: Procedure for updating SD relationship triples in the SGS

8.11.2.5
Procedure for deleting SD relationship triples and ACP-SD binding triples in SGS

Figure 8.11.2.5-1 shows a procedure for deleting SD Relationship Triples and ACP-SD Binding Triples from the SGS, which could be triggered by the Initiating AE/CSE or the Hosting CSE to delete a <semanticDescriptor> resource.

For example, the sd1 resource created earlier is removed.
The following steps are performed:
· Step 1: The Originator sends "Delete <semanticDescriptor> Resource" to the Hosting CSE to delete sd1 resource. The URI of sd1 resource (i.e. sd1URI) is contained in this request.
· Step 2: The Hosting CSE deletes sd1 resource locally.
· Step 3: The Hosting CSE sends a response to the Originator to inform it if the deletion request in Step 1 is successful.
· Step 4: The Hosting CSE sends an SPARQL request to the SGS to remove SD Relationship Triples and ACP-SD Binding Triples related to sd1 resource. The SPARQL will look like:

@PREFIX
acp:
<http://accessControlPolicy.org>.

@PREFIX
sd:
<http:semanticDescriptor.org> .

DELETE

{ ?sd
?p
?o

 ?tripleInstance
 ?p1
?o1

 ?acp
acp:AppliedTo
?sd

}

WHERE

{

?sd
?p
?o.

?tripleInstance
 ?p1
?o1.

?tripleInstance
sd:describedIn
?sd .

?acp
acp:AppliedTo
?sd

FILTER (?sd = sd:sd1)

}

· Step 5: The SGS processes the SPARQL request in Step 4 and removes corresponding SD Relationship Triples and ACP-SD Binding Triples.
· Step 6: The SGS sends a response to the Hosting CSE to inform it if the SPARQL request in Step 4 is successfully performed.
NOTE:
Steps 4 - 6 will also be performed if a SPARQL query targeting the semanticOpExec attribute of a <semanticDescriptor> resource results in the deletion of existing SD Original Triples.

[image: image71.emf]Hosting CSE Originator SGS

1. Delete <semanticDescriptor> Resource

2. Delete <semanticDescriptor>Resource

3. Response

6. Response

5. Process the SPARQL request and

remove triples

4. SPARQL request to remove SD Original Triples, SD

Relationship Triple and ACP-SD Binding Triples

Figure 8.11.2.5-1: Procedure for deleting SD relationship triples and
ACP-SD binding triples from the SGS
8.12
Ontology mapping

8.12.1
Introduction
There are already many standardized or proprietary ontologies defined for various vertical domains or cross-domain scenarios. Each ontology specifies the common vocabulary and relationships between concepts within its own namespace, but may sometimes overlap conceptually with other ontologies due to the independent design. This is often true if two ontologies are designed for the same knowledge domain or under a common high level domain. Different terminologies may mean the same or similar concept (e.g. lamp vs. light), or one is the actually the sub-class of another (e.g. device vs. thing).

To enable the semantic interoperability between different ontologies, ontology mapping is a prerequisite. It’s an important ontology management method to identify the commonality, similarity as well as inclusion relationships between ontologies, so that the data described in one ontology can be consumed meaningfully by the application who understand only another ontology. Ontology mapping can also help to build a global knowledge base and enhance the system intelligence by linking together a collection of ontologies via the anchors of equal/similar/inclusive concepts.

Ontology mapping can be implemented by either manual approaches or automatic approaches. For example, in oneM2M TS-0012 [i.6] Annex B.1, the ontology mapping between Base Ontology and SAREF is specified by manually configured mapping rules (in the format of mapping tables) according to the experts’ common understanding on both ontologies.

However, discovering proper mapping relationships manually is often too labour-intensive, error-prone, and impractical for large ontologies, especially for non-standardized and unstable ones. Therefore, oneM2M provides automatic means of ontology mapping to discover, create and save the mapped relationships between semantically related ontologies by using industry-proven mapping algorithms, e.g. the edit distance, language-based similarity, structural-based similarity, or external- resources-based similarity etc.
The solution proposes an <ontologyMapping> resource configure the input parameters for executing the ontology mapping task and to store the mapping result. Meanwhile, an <ontologyMappingAlgorithmRepository> resource is used to host a collection of algorithms for automatic ontology mapping that can be selected for individual ontology mapping tasks. Based on the generated ontology mapping result, semantically equivalent operations such as semantic discovery, query or command control can be realized in multi-ontology scenarios.

8.12.2
<ontologyMapping> procedure
8.12.2.1 Introduction

The ontology mapping task is performed by the Create or Update operation against an <ontologyMapping> resource on a Hosting CSE. A Retrieve operation against the same <ontologyMapping> resource is used to get the result of ontology mapping. A Delete operation against a <ontologyMapping> resource follows the basic procedure as specified in [i.3] so it is not repeated here.

8.12.2.2 Create <ontologyMapping> (Ontology Mapping)
This procedure is used for performing the ontology mapping task by creating a <ontologyMapping> resource as described in table 8.12.2.2-1. Detailed message flows are described in Figure 8.12.2.2-1.
Table 8.12.2.2-1: <ontologyMapping> CREATE

	<ontologyMapping> CREATE

	Associated Reference Point
	Mca, Mcc and Mcc'.

	Information in Request message
	All parameters defined in [i.3] table 8.1.2-2 apply with the specific details for:

Content: The resource content shall provide the information about an <ontologyMapping> resource (e.g. attribute values) as described in the clause 7.3.8.

	Processing at Originator before sending Request
	According to clause 10.1.2 in [i.3].

	Processing at Receiver
	The receiver shall follow the basic procedure according to clause 10.1.2 of [i.3], with the following specific details:

· Determine the source <ontology> and target <ontology> resources to be mapped according to the sourceOntology and targetOntology attributes provided in the request;
· Determine the ontology mapping method according to the mapping method description including the mappingPolicy and mappingAlgorithmLinks attributes provided in the request;
· Retrieve the source <ontology> and target <ontology> resources from a remote CSE if needed;
· Retrieve the <mappingAlgorithm> resources from a remote CSE if needed;
· Create the ontology mapping relationships between the source <ontology> and the target <ontology>;
· Store the mapping result in the <ontologyMapping> resource in the successful case.

	Information in Response message
	All parameters defined in table 8.1.3-1 in [i.3] apply with the specific details for:

Content: Address of the created <ontologyMapping> resource, according to clause 10.1.2 in [i.3].

	Processing at Originator after receiving Response
	According to clause 10.1.2 in [i.3].

	Exceptions
	According to clause 10.1.2 in [i.3].

[image: image72.emf]Originator

<ontologyMapping>

Hosting CSE

<ontology>

Hosting CSE

<ontologyMappingAlg

orithm> Hosting CSE

1. request ontology mapping by Creating

 a <ontologyMapping> resource

2. Determine source & target ontologies and ontology mapping methods

3.Retrieve source & target ontologies

4. Retrieve ontology mapping algorithms

5. Create mapping between the source & target ontologies,

 store the result in the <ontologyMapping> Resource

6. Return the successful response

Figure 8.12.2.2-1: The ontology mapping procedure by Create/Update a <ontologyMapping> resource

The normal message flow Create <ontologyMapping> procedure is illustrated in Figure 8.12.2.2-1 and described as follows:

1. The hosting CSE (e.g. an oneM2M platform) receives an ontology mapping request from an Originator (e.g. an oneM2M application) in the form of a Create operation against an <ontologyMapping> resource. The request contains the resourceIDs of the source and target <ontology> resources indicated by the sourceOntology and targetOntology attributes in the <ontologyMapping> resource. It also contains the information of mapping method description including the mapping policy and the mapping algorithms indicated by the attributes of mappingPolicy and mappingAlgorithmLinks respectively.

2. The hosting CSE determines the source and target ontologies according to the resourceIDs of the source and target <ontology> resources provided in the request. It also determines the ontology mapping method according to the information of mapping method description provided in the request. Specifically, the hosting CSE first determines the mapping algorithm policy (single, multiple or traversal) according to the mappingPolicy attribute provided in the request. Then it determines the mapping algorithm(s) to be used according to the determined mapping algorithm policy and the available mapping algorithm(s) provided by the mappingAlgorithmLinks attribute, and performs the ontology mapping process according to Table 8.12.2.2-2.

