Doc# SDS-2019-0659R02-TR-0043_Modbus_interworking_procedures
	
[bookmark: _Hlk12520362][bookmark: page2]
	Input Contribution

	Meeting ID*
	SDS#432

	Title:*
	TR-0043-Modbus-interworking-procedures

	Source:*
	JaeSeung Song, KETI, jssong@sejong.ac.kr
Sherzod Elamanov, KETI, selamanov@gmail.com

	[bookmark: _GoBack]Date:*
	2019-12-01

	Input related to*
	TR-0043 Modbus Interworking

	Intended purpose of
document:*
	|X| Decision
|_| Discussion
|_| Information
|_| Other <specify>

	Impacted other TS/TR(s)
	N/A

	Decision requested or recommendation:*
	Add Section 7 Modbus interworking procedures

	Template Version: January 2017 (Do not modify)

oneM2M Notice
The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

[bookmark: _Toc338862360]
Introduction
This contribution proposes to add a new section for Modbus Interworking procedures.

-----------------------Start of change 1---
[bookmark: _Toc479351286][bookmark: _Toc536649158][bookmark: _Toc406425241][bookmark: _Toc408583326][bookmark: _Toc408583770][bookmark: _Toc430356615][bookmark: _Toc436599823]7	Possible Solutions for oneM2M and Modbus Interworking
This clause studies the possible solutions to realize oneM2M interworking with Modbus. Modbus-based devices can interwork with oneM2M system by usage of IPE that deploys on ASN, MN and IN, such as Modbus-based device connects to MN by IPE on MN. Resource mapping based on Modbus data model and operational procedure will be studied. Semantic method will also be consided in the solution.

7.1 Exposure of Modbus Functions to the oneM2M System
[bookmark: _Toc529527313][bookmark: _Toc528335318][bookmark: _Toc525106160]7.1.1	Summary of Interworking Architecture for exposure of Modbus Functions
A Modbus-IPE that exposes Modbus Functions to the oneM2M System is responsible for the creation of oneM2M resources representing the exposed Modbus Functions on its Registrar CSE. A single Modbus-IPE may expose Modbus Functions provided by one or more Modbus devices to the oneM2M System. A high-level summary of the relationship of Modbus devices providing Modbus Functions to be exposed to the oneM2M System and the Modbus-IPE representing the exposed Modbus Functions is depicted in figure 7.1.1-1.
[image:]	Comment by Dale Seed1: I would re-draw this figure to show the Modbus-IPE as a separate box which encapsulates the oneM2M AE and Modbus Master boxes.
Figure 7.1.1-1 Exposure of Modbus Functions to the oneM2M System via Modbus-IPE

In the oneM2M System, Modbus devices are designed according to the oneM2M Smart Device Template (SDT) described in TS-0023. SDT offers a generic and flexible modeling structure for non-oneM2M devices including Modbus devices.
7.1.2 Registration
[bookmark: _Toc525106177][bookmark: _Toc528335335][bookmark: _Toc529527330]7.1.2.1 <AE> resource representing a Modbus-IPE
[bookmark: _Hlk20489341]The first step to support the Modbus interworking with the oneM2M System is to register a Modbus-IPE to its Registrar CSE as an <AE> resource. When the Modbus-IPE completes its registration with the Registrar CSE by initiating an <AE> Create request, an <AE> resource representing that Modbus-IPE is created as a result of the registration. This resource is a parent for <flexContainer> resource specializations representing Modbus devices connected to an associated Modbus Master. These devices are modelled using an SDT Device (details are described in the next section). Figure 7.1.2.1-1 shows an example resource tree structure of the Modbus_IPE <AE> resource. Modbus_IPE has a [deviceThermometer] as a child resource, which represents a thermometer Modbus device. 	Comment by Dale Seed: Suggest removing/moving this text since it seems out of place or perhaps not needed.	Comment by Bob Flynn: I second this. It made me wonder if we are talking about a second IPE, or something different.
Modbus_IPE IPE_AE
[[modbusMasterDevicedeviceThermometer]]
<subscriptions>
0..n
10..n

Figure 7.1.2.1-1 <AE> resource representing a Modbus-IPE

[modbusMasterDevice]
containerDefinition
creator
ontologyRef
[modbusSlaveSubDevice]
0..1
0..1
0..n*
1
0..n*
<subscriptions>

7.1.2.2 deviceThermometer as a <flexContainer> resource specialization representing a Modbus Device
Modbus devices shall be modelled as SDT Devices. Mapping of the SDT Device model to oneM2M resources is performed according to the general mapping procedure described in clause 6.2.2 of TS-0023. A SDT Device component is mapped to a specialization of a <flexContainer> resource with an associated 'DeviceClass ID' (e.g. "org.onem2m.home.device.tv") containerDefinition attribute.

