Doc# oneM2M-Template-InputContribution.doc

n
	Input Contribution

	Meeting ID*
	SDS#46

	Title:*
	SDS-2020-0212-Interworking_SensorThingsAPI_update

	Source:*
	Ingo Friese, Deutsche Telekom AG, Ingo.Friese@telekom.de

	Date:*
	2020-07-15

	Input related to*
	WI-0100, TR-0065

	Intended purpose of

document:*
	 FORMCHECKBOX
 Decision

 FORMCHECKBOX
 Discussion

 Information

 Other <specify>

	Impacted other TS/TR(s)
	n/a

	Decision requested or recommendation:*
	Add this solution to TR-0065

	Template Version: January 2020 (do not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

Introduction
This contribution proposes to add a solution to oneM2M to SensorThingsAPI (STA) and vice versa

-----------------------Start of change 1---
6
Architecture Model

The basic interworking enables applications that are connected to an oneM2M-based system to get data from sensors that are connected to an OGC / SensorThingsAPI server. Furthermore an application that is connected to an OGC / SensorThingsAPI server should be able to get data from sensors that are connected to an oneM2M-based system.
6.1
Interworking via Mca Interface
The architectural setup followes the inter-working proxy model described in oneM2M TS‑0001 [1]. The inter-working proxy is a separate service between an OGC / SensorThingsAPI server and a oneM2M CSE.
[image: image1.png]=

Application
g Sensor Status
via oneM2M system

SensorThingsaPl
Inter-Working
proxy

oee/ e
SensorThings | A7 _[* 5
APl o >
Server | sroker
Backends

Sensors

Application
using Sensor Status.
via OGC/STA server

CSE

e D

e D

/>/>

Sensors Actuators

one.

Figure 1: Architecture model – SensorThingsAPI Inter-Working Proxy
6.1.1
Composition of the SensorThingsAPI IPE
The IPE consists of three modules. Towards the oneM2M-side the IPE implements an AE with Mca interface functionalities. An application can receive data from the IPE and forward data to the IPE using its interface to the hosting CSE.
Towards the OGC/SensorThingsAPI side the IPE implements a sensor interface pushing data via HTTP to the OGC / SensorThingsAPI server.

Since OGC / SensorThingsAPI does not have a publish / subscribe mechanism on HTTP level an MQTT-Borker is used to publish events that are pushed to the OGC / SensorThingsAPI server. The IPE subscribes to the MQTT-Broker in order to get data from the OGC / SensorThingsAPI server.

[image: image2.png]SensorThingsaP!
Sensor

SensorThingsaP!
Application

oneM2m
AE

Figure 2: Composition of SensorThingsAPI IPE
7
Architecture Aspects

7.1
Gateway startup

The operation of the IPE requires registration and mapping beforehand at both, CSE and OGC / SensorThingsAPI server:

· Register the IPE as AE at Hosting CSE

· Subscribe to selected <Thing> at MQTT-broker at OGC / SensorThingsAPI server

· Create <Thing> and <Datastream> at OGC / SensorThingsAPI server
7.1.1
IPE registration

The AE representing the IPE needs to be created at the Hosting CSE. Applications can use this entity to get data from the IPE. Figure 3 show the IPE registration call flow.
1. The IPE requests to create an <AE> resource on the Hosting CSE
2. The Hosting CSE evaluates the request, performs the appropriate checks, and creates the <AE> resource.
3. Hosting CSE responds with the successful result of <AE> resource creation, otherwise it responds with an error.
4. The IPE needs to create a <Container> structure inside the <AE> in order to organize the data. The structure of containers depends on application needs.It’s recommended to have at least one <Container> for each direction per sensor or group of sensors or backend.
5. The Hosting CSE evaluates the requests, performs the appropriate checks, and creates the <Container> resources.
6. Hosting CSE responds with the successful result of <Container> resource creation, otherwise it responds with an error.
7. The IPE creates a <Subscription> to those containers that are used for the-oneM2M-to-OCG/STA direction. This way incoming data from a oneM2M-based sensor are forwarded to the IPE.

