	Doc# SDS-2025-0030-correction_in_accessControlObjectDetails_TS-0003_R3
Change Request
	[image: oneM2M-Logo]

	

[bookmark: GSBox]
	[bookmark: _Toc338862360]CHANGE REQUEST

	Meeting ID:*
	 SDS #68

	Source:*
	Mohd Uvaish Siddiqui, C-DOT, uvaish@cdot.in
Prateek Varshney, C-DOT, prateekv@cdot.in
Poornima Shandilya, C-DOT, poornima@cdot.in
Anupama Chopra, C-DOT, anupama@cdot.in

	Date:*
	2025-02-13

	Reason for Change/s:*
	TS-0003 – accessControlObjectDetails handling in <accessControlPolicy> resource

	CR against: Release*
	Release 3

	CR against: WI*
	|_| Active WI-xxxx
|X| MNT maintenance / < Work Item number(optional)>
Is this a mirror CR? Yes |_| No |_|
mirror CR number: (Note to Rapporteur - use latest agreed revision)
|_| STE Small Technical Enhancements / < Work Item number (optional)>
Only ONE of the above shall be ticked

	CR against: TS/TR*
	TS-0003 v3.17.1

	Clauses *
	7.1.5

	Type of change: *
	|_| Editorial change
|_| Bug Fix or Correction
|X| Change to existing feature or functionality
|_| New feature or functionality
Only ONE of the above shall be ticked

	Impacted other TS/TR(s)
	TS-0001

	Post Freeze checking:*
	This CR contains only essential changes and corrections? YES |X| NO |_|
This CR may break backwards compatibility with the last approved version of the TS? YES |_| NO |X|

	Template Version: January 2017 (Do not modify)

oneM2M Notice
The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.
[bookmark: _Toc300919386][bookmark: _Toc338862363]
GUIDELINES for Change Requests:
Provide an informative introduction containing the problem(s) being solved, and a summary list of proposals.
Each CR should contain changes related to only one particular issue/problem.
In case of a correction, and the change apply to previous releases, a separate “mirror CR” should be posted at the same time of this CR
Mirror CR: applies only when the text, including clause numbering are exactly the same.
Companion CR: applies when the change means the same but the baselines differ in some way (e.g. clause number).
Follow the principle of completeness, where all changes related to the issue or problem within a deliverable are simultaneously proposed to be made E.g. A change impacting 5 tables should not only include a proposal to change only 3 tables. Includes any changes to references, definitions, and acronyms in the same deliverable.
Follow the drafting rules.
All pictures must be editable.
Check spelling and grammar to the extent practicable.
Use Change bars for modifications.
The change should include the current and surrounding clauses to clearly show where a change is located and to provide technical context of the proposed change. Additions of complete clauses need not show surrounding clauses as long as the proposed clause number clearly shows where the new clause is proposed to be located.
Multiple changes in a single CR shall be clearly separated by horizontal lines with embedded text such as, start of change 1, end of change 1, start of new clause, end of new clause.
When subsequent changes are made to content of a CR, then the accepted version should not show changes over changes. The accepted version of the CR should only show changes relative to the baseline approved text.

Introduction

In TS-0001 and TS-0004 for <mgmtObj> or <flexContainer> specializations, specializationType attribute is used while in TS-0003 specializationID or specializationType both words are used causing the inconsistency in the specs. Thus, the CR proposes to rename the specializationID parameter of accessControlObjectDetails of <accessControlPolicy> resource to specializationType for Release 3 and Release 4 of TS-0003 to maintain consistency.

********************** Start of Change 1 *****************************
[bookmark: _Toc105003104][bookmark: _Toc106723349][bookmark: _Toc140739083]7.1.5	Description of the Access Decision Algorithm
The reference access decision algorithm specified in this clause combines partial access control results obtained for each of the individual access control rules contained in a privileges or selfPrivileges attribute. Further, if multiple ACP instances are assigned to the protected resource, the reference access decision algorithm combines the partial access control results obtained for the individual ACPs of an ACP set.
The algorithm specified in this clause adopts a "Permit-overrides" combining algorithm with respect to access control rules and ACPs as defined in XACML [i.5]. This algorithm has the following behaviour:
1. If a decision is "Permit" for only a single access control rule included in the privileges (or selfPrivileges) attribute of a single ACP, the result is "Permit".
Otherwise, the result is "Deny".
The logic for evaluating a request against a privilege can be described mathematically as follows. A privileges or selfPrivileges attribute included in an <accessControlPolicy> resource represents a set of access control rules, acrs, which is built as in figure 7.1.5-1.