Table 8.12.2.2-2: ontology mapping process according to different mapping policies and the provided mapping algorithms
	mappingPolicy
	mappingAlgorithmLinks
	ontology mapping process by the hosting CSE

	single
	contains the resourceID(s) of one or more existing <ontologyMappingAlgorithm> resources, or the resourceID of an existing <ontologyMappingAlgorithmRepository> resource.
	Decide to use a single ontology mapping algorithm for the ontology mapping between the source and target ontologies.
If more than one <ontologyMappingAlgorithm> resource is provided by the mappingAlgorithmLinks, or contained in the referenced <ontologyMappingAlgorithmRepository> resource, the hosting CSE can decide to use one of the provided algorithms according to its local policy.

	multiple
	contains the resourceIDs of two or more existing <ontologyMappingAlgorithm> resources of different types, or the resourceID of an existing <ontologyMappingAlgorithmRepository> resource which contains two or more <ontologyMappingAlgorithm> resources of different types.
	Decide to use two or more different types of mapping algorithms (based on the algorithmType attribute of the <ontologyMappingAlgorithm> resource) for the ontology mapping between the source and target ontologies.

The hosting CSE can decide to use a subset (at least two types) of the provided algorithms according to its local policy.

If the number of the types of the provided algorithms is less than two, the hosting CSE shall reject the request with an error.

	traversal
	contains the resourceID(s) of one or more existing <ontologyMappingAlgorithm> resources, or the resourceID of an existing <ontologyMappingAlgorithmRepository> resource.
	Decide to use all the provided ontology mapping algorithms in a traversal way for the ontology mapping between the source and target ontologies.

	Note1: Any combination of mappingPolicy and mappingAlgorithmLinks not covered by this table is considered as an exceptional case, and the hosting CSE shall reject the request with an error.

Note2: For a pre-configured algorithm already stored in the system, the <ontologyMappingAlgorithm> resource may not contain the executable of the algorithm. In this case, the hosting CSE can invoke the algorithm from the system locally according to the resourceName or resourceID attribute.
Note3: If more than one algorithms are used, the final ontology mapping result is a union of all the results from each algorithm.

3. The hosting CSE may need to retrieve the source and/or target <ontology> resources from a remote CSE the sourceOntology and targetOntology attributes if they are not hosted locally.
4. The hosting CSE may need to retrieve the used <mappingAlgorithm> resources from a remote CSE according to the mappingAlgorithmLinks attribute if they are not hosted locally.
5. The hosting CSE creates the ontology mapping relationships between the source and target ontologies according to the determined mapping method, and stores the resulted mapping relationships in the <ontologyMapping> resource.

Figure 8.12.2.2-2 shows an example of the ontology mapping between the source ontology (Ontology-A) and the target ontology (Ontology-B). Assuming the mappingPolicy=multiple and the mappingAlgorithmLinks points to two <ontologyMappingAlgorithm> resources which are a “linguistic-feature extraction algorithm” and an “external resource acquisition algorithm” respectively. The hosting CSE first performs the “linguistic-feature extraction algorithm” against Ontology-A and Ontology-B, and generates three mapping relationships (as formatted by Triple#1, Triple#2 and Triple#3 below). The hosting CSE then performs the “external resource acquisition algorithm” with the support from external resources (e.g. the WordNet dictionary), and generates a fourth mapping relationship (as Triple#4 below).
· RDF Triple #1: Ontology-A:Thing owl:equivalentClass Ontology-B:Thing

· RDF Triple #2: Ontology-A:Devices owl:equivalentClass Ontology-B:Device

· RDF Triple #3: Ontology-A:LightSensor owl:equivalentClass Ontology-B:Light_Sensor

· RDF Triple #4: Ontology-A:Switch_off owl:equivalentProperty Ontology-B:Turn_off
The mapping relationships (RDF Triple #1/2/3/4) are stored in the mappingResult attribute of the <ontologyMapping> resource to be created.
6. The hosting CSE returns the successful response to the Originator with the resourceID of the created <ontologyMapping> resource.

[image: image73.emf]ćswitch offĈ=ćturn offĈ

Ontology-A Ontology-B

Thing Thing

Devices Device

Sensor

LightSensor Light_Sensor

Mapping

Altorithms

owl:equivalentClass

owl:equivalentClass

owl:equivalentClass

owl:equivalentProperty

Figure 8.12.2.2-2: Example of the mapping result between ontology A and ontology B

8.12.2.3 Update <ontologyMapping> (Ontology Mapping)
The ontology mapping task can also be performed by the Update operation against an <ontologyMapping> resource. This operation can be used to generate new mapping results based upon an existing configuration of the <ontologyMapping> with only necessary modifications. The procedure is similar to the Create operation described in clause 8.12.2.2 and is not repeated here.

8.12.2.4 Retrieve <ontologyMapping> (Get the ontology mapping result)
The ontology mapping result can be retrieved by the Retrieve operation against an <ontologyMapping> resource as described in table 8.12.2.4-1. The mapping result is contained in the mappingResult attribute. No resource specific process is required.
Table 8.12.2.4-1: <ontologyMapping> RETRIEVE
	<ontologyMapping> RETRIEVE

	Associated Reference Point
	Mca, Mcc and Mcc'.

	Information in Request message
	All parameters defined in [i.3] table 8.1.2-2.

	Processing at Originator before sending Request
	According to clause 10.1.3 in [i.3].

	Processing at Receiver
	The receiver shall follow the basic procedure according to clause 10.1.2 of [i.3].

	Information in Response message
	All parameters defined in table 8.1.3-1 apply with the specific details for:

Content: attributes of the <ontologyMapping> resource as defined in clause 7.3.8. The resulted mapping relationships are contained in the mappingResult attribute of the <ontologyMapping> resource.

	Processing at Originator after receiving Response
	According to clause 10.1.3 in [i.3].

	Exceptions
	According to clause 10.1.3 in [i.3].

8.12.3
<ontologyMappingAlgorithm> procedure
Ontology mapping algorithms are represented as <ontologyMappingAlgorithm> resources under an <ontologyMappingAlgorithmRepository> resource. They can be added, updated, retrieved and deleted by the CRUD operation against a <ontologyMappingAlgorithm> resource. There is no resource-specific process to be defined.
8.12.4
Example implementation of ontology mapping algorithms

8.12.4.1 Introduction
In this clause, several potential solutions are specified for the automatic ontology mapping process, and each of them has their own methodology, which are discussed in details. Each ontology mapping algorithm is indicated as an <ontologyMappingAlgorithm> resource. A collection of ontology mapping algorithms is contained in an <ontologyMappingAlgorithmRepository> resource for individual ontology mapping tasks to select. The hosting CSE can retrieve the used <mappingAlgorithm> resources locally or from a remote <ontologyMappingAlgorithm> hosting CSE by the mappingAlgorithmLinks attribute. Accordingly, the resulted mapping relationships between the source and target ontologies are stored in the hosting CSE as an <ontologyMapping> resource.
8.12.4.2
Procedure for initiating an linguistic-feature extraction algorithm
Solution-1: In this alternative solution, the mapping relationships between the source ontology (Ontology-A) and the target ontology (Ontology-B) are discovered by measuring the edit distance between names of two entities belonging to two ontologies. Informally, the Levenshtein distance between two words is the minimum number of single-character edits (insertions, deletions or substitutions) required to change one word into the other. For example, the Levenshtein distance between “kitten” and “sitting” is 3. The similarity between two concepts (a and b) can be represented by the edit distance, i.e. sim(a,b) = 1- LD(a,b)/max(|a|,|b|), where LD is the Levenshtein distance function, |a| is the string length function. The following steps are performed for discovering mapping relationships between two ontologies by edit distance:
Step 1: The hosting CSE gets all entities (classes and object | data properties) of the source <ontology> resource (Ontology-A).
Step 2: The hosting CSE gets all entities (classes and object | data properties) of the target <ontology> resource (Ontology-B).
Step 3: The hosting CSE calculates the Levenshtein distances (LD) between names of two entities with same types (class to class, object property to object property, data property to data property) of Ontology-A and Ontology-B, and values from 0 to 1 are assigned for each pair of entities. For example:
· There is no edit operation from “Thing” to “Thing”, and LD(“Thing”, “Thing”) = 0, sim(“Thing”, “Thing”) =1 ;

· There is one deletion of "s" from “Devices” to “Device”, and LD(“Devices”, “Device”) = 1, sim(“Devices”, “Device”) =0.83 ;

· There is one insertion of "_" from “LightSensor” to “Light_Sensor”, LD(“LightSensor”, “Light_Sensor”) =1, sim(“LightSensor”, “Light_Sensor”) = 0.91.