Figure 7.1.2.2-1 shows an example of a Modbus device:[deviceThermometer], which is modelled as a <flexContainer> resource specialization derived from the corresponding SDT Device component. The model of [deviceThermometer] follows the schema described in clause 5.5.45 of TS-0023.
[image:]
Figure 7.1.2.2-1 [deviceThermometer] resource representing a Modbus Slave

[modbusSlaveSubDevice]
containerDefinition
creator
ontologyRef
[deviceInfo]
slaveID
0..1
0..1
1
1
0..n*
0..n*
0..n*
0..n*
0..n*
[discreteInputModule]
1
[coilModule]
[holdingRegisterModule]
[inputRegisterModule]
<subscriptions>

7.1.2.3 Defining SDT DataPoints based on a Modbus device’s register information
In order to enable interworking, a mapping between a Modbus device’s registers and SDT DataPoints is defined. Every Modbus register has the following properties: slave id, register type, address, length. The information of these registers are typically provided by a manufacturer in a device’s datasheet. Register type and length are used to define the following SDT DataPoint attributes: DataType, writable and readable. The rules to perform the mapping are shown in Table 7.1.2.3-1. A holding register and input register of length 2 can be mapped into either xs:integer or xs:float DataType depending on data context. As an example mapping, a coil register can be mapped to a DataPoint with DataType (xs:boolean), Redable (True), and Writable (True). 	Comment by Dale Seed: Should be a table not a figure
This information can be stored in an optional attribute called nodnProperties of the <flexContainer> specialization.
Table 7.1.2.3-1 Mapping between Modbus register types and SDT Data points
	Modbus Register
	Mapping
	SDT Data points

	Modbus register type
	Length
	
	DataType
	Readable
	Writable

	Coil (1 bit, Read-Write)
	1 (1 bit)
	
	xs:boolean
	True
	True

	Discrete Input (1 bit, Read-Only)
	1 (1 bit)
	
	xs:boolean
	True
	False

	Holding Register (16-bit, Read-Write)
	2 (4 bytes)
	
	xs:integer / xs:float
	True
	True

	Input Register (16-bit, Read-Only)
	2 (4 bytes)
	
	xs:integer / xs:float
	True
	False

	Holding Register (16-bit, Read-Write)
	1 (2 bytes)
	
	xs:integer
	True
	True

	Input Register (16-bit, Read-Only)
	1 (2 bytes)
	
	xs:integer
	True
	False

	Holding Register (16-bit, Read-Write)
	4 (8 bytes)
	
	xs:double
	True
	True

	Input Register (16-bit, Read-Only)
	4 (8 bytes)
	
	xs:double
	True
	False

	Comment by Dale Seed: This should be labelled a table not a figure
7.1.2.4 Temperature as a <flexContainer> resource specialization representing an SDT Module for a Modbus device
Depending on the functionalities of a target Modbus device, one or more ModuleClasses, which are generic ModuleClasses, defined in TS-0023 can be used to design a ModuleClass for the target Modbus device. The derived ModuleClass describes all functional capabilities of the target Mobus device.
For the [deviceThermometer] example described in clause 7.1.2.2, two ModuleClasses, Temperature (see clause 5.3.76 in TS-0023) and Battery (see clause 5.3.10 in TS-0023), can be used. DataPoints of a parent ModuleClass (in this example Thermometer) are created according to the mapping rule described in clause 7.1.2.3. The child ModuleClasses (in this case Temperature and Battery) inherit from those generic ModulesClasses.

ModuleClass is mapped into <flexContainer> resource specialization, for example Temperature, and its data points are mapped into customAttributes of that <flexContainer> resource specialization. However, those ModuleClasses do not consider interworking options with a non-oneM2M Device Nodes (noDN) such as Modbus devices. For that reason, a nodnProperties is added as customAttribute of a <flexContainer> resource which is mapped from an associated ModuleClass model.
The nodnProperties attribute stores one-to-one mappings in serialized string format (e.g. JSON) between each DataPoint and a Modbus register from which it is created. nodnProperties contains slave id, register type, address, and length attributes for each DataPoint as well as a protocol type (in this case Modbus). An example content of nodnProperties is shown on Figure 7.1.2.4-1.