8. The Hosting CSE evaluates the requests, performs the appropriate checks, and creates the <Subscription> resources.
9. Hosting CSE responds with the successful result of <Subscription> resource creation, otherwise it responds with an error.
The <point of access> (poa) of the <AE> entity points to the IPE. The IPE should be created along with a login or access token. This ensures that only requests from the entitled Hosting CSE are forwarded through the gateway.
[image: image3.png]Recelver

STAIPE (Hosting CSE)

001: Create <AE>

003: Create <A response

004; Create <Contalner>
e S

05 Create <Cantalnar

006: Create <Contalner> response

o8 create ssubserpton>

009: Create <Subscription response
—

Figure 3: IPE Registartion call flow
7.1.2
Subscription to MQTT Broker

At current OGC / SensorThingsAPI specification [i..1] there is no publish / subscribe mechanism on HTTP. The protocol gateway needs to subscribe to the MQTT-Broker where all new <observations> of the OGC / SensorThingsAPI server are published.
 According to the ISO 19156 data model an <observation> is published in a <DataStream> belonging to a <Thing>. The IPE service subscribes to datastreams of things that are of interest for being forwarded to the oneM2M side. The desired <things> and their regarded <datastreams> might be discovered in an initial startup of the IPE and/or updated on a regular base.

For the OGC /STA server the IPE is an application that want to be informed about new observations via MQTT.

7.1.3
Preconfiguration of the OGC / STA Server

A OGC / SensorThingsAPI sensor pushes its sensor data as <Observations> to the server. Before <Observations> can be received and stored according to the ISO 19156 data model a <Thing> and a associated <DataStream> have to be created. The <DataStream> gets an id back (e.g. “DataStream”:{“@iot.id:3635353”}) from the OGC / STA server. This id is needed to send the <Observations> to the OGC / STA Server.

For the OGC /STA server the gateway is a sensor that uploads data via MQTT or HTTP.

7.2
Data Mapping

The goal of the interworking is to transmit data, like sensor values from a oneM2M infrastructure to a OGC / SensorThingsAPI infrastructure and vice versa. But the IPE is not able to transfer the complete feature set of one system to the other.

There are different types of data entities in the ISO 19156 data model. The present document focuses mainly on <Observation> because the goal is to exchange data or measurements of an observed property.

There are three types of data fields that needs to be mapped:

· Data value

· Time stamp

· Reference to the source system (optional, when additional data are needed later on)

The mapping can be done in different ways:

1. The complete STA <Observation> can be copied in the <content> field of a oneM2M <ContentInstance>. On the other direction the complete <content> field of the <ContentInstance> can be copied into the <result> field of an <Observation>.

2. Dedicated attributes of a <ContentInstance> are used to create an <Observation> and vice versa.

· oneM2M-to-OGC/STA mapping
In order to build an STA <Observation> that is accepted by a STA server it needs at least, a <result> attribute and a <DataStream> attribute.

The <DataStream> is an id that was assigned during the preconfiguration (see 7.1.3).

The <result> attribute of the <Observation> should be filled with the <content> of an incoming oneM2M <ContentInstance>.

The <creationTime> of the <ContentInstance> may be copied to <resultTime> of the <Observation>.

Sometimes it is necessary to have a reference back to the oneM2M system. So the gateway service may map <resourceID> of the <ContentInstance> to the <Observation>. This is not possible directly, because there is no adequate attribute in the <Observation> entity. But the the ISO 19156 data model allows for an additional entity called <FeatureOfOInterest> that can be related to one or many <observations>. Here the attributes <properties> allows for further user-annotated key-value pairs. Here the attribute key <m2m:ID> should mapped with the <resourceID> of the incoming oneM2M CIN.
· OGC/STA-to-oneM2M mapping:

The <result> attribute of the <Observation> should be copied to the <content> of an outgoing oneM2M <ContentInstance>.

When the <resultTime> of the STA <Observation> is not null it may copied to the <creationTime> of the <ContentInstance>.
When the <resultTime> of the STA <Observation> is null the <phenomenonTime> should be copied to the <creationTime> of the <ContentInstance>.

The <@iot.selfLink> of an STA <Observatiom> is a URL of the original data residing on OGC/STA server side. The link is a reference when additional elements of the OGC-data model are need afterwards. In this case the <@iot.selfLink> should be an <contentReference> attribute of the outgoing <ContentInstance>.

Table 1: Attribute Mapping between STA and oneM2M

	Attribute Name in
oneM2M
	Attribute Name in
SensorThingsAPI
	Attribute Format in SensorThingsAPI
	Mapping
Direction

	creationTime
	resultTime
	ISO 8601 time string
-could be null-
	both

	lastModifiedTime
	phenomenonTime
	ISO 8601 Time string or Time Interval string
	both

	content
	result
	any
	both

	contentReference
	@iot.selfLink
	URL
	STA to oneM2M

	resourceID
	properties / m2m:ID
	Character / String
	oneM2M to STA

-----------------------End of change 1---
© 2020 oneM2M Partners

Page 1 (of 2)