Step 4: The hosting CSE filter entity mappings with a similarity exceeding the mappingThreshold attribute of the <ontologyMappingAlgorithm> resource.
Step 5: The hosting CSE extracts an optimal subset from the set of mappings in Step 4 by using Maximum Bipartite Matching (MBP) (See [i.17]) algorithms (e.g. Hungarian algorithm).

Step 6: The hosting CSE sorts the mappings according to the value of similarity from high to low, and stores the resulted mapping relationships in the <ontologyMapping> resource.
NOTE 1:
In the mappings of Step4, an entity in the source ontology can be mapped to multiple entities in the target ontology. In the extracted mapping relationships of Step5, each entity in Ontology-A is only mapped to an entity in Ontology-B, and vice versa. Figure 8.12.4.2-1 shows an example for extracting an optimal subset from the filtered mappings of Step4 using MBP algorithm.

[image: image74.emf]Ontology-A Ontology-B Ontology-A Ontology-B

MBP

Figure 8.12.4.2-1: Extract an optimal subset between ontology A and ontology B using MBP algorithm
8.12.4.3
Procedure for initiating an external resource acquisition algorithm
Solution-1: In this alternative solution, the mapping relationships between the source ontology (Ontology-A) and the target ontology (Ontology-B) are discovered by measuring the semantic similarity between names of two entities belonging to two ontologies based on WordNet (See [i.18]). WordNet is a lexicon organizing the words into sets of synonyms called synsets, each synset expressing a distinct sense. If a word is a polyseme, it will be assigned to multiple synsets. The similarity between a pair of concepts can be measured by computing the maximal semantic similarity of their corresponding word senses .The similarity between two word senses are computed based on the shortest path that connects the senses in the hypernym/hyponym taxonomy, i.e. sim(synset1, synset2) = 1.0/ (length_of_shortest_path (synset1, synset2)+ 1). The following steps are performed for discovering mapping relationships between two ontologies by WordNet:
Step 1: The same as Step 1 in clause 8.12.4.2.
Step 2: The same as Step 2 in clause 8.12.4.2.
Step 3: The hosting CSE calculates the semantic similarity between names of two entities of Ontology-A and Ontology-B based on WordNet, and values from 0 to 1 are assigned for each pair of entities. For example, computing the similarity of Ontology-A:Switch_off and Ontology-B:Turn_off may include the following steps:

1) The hosting CSE gets all synsets of “switch_off”, i.e., synsets(“switch_off”) = [switch_off.v.01];

2) The hosting CSE gets all synsets of “turn_off”, i.e., synsets(“turn_off”) = [switch_off.v.01, turn_off.v.02, turn_off.v.03];

3) The hosting CSE computes the similarity between two synsets belonging to different words , i.e., sim(switch_off.v.01, switch_off.v.01)=1.0; sim(switch_off.v.01, turn_off.v.02)=0.125; sim(switch_off.v.01, turn_off.v.03)=0.125;

4) The hosting CSE takes the maximum synset similarity as the similarity between two words, i.e., sim(“switch_off”, “turn_off”) = max(1.0, 0.125, 0.125) = 1.0.

Step 4: The same as Step 4 in clause 8.12.4.2.

Step 5: The same as Step 5 in clause 8.12.4.2.
Step 6: The same as Step 6 in clause 8.12.4.2.

Solution-2: In this alternative solution, the mapping relationships between the source ontology (Ontology-A) and the target ontology (Ontology-B) are discovered by measuring the semantic similarity between names of two entities belonging to two ontologies based on word embeddings. The word embedding techniques (e.g. word2vec (See [i.19]), Glove (See [i.20], etc.) map each word to a low-dimensional real-valued vector. Word embeddings are learned from large text corpus (e.g. Wikipedia) by neural networks. The semantic similarity between two words (a and b) can be measured by the cosine distance of their corresponding vectors (a and b). The cosine distance or two vectors is computed as the percentage of the inner product of vectors and the product of magnitudes of vectors, i.e. cosine(a,b) = (a·b)/(|a|×|b|).The following steps are performed for discovering mapping relationships between two ontologies by word embeddings:
Step 1: The same as Step 1 in clause 8.12.4.2.
Step 2: The same as Step 2 in clause 8.12.4.2.
Step 3: The hosting CSE calculates the semantic similarity between names of two entities with same types (class to class, object property to object property, data property to data property) of Ontology-A and Ontology-B using word vectors, and values from 0 to 1 are assigned for each pair of entities. For example, computing the similarity of Ontology-A: Devices and Ontology-B: Device may include the following steps:
1) The hosting CSE loads the pre-trained word embedding model M;

2) The hosting CSE gets the word vector of “Devices” from M, i.e., M[“Devices”];

3) The hosting CSE gets the word vector of “Device” from M, i.e., M[“Device”];

4) The hosting CSE computes the cosine distance of M[“Devices”] and M[“Device”] and takes it as the similarity between “Devices” and “Device”.

Step 4: The same as Step 4 in clause 8.12.4.2.

Step 5: The same as Step 5 in clause 8.12.4.2.
Step 6: The same as Step 6 in clause 8.12.4.2.
8.12.5
Semantic query / discovery based on the ontology mapping result
8.12.5.1 Introduction

Semantic query and semantic discovery operations can be enhanced by leveraging the ontology mapping result stored in the <ontologyMapping> resource, so that an application which understands only Ontology-A can get the resulting content or resource described in Ontology-B.

There are two approaches to implement this feature: 1) by converting the query statement according to the <ontologyMapping> resource, 2) by converting the target resources according to the <ontologyMapping> resource.

Both approaches require the extension of an optional request parameter - Ontology Mapping Resources, which contains a list of resource identifiers of existing <ontologyMapping> resources that are used as the base of converting the query statement or the target resources into their equivalents.
The following two clauses describes the detailed procedures of the proposed two approaches using the example ontology mapping result in clause 8.12.2.

Note that there is no difference between the semantic query operation and the semantic discovery operation in terms of applying the feature of ontology mapping in addition to the respective original procedures. So the following procedures combine the two operations in to one message flow.

8.12.5.2 Solution 1: Converting the semantic query statement using the ontology mapping result
This procedure is used for performing a semantic query/discovery procedure with enhancement of ontology mapping by covering the query statement into the equivalent one.

[image: image75.emf]Originator Hosting CSE

<ontologyMapping>

Hosting CSE

1. Receive semantic query/ discovery with

query statment in Ontology-A and an

Ontology Mapping Resources

 parameter

2. Retrieve the ontology mapping result

between Ontolog-A and Ontology-B

3a. Determine the equivalent query stamtent in Ontology-B

based on the ontology mapping result

4. Return the results

from both step 3b and 3c

3b. Perform semantic query/ discovery using the original query statement

upon target resources referencing Ontology-A

3c. Perform semantic query/ discovery using the equivalent query statement

upon target resources referencing Ontology-B

3. Semantic query/ discovery based on ontology mapping result

Figure 8.12.5.2-1: The semantic query/ discovery procedure with ontology mapping by covering the query statement

The detailed message flow is depicted in Figure 8.12.5.2-1 and explained as follows:

7. The hosting CSE (e.g. an oneM2M platform) receives a semantic query/ discovery request from an Originator (e.g. an oneM2M application). The request carries a semanticsFilter request parameter that contains the original query statement described in Ontology-A, as well as an Ontology Mapping Resources request parameter that contains the resource identifiers of one or multiple <ontologyMapping> resources.
Note that the originator may or may not be the one who created the <ontologyMapping> resources. The use of the <ontologyMapping> resources is subject to the associated access control policy against the originator.
For example, the original query statement may be:

SELECT ?device

WHERE {

?device rdf:type Ontology-A:LightSensor.

}
8. The hosting CSE locates the <ontologyMapping> resources according to the resource identifiers in the Ontology Mapping Resources request parameter, and retrieves the mapping results between Ontology-A and Ontology-B from the mappingResult attribute of the <ontologyMapping> resources.