	Comment by 송재승: Is this right?

Figure 7.1.2.4-1 An example contents of noDNproperties{"currentTemperature": {
"slaveID": 1,
"registerType": "inputRegister", 	"address": "23",					"length": 2
},
"targetTemperature": {
"slaveID": 1
"registerType": "holdingRegister", 	"address": "25",					"length": 2
},
"unit": {…},
…
}

[bookmark: _Hlk20481941]<subscription> resources are created for receiving notifications on <flexContainer> resource updates and shall be of type blocking subscription, that is notificationEventType attribute shall have a value "G" (see clause 9.6.8 in TS-0001). The blocking type of <subscription> resource ensures that a notification reaches its destination and no other UPDATE or DELETE operations are processed until the UPDATE has completed. notificationContentType attribute shall be set to "all attributes" so that nodnProperties attribute of a parent <flexContainer> resource is included into notification message. A subset of attributes of the subscribed-to resource that are triggering a notification when modified can be specified in the attribute tag of the notificationEventCriteria attribute.	Comment by Bob Flynn: It is also important to specify the notificationContent should be the full resource, because you want the ‘nodnProperties’ delivered.
[image:]Figure 7.1.2.4-2 shows an example of a Module, the specialization for Temperature ModuleClass, which is a <flexContainer> resource specialization derived from a corresponding SDT Module component. Here it is assumed that DataPoints of the [Temperature] resource specialization are derived as a result of the mapping procedures described in clause 7.1.2.3 and DataPoints are obtained as in clause 5.3.76 of TS-0023. nodnProperties [customAttribute] is added to support Modbus interworking.

[discreteInputModule]
containerDefinition
creator
ontologyRef
<subscriptions>
0..1
0..1
1
1
1
address
value
[read]
0..1
0..*n
[coilModule]
containerDefinition
creator
ontologyRef
[write]
<subscriptions>
0..1
0..1
1
1
1
address
value
[read]
0..1
0..1
0..*n
[holdingRegisterModule]
containerDefinition
creator
ontologyRef
[write]
<subscriptions>
0..1
0..1
1
1
1
address
value
[read]
0..1
0..1
0..n*

[inputRegisterModule]
containerDefinition
creator
ontologyRef
<subscriptions>
0..1
0..1
1
1
1
address
value
[read]
0..1
0..n*

[write]
containerDefinition
creator
ontologyRef
<subscriptions>
0..1
0..1
1
1
value
quantity
1
0..*

[read]
containerDefinition
creator
ontologyRef
<subscriptions>
0..1
0..1
0..*
1
1

quantity

[bookmark: _Hlk19157113]Figure 7.1.2.4-2 [Temperature] as a <flexContainer> resource specialization representing an SDT Module for Modbus device

7.1.2.5 Modbus device registration call flow
Figure 7.1.2.5-1 shows the device registration call flow.
1. Modbus IPE sends a Create <AE> request to a Hosting CSE to register the Modbus-IPE (see clause 7.4.5.2.1 in TS-0004). The request must specify App-ID and requestReachabily attributes of the to be created <AE> resource. Other <AE> attribtes are optional.
2. After verifying the privileges and the given attributes, the Hosting CSE creates the <AE> resource.
3. Hosting CSE responds with the successful result of <AE> resource creation, otherwise it responds with an error.
4. Modbus devices are registered at Modbus IPE, in particular Modbus interworking information (slave id, registers type, address, length) are defined in accordance with provided device datasheet.
5.
6. Modbus IPE sends corresponding requests to a CSE to create resources as described in sections 7.1.2.1 - 7.1.2.3. For all <flexContainer> resources, the containerDefinition attribute is mandatory. The contentSize attribute is calculated by Hosting CSE. CustomAttributes must be specified if they are mandatory for that <flexContainer>. Each resource creation is originated by Modbus-IPE in a separate request for each resource.
For the presented above thermometer example, [deviceThermometer], [temperature] and [battery] as child resources of [deviceThermometer], and <subscription> resources for [temperature] and [battery] shall be created.
7. After verifying the privileges and the given attributes, the Hosting CSE creates each resource.
8. [image:]Hosting CSE responds with the successful result for each created resource, otherwise it responds with an error.
 Figure 7.1.2.5-1 Device registration call flow