For example, the mappingResult may contain the following triple (mapping relationship):
Ontology-A:LightSensor owl:equivalentClass Ontology-B:Light_Sensor
9. The hosting CSE performs the semantic query/ discovery upon the target resources which reference Ontology-A and Ontology-B, according to the ontology mapping result and the original query statement. This step comprise the following sub-steps:

a) The hosting CSE determines the equivalent query statement described in Ontology-B by converting from the original query statement described in Ontology-A, according to the ontology mapping result between Ontology-A and Ontology-B. This is done by replacing all the ontology class and properties of Ontology-A in the query statement with the corresponding equivalents of Ontology-B.

According to the examples above, the equivalent query statement becomes:

SELECT ?device
WHERE {

?device rdf:type Ontology-B:Light_Sensor.

}
b) The hosting CSE performs the semantic query/ discovery procedure upon the target resources that reference Ontology-A using the original query statement, and collects the first query/ discovery result.

For example, a <container-x> resource may have a <semanticDescriptor> child resource that references Ontology-A (by the ontologyRef attribute) and contains the following triple that matches the original query statement:

dev-x rdf:type Ontology-A:LightSensor.

c) The hosting CSE performs the semantic query/ discovery procedure upon the target resources that reference Ontology-B using the equivalent query statement, and collects the second query/ discovery result.

For example, a <container-y> resource may have a <semanticDescriptor> child resource that references Ontology-B (by the ontologyRef attribute) and contains the following triple that matches the original query statement:

dev-y rdf:type Ontology-B:Light_Sensor.
10. The hosting CSE combines the query/ discovery results from both step 3b and step 3c, and return the combined results to the originator.

For example, in the case of semantic query, the results are the IRIs of dev-x and dev-y. In the case of semantic resource discovery, the results are the resource identifiers of <container-x> and <container-y>.

8.12.5.3 Solution 2: Converting the target resources using the ontology mapping result

This procedure is used for performing a semantic query/discovery procedure with enhancement of ontology mapping by covering the target resources into the equivalent ones. The only difference is in step 3 comparing to clause 8.12.5.2.

[image: image76.emf]Originator Hosting CSE

<ontologyMapping>

Hosting CSE

1. Receive semantic query/ discovery with

query statment in Ontology-A and an

Ontology Mapping Resources

 parameter

2. Retrieve the ontology mapping result

between Ontolog-A and Ontology-B

3a. Determine the equivalent semantic description in Ontology-A of the

target resources referencing Ontology-B based on the ontology mapping result

4. Return the results

from both step 3b and 3c

3b. Perform semantic query/ discovery using the original query statement

upon target resources referencing Ontology-A

3c. Perform semantic query/ discovery using the original query statement

upon the equivalent semantic description of

the target resources referencing Ontology-B

3. Semantic query/ discovery based on ontology mapping result

Figure 8.12.5.3-1: The semantic query/ discovery procedure with ontology mapping by covering the target resources

The detailed message flow is depicted in Figure 8.12.5.3-1 and explained as follows:

1. The same as step 1 in clause 8.12.5.2.
2. The same as step 2 in clause 8.12.5.2.
3. The hosting CSE performs the semantic query/ discovery upon the target resources which reference either Ontology-A or Ontology-B according to the ontology mapping result and the original query statement. This step comprise the following sub-steps:

a) The hosting CSE determines the equivalent semantic description in Ontology-A for the target resources which reference Ontology-B by converting from the original semantic description in Ontology-B, according to the ontology mapping result between Ontology-A and Ontology-B. This is done by replacing all the ontology class and properties of Ontology-B in the related <semanticDescriptor> resources of the target resources into the equivalents of Ontology-A.

For example, a <container-y> resource may have a <semanticDescriptor> child resource that references Ontology-B (by the ontologyRef attribute) and contains the following triple:

dev-y rdf:type Ontology-B:Light_Sensor.
This triple is then converted into the equivalent in Ontology-A as follows:
dev-y rdf:type Ontology-A:LightSensor.
b) The same as step 3b in clause 8.12.5.2.
c) The hosting CSE performs the semantic query/ discovery procedure upon the target resources that reference Ontology-B using the original query statement and the equivalent semantic description, and collects the second query/ discovery result.

Note the converted equivalent semantic description in step 3a should match the original query statement.
4. The same as step 4 in clause 8.12.5.2.
8.12.6
Example implementation of ontology mapping conflict detection and repair
8.12.6.1 Introduction
In this clause, a potential solution is specified for the automatic ontology mapping conflict detection and repair process. The mapping relationships between the source ontology and target ontology are stored as the content of the mappingResult attribute in an <ontologyMapping> resource . The hosting CSE can extract the mapping relationships from the <ontologyMapping> resource and merge the source ontology into the target ontology with the mapping relationships. The inference engine (e.g. Jena (See [i.21]), Pellet (See [i.22], etc.) is deployed in the hosting CSE to perform reasoning for the merged ontology to detect the conflicts in it. If there is a conflict caused by a mapping, then the relationship is removed from the original mapping results; and if not, the mapping relationship is retained. Accordingly, the repaired mapping relationships after reasoning are used to replace the original results in the <ontologyMapping> resource by the Update operation on the Hosting CSE.
8.12.6.2
Procedure for initiating an ontology mapping conflict detection and repair function

Solution-1: In this alternative solution, the conflicting mapping relationships between the source ontology (Ontology-A) and the target ontology (Ontology-B) are detected and repaired based on an inference engine (e.g. Jena (See [i.21]), Pellet (See [i.22], etc.). The following steps are performed for detecting and repairing the conflicting mapping relationships between two ontologies.

[image: image77.emf]Originator Hosting CSE

<Ontology> Hosting

CSE

1.Send a ontology mapping

conflict detection and repair

requestwith a

<ontologyMapping> resource

2.Get the source <ontology>

resource (Ontology-A)

3.Get the target <ontology>

resource (Ontology-B).

4.Ontology mapping conflict detection and repair(a cyclic process)

5. Updatethe mappingResult

attribute of the

<ontologyMapping> resource

with File-Cand return this

updated resource.

(1). Extract a mapping from the mappingResultattribute and add it to File-C

which stores the repaired mapping relationships.

(2).Merge the source Ontology-A and the target Ontology-B based on File-C

(3). Perform reasoning on the merged ontology: if there is a conflict, the current

mapping relationship is removed from the File-C; otherwise, this mapping

relationship is retained.

Figure 8.12.6.2-1: The ontology mapping conflict detection and repair procedure
Step 1: The hosting CSE receives a ontology mapping conflict detection and repair request from an Originator with a <ontologyMapping> resource.

Step 2: The hosting CSE gets the source <ontology> resource (Ontology-A).
Step 3: The hosting CSE gets the target <ontology> resource (Ontology-B).
Step 4: The hosting CSE traverses all the mapping relationships of the mappingResult attribute and merges the source Ontology-A and the target Ontology-B. Then, the hosting CSE performs the reasoning on the merged Ontology. If there is a conflict, the mapping relationship is removed; otherwise, the mapping relationship is retained. The specific steps are as follows:

(1) The hosting CSE extracts a new mapping relationship and add it to File-C which stores the repaired mapping relationships.