[bookmark: _Hlk9431650]
7.1.3 Retrieve data from a Modbus device
Suppose a scenario when current readings of a Modbus device need to be displayed at an AE application and Modbus-IPE continuously monitors a Modbus device and uploads that data to a CSE hosted on a server in the network. Inititially, AE shall be subscribed to the <flexContainer> resource, which is a specialization of some SDT module for a Modbus device (e.g. Temperature, see clause 7.1.2.4), using a <subscription> resource (notificationEventType A, see clause 9.6.8 in TS-0001). The following steps described in the Figure 7.1.3-1 shall be performed for this scenario:	Comment by Dale Seed1: This text is confusing. Suggest rewording to better clarify.

1. [bookmark: _Hlk22079231]Modbus IPE sends a retrieve <flexContainer> request to a hosting CSE. This <flexContainer> resource is a specialization of some Modbus module and contains nodnProperties attribute.

2. Hosting CSE responds to the retrieve request with <flexContainer> data that includes nodnProperties.

3. Modbus IPE uses information stored in nodnProperties to compose Modbus read request. The function code can be identified from a register type as in the Table 7.1.3-1. Slave id, address and length should written in correspong message fields. After theModbus message is composed, the Modbus IPE sends this message to Modbus device.

Table 7.1.3-1 Register type to function code mapping for Modbus read request
	Register type
	Function code

	Coil
	01

	Discrete input
	02

	Holding register
	03

	Input register
	04

4. Modbus device responds with requested data. 	Comment by Dale Seed1: Regarding my comment above about rewording sentence int his clause. I would suggest mentioning that the ADN-AE subscribes to the <flexContainer> resource.

5. Modbus IPE sends an update <flexContainer> request (see clause 7.4.37.2.3 in TS-0004). The request body specifies the customAttributes to be updated and their new values read from Modbus device.

6. After verifying the privileges and the given attributes, the hosting CSE updates <flexContainer> resource.

7. The hosting CSE responds with updated <flexContainer> data after successful update to Modbus IPE, otherwise it responds with an error.

8. The hosting CSE sends a notification for <flexContainer> resource update to the AE (see clause 7.5.1.2.2 in TS-0004).	Comment by Bob Flynn: This logic is inverted. The IPE should have the blocking subscription.

9. [image:]The AE sends a confirmation message about notification receiving to the hosting CSE (see clause 7.5.1.2.2 in TS-0004).
10. [bookmark: _Hlk22079334]	Comment by Dale Seed1: I don’t think an Update request is needed. The blocking subscription functionality supports returning a notification response which the hosting CSE can use.

11. 	Comment by 송재승: Where do we have description for local processing about “Update flexContainer”? Typically those boxes are also considered as an independent step. Please check this and add step for “Update flexContainer”. If other specs are not counting such box as an independent step, please add description for “Update flexContainer” to Step 4. Please do the same for other procedures in this contribution. 	Comment by Sherzod: This is generic CRUD procedure defined in TS-0004. I added references to all generic procedures.

12.
13.

Figure 7.1.3-1 Modus Slave Device monitoring call flow

7.1.4 Write data to a Modbus Slave device
Suppose a scenario when it is required to update some value in a Modbus device through an AE application registered to a CSE. Inititially, the Modbus-IPE shall be subscribed to the <flexContainer> resource, which is a specialization of some SDT module for a Modbus device (e.g. Temperature, see clause 7.1.2.4), using a blocking type of <subscription> resource (notificationEventType G, see clause 9.6.8 in TS-0001). The following steps described in the Figure 7.1.4-1 shall be performed for this scenario:	Comment by Dale Seed1: Suggets rewording this sentence since it is not clearly written. E.g. clarify that Modbus IPE has a blocking subscription to the <flexContainer> resource. See TS-0001 and TS-0004 for more info on what a blocking subscription is.
1. [bookmark: _Hlk22077326][bookmark: _Hlk22078149][bookmark: _Hlk22078049]	Comment by Dale Seed1: I don’t think retrieve should be used. Instead I think nodnProperties is included in the notification.
2.
3. [bookmark: _Hlk25538676][bookmark: _Hlk22079555][bookmark: _Hlk25538460][bookmark: _Hlk22079389][bookmark: _Hlk22079430][bookmark: _Hlk25538599] In order to write data to a Modbus device from an AE, the AE sends a request to update specified customAttributes of the <flexContainer> resource which map to the Modbus Device (see clause 7.4.37.2.3 in TS-0004).	Comment by Bob Flynn: This does not happen yet. We should talk

4. After verifying the privileges and the given attributes, the hosting CSE sends a notification for the received write request to the Modbus IPE (notification includes nodnProperties) and temporarily blocks the <flexContainer> resource for any UPDATE operations (see clause 7.5.1.2.2 in TS-0004).