(2) The hosting CSE merges the source Ontology-A and the target Ontology-B based on File-C.
(3) The hosting CSE performs ontology reasoning on the merged ontology to detect the conflicts. If there is a conflict, the current mapping relationship is removed from the File-C, otherwise, the current mapping relationship is retained.
Step 5: The hosting CSE updates the mappingResult of the <ontologyMapping> resource with File-C.
An ontology mapping conflict detection and repair example as follows:

[image: image78.emf]¬

Ontology Mapping Conflict

Detectionand RepairFunction

owl:equivalentClass

owl:disjointWith

rdfs:subClassOf

Class

¬

After adding relationship id=3, a conflict occurs

and the relationship id=3 should be removed

SmartDevice

AirCleaner

Sensor

HumiditySensor

LightSensor

Thing

Ontology A

Device

Moisture_Sensor

Refrigerator

Thing

Ontology B

Light_Sensor

¬

SmartDevice

AirCleaner

Sensor

HumiditySensor

LightSensor

Thing

Ontology A

Device

Moisture_Sensor

Refrigerator

Thing

Ontology B

Light_Sensor

Ontology Mapping Function

Load ontology

mapping file

id=3

id=2

id=1

repaired mappingResultfile

mappingResultfile

9
Conclusions

The semantic functionality supported by oneM2M has been significantly enhanced in Release 3 - now also supporting semantic queries and semantic mashups. In this document the different options have been developed that helped in deciding what approach is most suitable to be adopted in the oneM2M specifications, i.e. oneM2M TS-0001 [i.3], oneM2M TS-0004 [i.4] and oneM2M TS-0034 [i.12]. In addition to the approaches to be specified, some implementation aspects and options have been discussed. These are not specified by oneM2M in a normative way and are thus up to the implementer, but are important for understanding how the semantic features can be implemented.
History

	Publication history

	V.1.1.1
	<yyyy-mm-dd>
	<Milestone>

	
	
	

	
	
	

	
	
	

	
	
	

	Draft history (to be removed on publication)

	V4.0.0
	2018-06-13
	Generated a new version for Release 4 based on TR-0033 Rel. 3 v.0.8.1 (Only version number and date have been changed, no other change was made on the contents)

	V4.1.0
	2018-06-26
	Included TP 34 and TP 35 contributions:

MAS-2018-0054R01 Triggering Individual Reasoning Process

MAS-2018-0024R01 Semantic Reasoning Function

	V4.2.0
	2018-07-19
	Included TP 36 contribution:

MAS-2018-0096R01 Triggering Continuous Reasoning Process

	V.4.2.1
	2018-10-22
	Included TP 37 contribution:

MAS-2018-0117R01 Procedure for optimizing semantic operations with reasoning support

	V.4.2.2
	2019-02-08
	Included TP 38 contribution:

MAS-2018-0145R02 Semantic Operations with Query Modification

	V4.3.0
	2019-05-27
	Include TP 39 and TP 40 contributions:

SDS-2019-0030R01-Ontology_mapping_intro

SDS-2019-0031R01-Ontology_mapping_resource

SDS-2019-0032R01-Ontology_mapping_procedure

SDS-2019-0218R02 Semantic_Reasoning_Resources_and_Procedures

	V4.4.0
	2019-07-11
	Included TP 41 contributions:

SDS-2019-0385R01 semantic query and discovery based on ontology mapping

SDS-2019-0368R01 New_reasoningJobInstance_Resource

SDS-2019-0377R04 automatic ontology mapping algorithm for TR-0033

	V4.5.0
	2019-10-23
	Included TP 42 contributions:

SDS-2019-0520R02

Access Control Ontology

@

prefix rdf

:

<

http

://

www

.

w

3

.

org

/

1999

/

02

/

22

-

rdf

-

syntax

-

ns

#>

.

@

prefix rdfs

:

<

http

://

www

.

w

3

.

org

/

2000

/

01

/

rdf

-

schema

#>

.

@

prefix xsd

:

<

http

://

www

.

w

3

.

org

/

2001

/

XMLSchema

#>

.

@

prefix acp

:

<

http

://

accessControlPolicy

.

org

/

>

.

@

prefix ex

:

<

http

://

example

.

org

/

>

.

@

prefix m

2

m

:

<

http

://

oneM

2

M

.

org

/

>

.

acp

:

accessControlPolicy rdf

:

type rdfs

:

Class

.

acp

:

accessControlRule rdf

:

type rdfs

:

Class

.

acp

:

hasACPRule

rdf

:

type

rdf

:

Property

;

rdfs

:

domain

acp

:

accessControlPolicy

;

rdfs

:

range

acp

:

accessControlRule

.

acp

:

hasACOriginator

rdf

:

type

rdf

:

Property

;

rdfs

:

domain

acp

:

accessControlRule

;

rdfs

:

range

m

2

m

:

AE

_

ID

,

m

2

m

:

CSE

_

ID

,

xsd

:

anyURI

.

acp

:

hasACContexts

rdf

:

type

rdf

:

Property

;

rdfs

:

domain

acp

:

accessControlRule

;

rdfs

:

range

m

2

m

:

ipv

4

,

m

2

m

:

ipv

6

,

m

2

m

:

contryCode

,

rdfs

:

Literal

.

acp

:

hasACOperations

rdf

:

type

rdf

:

Property

;

rdfs

:

domain

acp

:

accessControlRule

;

rdfs

:

range

m

2

m

:

accessControlOperations

,

rdfs

:

Literal

.

acp

:

appliedTo

rdf

:

type

rdf

:

property

;

rdfs

:

domain

acp

:

accessControlPolicy

;

rdfs

:

range

xsd

:

anyURI

,

rdfs

:

Literal

,

m

2

m

:

ID

,

ex

:

resourceGroup

.

Access Control Triples

ontologyRef=’OntologyH’

sensor12-AE

semanticDescriptorX

descriptor

humidityContainer

…

<rdf:Description rdf:about= “…/sensor12”

<rdf: type ont:humiditySensor/>

< ont:hasfunction rdf:resource=“…/humidityContainer” />

…

</rdf:Description>

…

< rdf:Description rdf:about=“…/humidityContainer”

	<rdf:type ont:controllingFunction/>

…

</rdf:Description>

…

<rdf:Description rdf:about= “…/sensor12”

<rdf: type ont:humiditySensor/>

< ont:hasfunction rdf:resource=“…/humidityContainer” />

…

</rdf:Description>

…

< rdf:Description rdf:about=“…/humidityContainer”

 <on:quantifies rdf:resource=“…/roomA/tempAspect”/>

…

</rdf:Description>

< rdf:Description rdf:about =“…/roomA/tempAspect”/>”

 < m2m:resourceDescriptorLink rdf:resource=“…/semanticDescriptorR”/>

…

</rdf:Description>

…

< rdf:Description rdf:about =“…/tempAspect”/>”

	<rdf:type rdf:resource=“ont:TemperatureAspect”/>

…

</rdf:Description>

linked <semanticDescriptor> hosting CSE

Issuer

CSE-1

IN-CSE

CSE-2

1. Create/Update/Retrieve <semanticDescriptor>

ontology hosting CSE

<semanticDescriptor> hosting CSE

3b. request to validate <semanticDescriptor>

4b. retrieve linked <semanticDescriptor>

5b. validate <semanticDescription> against referenced ontology

6b. validation response

7. <semanticDescription>

validation status update

8. response

3a. retrieve referenced ontology

4a. validate <semanticDescription> against referenced ontology

2. check linked <semanticDescriptor>

CASE1

CASE2

© oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC)
Page 88 of 112
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

[image: image79.png]oneM2M Resource <Semantic Logically represents
Structure Query> aggregation
- oneM2M Resource ...""'--......
- oneM2M Virtual — .
Resource
- Semantic Resource
== Aggregation of
semantic resources
L — =" inthe subtree
S

[image: image80.png]Target resource —).

oneM2M Resource
Structure

- oneM2M Resource
- Semantic Resource

== Aggregation of
semantic resources
L — =" inthe subtree

Logical Semantic
Graph

Instance of ontology
. concept / individual

—— Relation / property

Stored in one <semantic
Descriptor> Resource

<semanticMashupInstance>
smjpID
1
mashupMember
0:1(L)
<subscription>
0:1
0:n
<semanticMashupResult>
0:n
<semanticDescriptor>
resultGenType
1
smjpInputParameter
0:1
memberStoreType
1
periodForResultGen
0:1
mashup
0:1

Semantic
Reasoner
Fact Set (FS)
(e.g., data stored in <ontology>, <semanticDescriptor>)
Reasoning Rule
Set (RS)
input
input
produces
Other oneM2M
Semantic Functions
(such as semantic query/discovery)
…
optimize
oneM2M Semantic Reasoning Related Data
Reasoning Results
Semantic Reasoning Function (SRF)
oneM2M Users
(AEs/CSEs)
discover, publish/share, utilize
trigger
trigger
further utilize
enrich/augment

Step 2: User-1 sends the request to SE-1 in order to initiate an intended semantic operation.
Step 9: SR-1 sends back the processing result to User-1 for its intended semantic operation.

User-1

Semantic Reasoner -1
(SR-1)

Semantic Engine-1
(SE-1)
Step 1: User-1 intends to initiate a semantic operation.
Step 5: SR-1 determines and collects reasoning rules that can be used for the request sent from SE-1.
Step 8: SE-1 executes the modified SPARQL statement over the IDB and yields the processing result.
Step 3: SE-1 determines the Involved Data Basis (IDB) for this request and also decides whether to further leverage semantic reasoning function.
Step 4: SE-1 sends a request to SR-1 in order to ask SR-1 to modify the original SPARQL query statement.
Step 6: SR-1 modifies the original SPARQL statement based on the applied reasoning rules.
Step 7: SR-1 sends back the modified SPARQL statement to SE-1.

Originator
Hosting CSE
<ontologyMapping> Hosting CSE
1. Receive semantic query/ discovery with  query statment in Ontology-A and an Ontology Mapping Resources parameter
2. Retrieve the ontology mapping result  between Ontolog-A and Ontology-B
3a. Determine the equivalent query stamtent in Ontology-B  based on the ontology mapping result
4. Return the results
from both step 3b and 3c
3b. Perform semantic query/ discovery using the original query statement upon target resources referencing Ontology-A
3c. Perform semantic query/ discovery using the equivalent query statement upon target resources referencing Ontology-B
3. Semantic query/ discovery based on ontology mapping result

_1623583458.vsd
Ontology-A

Ontology-B

Ontology-A

Ontology-B

MBP

_1630757419.vsd
Originator

Hosting CSE

<Ontology> Hosting CSE

1.Send a ontology mapping conflict detection and repair request with a <ontologyMapping> resource

2.Get the source <ontology> resource (Ontology-A)

3.Get the target <ontology> resource (Ontology-B).

4.Ontology mapping conflict detection and repair(a cyclic process)

(1). Extract a mapping from the mappingResult attribute and add it to File-C which stores the repaired mapping relationships.

(2).Merge the source Ontology-A and the target Ontology-B based on File-C

(3). Perform reasoning on the merged ontology: if there is a conflict, the current mapping relationship is removed from the File-C; otherwise, this mapping relationship is retained.

5. Update the mappingResult attribute of the <ontologyMapping> resource with File-C and return this updated resource.

_1630757310.vsd
¬

SmartDevice

AirCleaner

Sensor

HumiditySensor

LightSensor

Thing

Ontology A

Device

Moisture_Sensor

owl:equivalentClass

owl:disjointWith

rdfs:subClassOf

Class

¬

After adding relationship id=3, a conflict occurs and the relationship id=3 should be removed

Refrigerator

SmartDevice

AirCleaner

Light_Sensor

Sensor

HumiditySensor

LightSensor

Ontology Mapping Conflict
Detection and Repair Function

¬

Thing

Ontology A

Device

Moisture_Sensor

Thing

Ontology B

Refrigerator

Light_Sensor

Thing

Ontology B

Ontology Mapping Function

Load ontology mapping file

id=3

id=2

id=1

 repaired mappingResult file

mappingResult file

Originator
Hosting CSE
<ontologyMapping> Hosting CSE
1. Receive semantic query/ discovery with  query statment in Ontology-A and an Ontology Mapping Resources parameter
2. Retrieve the ontology mapping result  between Ontolog-A and Ontology-B
3a. Determine the equivalent semantic description in Ontology-A of the
target resources referencing Ontology-B based on the ontology mapping result
4. Return the results
from both step 3b and 3c
3b. Perform semantic query/ discovery using the original query statement upon target resources referencing Ontology-A
3c. Perform semantic query/ discovery using the original query statement upon the equivalent semantic description of  the target resources referencing Ontology-B
3. Semantic query/ discovery based on ontology mapping result

“switch off”=“turn off”
Ontology-A
Ontology-B
Thing
switch_off
Thing
Devices
Device
Sensor
LightSensor
Light_Sensor
turn_off
linguistic-feature extraction algorithm
external resource acquisition algorithm
Dictionary
Mapping Altorithms
owl:equivalentClass
owl:equivalentClass
owl:equivalentClass
owl:equivalentProperty

Originator
<ontologyMapping> Hosting CSE
<ontology> Hosting CSE
<ontologyMappingAlgorithm> Hosting CSE
1. request ontology mapping by Creating  a <ontologyMapping> resource
2. Determine source & target ontologies and ontology mapping methods
3.Retrieve source & target ontologies
4. Retrieve ontology mapping algorithms
5. Create mapping between the source & target ontologies,  store the result in the <ontologyMapping> Resource
6. Return the successful response

<ontologyMapping>
sourceOntology
targetOntology
mappingResult
mappingAlgorithmLinks
1
1
1
1
executable
description
<ontologyMappingAlgorithm>
<ontologyMappingAlgorithmRepository>
0..n
0..1
0..1
<subscription>
0..1
<subscription>
0..1
mappingPolicy
1

Rule Host-2
(RH-2)

Fact Host-2
(FH-2)
Step 2: RI-1 sends a reasoning request to SR-1, along with the information about FS-1 and RS-1.
Step 7: SR-1 sends back the reasoning result to RI-1, along with the job ID of RJ-1.

Reasoning Initiator -1
(RI-1)

Semantic Reasoner -1
(SR-1)

Fact Host-1
(FH-1)

Rule Host-1
(RH-1)
Step 1: RI-1 intends to use FS-1 and RS-1 as inputs to Initiate a “continuous” reasoning process at SR-1.
Step 4: SR-1 may also decide whether additional FS and/or RS can be utilized.
Step 5: SR-1 retrieves an additional FS-2 from FH-2 and/or an additional RS-2 from RH-2. Similarly, SR-1 also makes subscriptions on each of them.
Step 6: SR-1 creates a reasoning job (denoted as RJ-1), which includes all the involved inputFS and RS. Then, RJ-1 will be executed and yield the reasoning result.
Pre-condition: RI-1 has identified FS-1 on FH-1 and RS-1 on RH-1 through oneM2M resource discovery.
Step 3: SR-1 not only retrieves FS-1 from FH-1 and RS-1 from RH-1 respectively, but also makes subscriptions on each of them.

Step 10: SR-1 sends back the new reasoning result to RI-1.
Step 8: FH-1 sends a notification about the changes on FS-1.
Step 9: SR-1 retrieves the latest FS-1 and executes a new reasoning process for RJ-1 to generate new reasoning result.
The semantic reasoning processes of RJ-1 will continue as long as RJ-1 is a valid semantic reasoning job.
Any changes on inputFS and RS will trigger a new reasoning process of RJ-1 (Steps 8-10 is an example)

Step 2: User-1 sends a request to SE-1 to initiate an intended semantic operation.
Step 9: SR-1 sends back the processing result to User-1 for its intended semantic operation.

User-1

Semantic Reasoner-1
(SR-1)

Semantic Engine-1
(SE-1)
Step 1: User-1 intends to initiate a semantic operation.
Step 5: SR-1 determines and collects all the needed facts and reasoning rules for the semantic reasoning operation to be executed.
Step 8: SE-1 integrates the reasoning result with the original IDB to generate an augmented IDB, and executes the SPARQL statement over the augmented IDB and yields the processing result.
Step 3: SE-1 determines the original Involved Data Basis (IDB) for this request and also decides whether to further leverage semantic reasoning function.
Step 4: SE-1 sends a request to SR-1 in order to initiate a semantic reasoning operation.
Step 6: SR-1 conducts the semantic reasoning operation and yields the reasoning result.
Step 7: SR-1 sends back the reasoning result to SE-1.

Rule Host-2
(RH-2)

Fact Host-2
(FH-2)
Step 2: RI-1 sends a reasoning request to SR-1, along with the information about FS-1 and RS-1.
Step 7: SR-1 send back the reasoning result to RI-1.

Reasoning Initiator -1
(RI-1)

Semantic Reasoner -1
(SR-1)

Fact Host-1
(FH-1)

Rule Host-1
(RH-1)
Step 1: RI-1 intends to use FS-1 and RS-1 as inputs to trigger a reasoning process at SR-1.
Step 4: SR-1 may also decide whether additional FS and/or RS can be utilized.
Step 5: SR-1 retrieves an additional FS-2 from FH-2 and/or an additional RS-2 from RH-2.
Step 6: With all the input FS and RS, SR-1 executes a reasoning process and yields the reasoning result.
Pre-condition: RI-1 has identified FS-1 on FH-1 and RS-1 on RH-1 through oneM2M resource discovery.
Step 3: SR-1 retrieves FS-1 from FH-1 and RS-1 from RH-1 respectively.