5. Modbus IPE uses information stored in nodnProperties to compose Modbus write request. The function code to be used can be identified from a register type and length as in the Table 7.1.4-1. Slave id, address, and length should written in corresponding message fields. After Modbus message is composed Modbus IPE sends this message to Modbus device.

Table 7.1.4-1 Register type and length to function code mapping for Modbus write request

	[bookmark: _Hlk22078099]Register type
	Length > 1
	Function code

	Coil
	false
	05

	Coil
	true
	0F

	Holding register
	false
	06

	Holding register
	true
	10

6. Modbus device responds with written data to Modbus IPE.

7. Modbus IPE responds to the hosting CSE with successful device update message, otherwise responds with an error (see clause 7.5.1.2.2 in TS-0004).

8. If the device was updated successfully, the hosting CSE updates the <flexContainer> resource internally, otherwise discards the changes. The resource is unlocked for UPDATE operations.

9. [image:]The hosting CSE responds to AE with the result of UPDATE request.
[bookmark: _Hlk25538657]	Comment by Dale Seed: Labels for tables should go above (not under) tables.

 Figure 7.1.4-1 Writing to a Modbus Slave Device call flow

6.2.x	Key Issues on oneM2M platforms discovery and local service provisioning

1)
2)

1)
-----------------------End of change 1 ---
-----------------------Start of change 2 ---
[bookmark: _Toc536649165]

·
·
·
·
·
·
·
·
·
·

[image:]
Figure 8.x.3-1: Procedure for creating a new platform description record to the <platformRegistry> resource

-----------------------End of change 12 ---
-----------------------Start of change 22 ---

[bookmark: _Toc498426204][bookmark: _Toc498611262][bookmark: _Toc498611382][bookmark: _Toc498615337][bookmark: _Toc503252054]X	Conclusion
This TR investigates a mechanism how the oneM2M applications can access to the data stored in modbus device via an interworking proxy. After an indepth analysis on the Modbus protocol, an interworking mechanism via interworking proxy using SDT 4.0 and flexcontainer. In particular, nodnProperties is introduced as customAttribute of a flexContainer resource which is mapped from an associated Modbus ModuleClass model.
As the proposed interworking mechanism in this TR provides a proper solution for Modbus interworking, it is recommended to develop a normative standalone TS for supporting Modbus interworking based on the proposed mechanism.
-----------------------End of change 22 ---

© 2015 oneM2M Partners																							Page 1 (of 2)
image1.emf
Resource instances representing

exposed Modbus functions

CSE hosting interworking functionality

Mca

Modbus-IPE

Create & manage

oneM2M resources &

exposed Modbus

functions

Initiate discovery &

execution of Modbus

functions

oneM2M AE

Modbus

device 1

Modbus

device 2

Modbus

device 3

Modbus device(s)

Modbus

Modbus

Master

image2.png
modbusMasterDevice

* subDevice: modbusSlave

modbusSlave

image3.svg
 modbusMasterDevice * subDevice: modbusSlave modbusSlave 0..*

image4.png
[deviceThermometer]

e
\

containerDefinition

o
N

ontologyRef

—_

contentSize

o
N

N YN)

o

nodeLink
0..1
[modbusTemperature]
0..1
[modbusBattery]
0..n o
<subscription>

image5.svg
 [deviceThermometer] containerDefinition 1 ontologyRef 0..1 contentSize 1 nodeLink 0..1 [modbusTemperature] 0..1 [modbusBattery] 0..1 <subscription> 0..n

image6.png
[deviceThermometer]

e
L

containerDefinition

e
N

ontologyRef

—_

contentSize

e
N

N YN)

o

nodelink
0.1
[temperature]
0.1
[battery]
0.n Lo
<subscription>

image7.svg
 [deviceThermometer] containerDefinition 1 ontologyRef 0..1 contentSize 1 nodeLink 0..1 [temperature] 0..1 [battery] 0..1 <subscription> 0..n

image40.png
[deviceThermometer]