_1572248353.vsd

<ontologyRepository>

<semanticValidation>
<ontology>
0..n
1
<subscription>
0..n

<SmartParkingAssistance>
inputDescriptor
@PREFIX			ps:			<http://parkingspot.example.org> .
@PREFIX	 smjp:		 <http://smjp.org>

<SmartParkingAssistance> 	smjp:hasInput		smjp:input1 .
smjp:input1 	 rdf:type ps:address .
smjp:input1 	 ps:hasName “userDestination” .
outputDescriptor
@PREFIX			ps:			<http://parkingspot.example.org> .
@PREFIX	 smjp:		 <http://smjp.org>

<SmartParkingAssistance> 	smjp:hasOutput		smjp:output1 .
smjp:output1 rdf:type ps:parkingSpot .
smjp:output1 ps:hasName “suitableParkingSpot” .
functionDescriptor
@PREFIX			ps:		 <http://parkingspot.example.org> .
@PREFIX	 smjp:		 <http://smjp.org>

<SmartParkingAssistance> 	smjp:hasMashupFunction	 smjp:mashupFunction1 .
smjp:mashupFunction1	 rdf:type			 ps:spotSelectionAlgorithm .	
smjp:mashupFunction1 ps:adoptedSelectionCriteria “shortestWalkingDistance” .
smjp:mashupFunction1 ps:hasUserDestinationInput smjp:input1 .
smjp:mashupFunction1 ps:outputSuitableParkingSpot smjp:output1 .
memberFilter
PREFIX 		ps:		<http://parkingspot.example.org>
PREFIX 		rdf:		<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX 		rdfs:		<http://www.w3.org/2000/01/rdf-schema#>
PREFIX 		xsd:		<http://www.w3.org/2001/XMLSchema#>

CONSTRUCT {
?BuildingParkingSpot rdf:type 	ps:parkingSpotInAParkingBuilding.
?StreetParkingSpot rdf:type 		ps:streetParkingSpot .
}
where {
?BuildingParkingSpot	rdf:type			ps:parkingSpotInAParkingBuilding;
			ps:hasOccupiedStatus 	“unoccupied” .
?StreetParkingSpot	rdf:type			ps:streetParkingSpot ;
			ps:hasOccupiedStatus 	“unoccupied”.
}
<semanticDescriptor>/descriptor

@PREFIX	 ps:		 <http://parkingspot.example.org> .
@PREFIX	 smjp:		 <http://smjp.org>

<SmartParkingAssistance>	rdf:type	 	 smjp:semanticMashupJobProfile.
<SmartParkingAssistance>	ps:hasName 	 “SmartParkingAssistance” .
<SmartParkingAssistance>	ps:hasService	 “FindSuitableParkingLot” .
<SmartParkingAssistance>	ps:hasSmjpId 	“SMJP-001”.

<ontology>
contentFormat

content
description
<subscription>
0..n
0..1
0..n
0..n

<SuitableParkingSpot-1>
smjpID
“SMJP-001”
<semanticMashupResult>
smjpInputParameter
@PREFIX ps:		 <http://parkingspot.example.org> .

ps:input1 rdf:type ps:address .
ps:input1 ps:hasName “userDestination” .
ps:input1 ps:hasValue “255 36th street, New York City, NY, 10001” .
memberStoreType
“URI and Value”
mashupMember
@PREFIX	ps:		<http://parkingspot.example.org> .

Example 1: //For an unoccupied parking spot in a parking building (Corresponding Resource: <buildingParkingSpot-1>)
<buildingParkingSpot-1>	rdf:type ps:parkingSpotInAParkingBuilding .
<buildingParkingSpot-1> 	ps: hasCorrespondingParkingBuildingAddress	 ps:address1.
ps:address1 	ps: hasValue	 “255 37th street, New York City, NY, 10001” .
<buildingParkingSpot-1> 	ps: hasConrespondingParkingFloor	 “3rd floor” .
<buildingParkingSpot-1> 	ps: hasParkingSpotID	 “23” .

Example 2: //For unoccupied parking spot on a street (Corresponding Resource: <streetParkingSpot-1>)
<streetParkingSpot-1> 		rdf:type	 ps:streetParkingSpot .
<streetParkingSpot-1> 	ps:hasCorrespondingRoadAddress	 ps:address2
 ps:address2 	 ps:hasValue	 “Near 255 39th street, New York City, NY, 10001” .
<streetParkingSpot-1> 	ps: hasParkingSpotID	 “16” .

……. All qualified members are listed here.
resultGenType
“When SMI Is Created”
mashupResult
<buildingParkingSpot-1>

Device12
hasFunctionality
...
hasService
Service23
hasMethod
...
...
Device12
OperationA

<AE>
<semanticDescriptor>
hasOperation
OperationA
CompanyA
Device34
OperationA

<AE>
<semanticDescriptor>
Device34
hasFunctionality
...
hasService
Service23
hasMethod
...
...
hasOperation
OperationA
CompanyB
<remoteCSE>
<remoteCSE>
CSEBase
Device56
OperationA

<AE>
<semanticDescriptor>
Device56
hasFunctionality
...
hasService
Service23
hasMethod
...
...
hasOperation
OperationA
hasOperationStatus
“200”
hasOperationStatus
“120”
hasOperationStatus
“90”

Receiver
(a CSE)
Originator
(a CSE or AE)
1. Processing at Originator before sending Request
2. Request Message
(e.g. Create/Retrieve/Update/Delete <semanticMashupJobProfile>)
3. Processing at Receiver
4. Response Message

<semanticContentInstance>
1
contentSize
0..1
semanticContentRef
0..1
ontologyRef
1
semanticRepresentation
0..1
semanticOpExec
semantic descriptor
1
semanticContent
0..1(L)
relatedSemantics
0..n

input
hasInput
output
hasOutput
memberCandidate
mashupFunction
hasMashupFunction
semanticMashupJobProfile
hasMember
string
string
hasName
string
hasService
hasSmjpId

parkingSpot
streetParkingSpot
parkingSpotInAParkingBuilding
subClassOf
subClassOf
hasOccupiedStatus
hasParkingSpotID

hasCorrespondingParkingFloor
boolean
hasCorrespondingParkingBuildingAddress
literal
hasCorrespondingRoadAddress
integer
string
address
hasValue
hasName
literal
hasName
literal
spotSelectionAlgorithm
adoptedSelectionCriteria
string
hasUserDestinationInput
outputSuitableParkingSpot
hasCandidateParkingSpot

<semanticMashupJobProfile>
memberFilter
<semanticMashupInstance>
smiID
1
1(L)
0:1(L)
0:n
<subscription>
0:n
0:1
1
<semanticDescriptor>
0:1
inputDescriptor
outputDescriptor
functionDescriptor

SMF
(e.g. CSE)
MR
(e.g. AE)
1. SMI Creation Request
5. Response
4. Create an SMI and associate it with the corresponding SMJP
2. Process SMI Creation Request
3. Discover Mashup Members

SMF
(e.g. CSEs)
MR
(e.g. AEs)
1. SMJP Discovery Request
2. Response
3. SMJP Retrieval Request
4. Response

SMF
(e.g. CSE)
MR
(e.g. AEs)
1. Mashup Result Retrieve Request
6. Response
5. Generate mashup result according to the mashup function defined in the corresponding SMJP.
RH
(e.g. CSEs)
3. Member Resource Retrieve Request
4. Response
2. Check the SMI resource to be retrieved and determine how the mashup result should be generated.