e
\

containerDefinition

o
N

ontologyRef

—_

contentSize

o
N

N YN)

o

nodeLink
0..1
[modbusTemperature]
0..1
[modbusBattery]
0..n o
<subscription>

image50.svg
 [deviceThermometer] containerDefinition 1 ontologyRef 0..1 contentSize 1 nodeLink 0..1 [modbusTemperature] 0..1 [modbusBattery] 0..1 <subscription> 0..n

image60.png
[deviceThermometer]

e
L

containerDefinition

e
N

ontologyRef

—_

contentSize

e
N

N YN)

o

nodelink
0.1
[temperature]
0.1
[battery]
0.n Lo
<subscription>

image70.svg
 [deviceThermometer] containerDefinition 1 ontologyRef 0..1 contentSize 1 nodeLink 0..1 [temperature] 0..1 [battery] 0..1 <subscription> 0..n

image8.png
modbusSlave - coil

-slavelD: int

* module: coil discretelnput
0.*
* module: discretelnput

0 |—) holdingRegister

* module: holdingRegiste

0.r*
* module: inputRegister

Y

inputRegister

image9.svg
 modbusSlave - slaveID: int * module: coil * module: discreteInput * module: holdingRegister * module: inputRegister coil discreteInput holdingRegister inputRegister 0..* 0..* 0..* 0..*

image10.png
[temperature]

NN N N N N N N N

1 (containerDefinition
0.1 (ontologyRef

1 (contentSize

! (currentTemperature
0.1 (targetTemperature
0..1 (unit
0..1 (minValue
0.1 (maxValue
0.1 (stepValue
0.1 (nodnProperties
0..n

<subscription>

image11.svg
 [temperature] containerDefinition 1 ontologyRef 0..1 contentSize 1 currentTemperature 1 targetTemperature 0..1 unit 0..1 minValue 0..1 maxValue 0..1 stepValue 0..1 nodnProperties 0..1 <subscription> 0..n

image12.png
holdingRegister

read

- address: string
- value: 16-bit string
* action: read

* action: write

- quantity: int

write

- value: 16-bit string

- quantity: int

image13.svg
 holdingRegister - address: string - value: 16-bit string * action: read * action: write 1 1 read - quantity: int write - value: 16-bit string - quantity: int

image14.png
discretelnput

- address: string
- value: boolean

* action: read

read

- quantity: int

image15.svg
 discreteInput - address: string - value: boolean * action: read 1 read - quantity: int

image16.png
coil

- address: string
- value: boolean
* action: read

* action: write

read

- quantity: int

write

- value: 16-bit string

- quantity: int

image17.svg
 coil - address: string - value: boolean * action: read * action: write 1 read - quantity: int write - value: 16-bit string - quantity: int 1

image18.png
inputRegister

- address: string
- value: 16-bit string

* action: read

read

- quantity: int

image19.svg
 inputRegister - address: string - value: 16-bit string * action: read 1 read - quantity: int

image20.png
IPE_AE

device_1_cnt

coil_r_cnt

coil_rw_cnt

register_r_cnt

register_rw_cnt

subscription

pollingChannel

I_ pollingChannel

URI

image21.png
Modbus device

2. Device registration

Modbus IPE oneM2M CSE
1. Modbus master registration /
Create <AE> >
Create <AE>
le Create <AE> response
» :
3. Create device resources N

Create device
resources

Create device resources response

image22.png
Modbus IPE oneM2M CSE

1. Modbus master registration /
Create <AE>

A
y

2. Create <AE>

3. Create <AE> response

4. Add device
information

5. Create device resources

N
7>

6. Create device
resources

7. Create device resources response

A

image23.svg

image24.png
Modbus device

3. Retrieve data request

CSE

A

4. Response with data

IPE
1. Retrieve <flexContainer> request
to get nodnProperties
2. Response with <flexContainer> data
&
Y
5

. Update <flexContainer> request with read data‘

A

rd

AE

<flexCo

6. Update
ntainer>

7. Response for <flexContainer> update

8. Notification with new data in <flexContainer>

&
<

9. Confirmation of receiving notification

r g

image25.svg

image26.png
Modbus device

Modbus IPE

1. Retrieve <flexContainer>request

to get propModbusDetails

CSE

2. Retrieve data request

A

3. Response with data

4. Update <flexContainer>request with read dalaL

rd

ADN-AE

Updat

flexContainer

e

5. Notification with new data in <flexContainer>

6. Confirmation of receiving notification

&
<

image27.svg

image28.png
Modbus device

3. Data retrieve request

Modbus IPE CSE

A

ADN-AE

1. Data retrieve request

A

2. Notification with request data

A

4. Data retrieve response

Y

5. Update register resource with read value

6. Notification with read value

Y

image29.svg
 Modbus device Modbus IPE CSE 3. Data retrieve request ADN-AE 1. Data retrieve request 5. Update register resource with read value 4. Data retrieve response 6. Notification with read value 2. Notification with request data

image30.png
Modbus device

AE

IPE CSE
< 1. Update attribute of <flexContainer>
| 2. Notification with value to be written
<
P 3. Write new value to a register
<
4. Responds with data written N
i 5. Response for successful device update
>
6. Update
<flexContainer>
7. Response for <flexContainer> update

image31.svg

image32.png
Modbus device

3. Write new value to a register

ADN-AE

1. Update attribute of <flexContainer>

A

4. Responds with data written

6. Notification with successful write

Modbus IPE CSE
<
Update
<flexContainer>
_ 2. Notification with value to be written
5. Update <flexContainer>resource
indicating successful write
Update
<flexContainer>
<

7. Confirmation of receiving notification

image33.svg

image34.png
PDU | Logical
Address | address
Decimal) | (Decimal)

1 40012

i%

0001
001

=
]

2400, 4800, 9600,
19200, 38400, 57600

40013

g

16-bit Integer

16-bit Integer

1=£81, 2=081, 3-N81

1= MSW, LSW
2= LSW, MSW

32-bit Float

4 bytes UTF-8

6-bit Integer

1
001
001
0001

===l 5] =] =
gl gl &
III - :
2 8] B

=

16-bit Integer

64 bytes UTF-8

teracomsystems.com

32-bit Float

-9.9(0xC11E6666)

image35.png
Modbus device

Modbus IPE

oneM2M CSE

1. Data retreive request

2. Response with measured data

3. Create <contentinstance> request

AE

Create
<contentinstance>

4. Create <contentinstance> response

5. Notification with measured data

image36.emf

001: Initiating publication of platform to
target CSE

002: Local Processing
(Prepare a request message to add its platform description to the target
CSE. The message is comprised of the point of contact, access tocken,
supporting services and supporting oneM2M features such as edge,
multicast)

AE or Remote CSE

Originator for
CREATE/UPDATE

Local or Remote CSE Remote CSE

Hosting CSE Target CSE

003: Add request for a new platform
description record to be added in the
<platformRegistry> resource

004: Local Processing
(CSE add the description of the
received platform to the
<platformRegistry> resource)

005: Response
006: Response

001: Initiating publication of platform to

target CSE

002: Local Processing

(Prepare a requestmessagetoadditsplatformdescriptiontothetarget

CSE.The message is comprised of the point of contact, access tocken,

supporting services and supporting oneM2M features such as edge,

multicast)

AE or Remote CSE

Originator for

CREATE/UPDATE

Local or Remote CSE

Remote CSE

Hosting CSE

TargetCSE

003: Add request for a new platform

description record to be added in the

<platformRegistry> resource

004: Local Processing

(CSE add the description of the

received platform to the

<platformRegistry> resource)

005: Response

006: Response

image360.emf

001: Initiating publication of platform to
target CSE

002: Local Processing
(Prepare a request message to add its platform description to the target
CSE. The message is comprised of the point of contact, access tocken,
supporting services and supporting oneM2M features such as edge,
multicast)

AE or Remote CSE

Originator for
CREATE/UPDATE

Local or Remote CSE Remote CSE

Hosting CSE Target CSE

003: Add request for a new platform
description record to be added in the
<platformRegistry> resource

004: Local Processing
(CSE add the description of the
received platform to the
<platformRegistry> resource)

005: Response
006: Response

001: Initiating publication of platform to

target CSE

002: Local Processing

(Prepare a requestmessagetoadditsplatformdescriptiontothetarget

CSE.The message is comprised of the point of contact, access tocken,

supporting services and supporting oneM2M features such as edge,

multicast)

AE or Remote CSE

Originator for

CREATE/UPDATE

Local or Remote CSE

Remote CSE

Hosting CSE

TargetCSE

003: Add request for a new platform

description record to be added in the

<platformRegistry> resource

004: Local Processing

(CSE add the description of the

received platform to the

<platformRegistry> resource)

005: Response

006: Response