SMF
(e.g. CSEs)
MR
(e.g. AEs)
1. SMI Discovery Request
2. Response

Receiver
(a CSE)
Originator
(a CSE or AE)
1. Processing at Originator before sending Request
2. Request Message
(e.g. Create/Retrieve/Update/Delete <semanticMashupInstance>)
3. Processing at Receiver
4. Response Message

SMF: Semantic Mashup Function
SMJP: Semantic Mashup Job Profile
SMI: Semantic Mashup Instance
MR: Mashup Requestor
Semantic Mashup Job Profile (SMJP) Library
Semantic Mashup Function (SMF)

Functionality:
// Finding Suitable Parking Spot (Human Understandable Description)
smp-001 is-a ex:smartParkingAssistance

Input Needed from MR:
ex:MRInput1 is-a ex:currentVehiclePosition
ex:MRInput2 is-a ex:destination (e.g., Building A)
ex:MRInput3 is-a ex:parkingPreference

Output (Mashup Result):
ex:output1 is-a ex:parkingSpotID
ex:output2 is-a ex:parkingSpotPosition
Data Sources Criteria/Filter:

//Data Source Type-1:
ex:source1 is-a ex:parkingSpotInParkingBuilding
ex:source1 is-close-to ex:MRInput2 (i.e., MR’s destination)

//Data Source Type-2:
ex:source2 is-a ex:streetParkingSpot
ex:source2 is-close-to ex:MRInput2 (i.e., MR’s destination)

Mashup Function:

ex:function1 is-a ex:cheapestCostBasedSpotSelectionAlgorithm (default)
ex:function2 is-a ex:parkingPreferenceBasedSpotSelectionAlgorithm
SMJP- 001 (smpID)
(Smart Parking Assistance)

SMP Semantic Description

Utility or
Runnable
Code Block

SMJP - 002

SMJP - 001

SMI - 001

smjpID:
 SMJP-001

Identified Data Sources

Mashup Result
SMJP- 002
(Shopping Guidance Application)
…..

Identified Data Sources

Source 1: Parking Spots in Building XX,
Source 2: Parking Spots in Building YY
Source 3: Parking Spots on Main Street …
Source 4: Parking Spots on 5th Avenue
…..
SMP Reference
Injected into
Triggered by MR-1
Triggered by MR-2
Example
Example

Mashup Result

Suitable Parking Spot ID: Parking Spot-16
Position: Parking Building XX, 1st floor, 3rd Row

Mashup
Engine
SMI
Instantiation
& Management

SMI - 003

smjpID:
 SMP-001

SMI - 002

smjpID:
 SMP-002

Semantic Mashup Instance (SMI) - 001

smjpID:
 SMP-001
SMJP Semantic Description (RDF Triples)

Semantic Mashup Job Profile (SMJP) Library

SMJP

Injected into

Mashup
Engine
SMI
instantiation
& Management
...
Source-1
Resource Hosts
(RH)
Source-2
Source-3
SMJP

SMP Semantic Description

Data Sources
& Business Logic
Semantic Mashup Instance (SMI)

smjpID

Identified Data Sources

Mashup Result
Mashup
Requestor-1
 (MR-1)
Semantic Mashup Function (SMF)
Source-N
Operation 1: SMJP Discovery
Operation 2: SMI Creation
Operation 3: Mashup Member Identification
Operation 4: Mashup Result Retrieval
Operation 5: Data Input
Collection and Mashup Result Generation

Mashup
Requestor-2
 (MR-2)
Operation 6: SMI Discovery and Reuse

Hosting CSE
Originator
SGS
1. Create <semanticDescriptor> Resource
2. Create <semanticDescriptor> Resource and SD Original Triples
3. Response
6. SPARQL request to store SD Original Triples, SD Relationship Triples, ACP-SD Binding Triples
8. Response
7. Process SPARQL request and store all triples
4. Generate SD Relationship Triples.
5. Generate ACP-SD Binding Triples.

Hosting CSE
Originator
SGS
1. Update descriptor attribute of a <semanticDescriptor> resource
2. Update the descriptor attribute and SD Original triples
3. Response
7. Response
6. Process the SPARQL request, update triples
4. Generate new SD Relationship Triples
5. SPARQL request to update SD Original triples, SD Relationship Triples

Hosting CSE
Originator
SGS
1. Delete <semanticDescriptor> Resource
2. Delete <semanticDescriptor> Resource
3. Response
6. Response
5. Process the SPARQL request and remove triples
4. SPARQL request to remove SD Original Triples, SD Relationship Triple and ACP-SD Binding Triples

Hosting CSE
Originator
SGS
1. Update accessControlPolicyIDs for <semanticDescriptor>
2. Update the accessControlPolicyIDs attribute with the new value
3. Response
7. Response
6. Process the SPARQL request, update ACP-SD Binding Triples
4. Generate new ACP-SD Binding Triples to associate the <semanticDescriptor> resource with new acp
5. SPARQL request to update ACP-SD Binding Triples

...
...
oneM2M Normal Resource
oneM2M <semanticDescriptor> Resource
RDF
Data Basis
SD_n
SD_1
SD_1
SD_2
SD_3
SD_2
SD_3
Semantic Graph
Scoping (SGS)

A SPARQL Query Statement
Executed on
Returns

@PREFIX	acp:			<http://accessControlPolicy.org> .

acp:acp1 	rdf:type 		acp:accessControlPolicy .
acp:acp1 	acp:hasACPRule 	acp:acr11 .
acp:acr11 	rdf:type 		acp:accessControlRule .
acp:acr11 	acp:hasACOriginator 	"AE-ID-1" .
acp:acr11 	acp:hasACOperations 	"DISCOVERY" .
Line#1

Line#2
Line#3
Line#4
Line#5
Line#6

@PREFIX 	acp: 	<http://accessControlPolicy.org> .
INSERT DATA
{ acp:acr11 	acp:hasACOperations	"RETRIEVE" . }

Hosting CSE
Originator
Sematic Graph Store
1. Delete <accessControlPolicy> Resource
2. Delete <accessControlPolicy> Resource
3. Response
6. Response
5. Process SPARQL request
e.g. remove ACP Triples
4. SPARQL request e.g. delete ACP Triples

Hosting CSE
Originator
Sematic Graph Store
1. Update <accessControlPolicy> Resource
2. Update <accessControlPolicy> with its new representation given in Step 1
3. Response
7. Response
6. Process SPARQL request
e.g. update ACP Triples to SGS
4. Generate new ACP triples according to the new <accessControlPolicy> resource (i.e. its privilege attribute)
5. SPARQL request e.g. update ACP Triples

@PREFIX acp: 	<http://accessControlPolicy.org> .

DELETE
{ ?acp	?p	?o
 ?s	?p2	?acp
 ?acr 	?p1	?o1
}
WHERE
{
?acp	?p	?o
?s	?p2	?acp
?acp	acp:hasACPRule	?acr
?acr 	?p1	?o1
FILTER (?acp = acp:acp1)
}

@PREFIX 	acp: 	<http://accessControlPolicy.org> .
DELETE
{ ?acr	acp:hasACOperations ?operation}
WHERE
{
?acr	acp:hasACOperations ?operation .
FILTER(?acr = acp:acr11)
}
INSERT DATA
{ acp:acr11 acp:hasACOperations	"DISCOVERY", "RETRIEVE" . }

<Group-1>
memberIDs
<semanitcDescriptor> child resources of <Device12> <Device34>
<Device56>
Describing that this resource includes all the devices

<semanticDescriptor>
Explicitly Specifying a RDF data basis
….
RDF
Data Basis

Hosting CSE
Originator
Sematic Triple Store
1. Create <accessControlPolicy> Resource
2. Create <accessControlPolicy> resource as requested in Step 1 if it is allowed.
3. Response
5. SPARQL request e.g. store ACP Triples
7. Response
6. Process SPARQL request
e.g. add ACP Triples to SGS
4. Generate ACP triples according to ACP ontology.
Optionally: Add address of the SGS’s as atribute of new resource

_1480493012.vsd
2

4

3

18

7

9

10

11

12

13

8

27

28

6

33

19

22

1

5

30

15

20

23

29

32

16

17

21

24

31

14

25

26

manage semantic information

thing modelling based on ontologies

semantics description language

ontology modelling language

ontology translation

discover based on semantic descriptions

retrieve external semantic descr. & ontologies

data analytics based on semantic descriptions

host processing functions for mash-up

applications provide processing functions

pre-provisioned or dynamically created processing functions

create & execute mash-ups

expose mash-ups as virtual devices

semantic annotation of oneM2M resources

semantic annotation based on ontologies

ontology linking

extending ontologies

use ontologies containing external aspects

simultaneous usage of multiple ontologies

update ontologies as a result of ontology reasoning

re-use common ontologies

manage ontologies

make ontology available, e.g. announce

import external ontologies

update ontologies

semantic reasoning (ontology/rule-based)

interpreting & applying sem. descr. service logic

standardized format for service logic

ontology-based data conversion

make semantic desc. available, e.g. announce

retrieve ontology related to semantic description

device modelling based on ontologies

depends on

is related to

Semantic Annotation

Ontology

Semantics Query

Semantics Mash-up

Data Analytics

Semantic Reasoning

adding and updating semantic information as the result of reasoning