Figure 7.1.5-1: Logic to evaluate privileges in the reference access decision algorithm
The parameters associated with a request, which are evaluated against the parameters contained in the access control rules are specified in clause 7.1.3.
The access decision res_acrs defined in clause 7.1.4 is derived by evaluating whether or not the parameters associated with the request message listed in tables 7.1.2-1 and 7.1.2-2 match any of the access control rules contained in the access control rule set defined in clause 7.1.3 as follows:
	res_acrs = res_acr(1) OR res_acr(2) ... OR res_acr(k) … OR res_acr(K),
where res_acr(k) represents the logical evaluation result (i.e. TRUE/FALSE or 1/0) of the request parameters against the kth access control rule in the set acrs, which can be expressed as follows:
	res_acr(k) = res_authn(k) AND res_origs(k) AND res_ops(k) AND res_ctxts(k) AND res_objd(k), k = 1…K.
The first partial logical result variable res_authn(k) on the right side of above equation shall be evaluated according to Table 7.1.5-1:
Table 7.1.5-1: Evaluating res_authn(k)
	acr(k)_accessControlAuthenticationFlag
	rq_authn
	res_authn

	TRUE
	TRUE
	TRUE

	TRUE
	FALSE
	FALSE

	FALSE
	TRUE
	TRUE

	FALSE
	FALSE
	TRUE

The remaining 4 partial logical result variables on the right side of above equation can be defined by using the following set function:

	
With this definition:
	res_origs(k) = ismember(Originator, acr(k)_accessControlOriginators)
	res_ops(k) = ismember(Operation, acr(k)_ accessControlOperations)
In the above equation, the Originator variable refers to the authenticated identity of the originator of the request primitive which matches the From parameter.
The third partial logical result res_ctxts(k) is derived as follows:
	res_ctxts(k) = res_context(k, 1) ... OR res_context(k, m) ... OR res_context(k, M_k),
where:
	res_context(k, m) = res_time(k, m) AND res_ip(k, m) AND res_loc (k, m), k = 1…K, m = 1…M_k
and
	res_time(k, m) = ismember(rq_time, acr(k)_accessControlWindow(m))
	res_ip(k, m) = ismember(rq_ip, acr(k)_accessControlIpAddresses(m))
	res_loc (k, m) = ismember(rq_loc, acr(k)_accessControlLocationRegion(m))
The fourth partial logical result res_objd(k) applies to Create request primitives only and is derived as
	res_ objd(k) = res_ objdetails(k, 1) ... OR res_ objdetails(k, m) ... OR res_ objdetails(k, M_k),
where:
res_ objdetails(k, m) = res_resourceType(k, m) AND res_specializationType(k, m) AND res_childResource(k,m),
for m = 1…M_k. The three logical arguments are defined below.
For each given element acr(k)_accessControlObjectDetails(m) in an access control rule determine if the optional resourceType parameter is present
	resourceType = acr(k)_accessControlObjectDetails(m)/resourceType
Depending on the presence of resourceType, res_resourceType(k, m) is derived as

	
where targetResourceTypeID is the resource type identifier associated with the resource addressed in the To parameter of the Create request primitive.
If the value of the resourceType element is 13 (<mgmtObject> specialization) or 28 (<flexContainer> specialization>), the optional specializationType element shall also be included in accessControlObjectDetails:
	specializationType = acr(k)_accessControlObjectDetails(m)/specializationType
If specializationType is present, it shall be matched against the mgmtDefinition or containerDefinition attributes given in the Content parameter of the Create request primitive.

The childResourceType element is mandatory in any given accessControlObjectDetails element of an access control rule. It includes a list of j = 1…J child resource type identifiers to which the rule applies. The jth list element is denoted as follows
	childResourceType(k, m. j) = acr(k)_accessControlObjectDetails(m)/childResourceType(j), j = 1…J
The logical variable res_childResource(k, m) is derived as
	res_ childResource (k, m) = ismember(Resource Type, childResourceType(k, m, j))
where Resource Type refers to the value of the parameter of the given Create request primitive.
NOTE:	If resourceType and specializationType are not present in acr(k)_accessControlObjectDetails(m), res_ objdetails(k, m) = res_resourceType(k, m) AND res_specializationType(k, m) AND res_childResource(k,m) = res_childResource(k,m).
Thanks to the "Permit-overrides" combining approach, if the access control decision for one access control rule results in res_acr = TRUE, the reference access decision algorithm can stop without evaluating any other applicable access control rules of the current ACP or any other ACPs in the ACP set, and the final access decision is "Permit".

********************* End of Change 1 *********************************

© 2025 oneM2M Partners	 Page 4 (of 4)	

image1.emf
acrs = { acr(1),arc(2), …, arc(k), …, arc(K) }

acr(k) = {acr(k)_accessControlAuthenticationFlag,

acr(k)_accessControlOriginators, acr(k)_accessControlOperations, acr(k)_accessControlContexts, acr(k)_accessControlObjectDetails}

Set of originator parameters. Examples:

{CSE-ID1, AE-ID1, AE-ID2, Role-ID1}

{all}

Set of allowed operations. Examples:

{Create, Retrieve, Update, Delete, Discover, Notify}

{Retrieve, Discover, Notify}

Set (list) of M_k context constraints (number of elements M_k can be different

for each acr(k)):

{acr(k)_accessControlContext(k, 1), …

…, acr(k)_accessControlContext(k, m), …

…, acr(k)_accessControlContext(k, M_k)}

Set of context constraints consisting of the 3 elements:

{accessControlTimeWindow(k, m), accessControlLocationRegion(k,m), accessControlIpAddress(k, m)}

Set of time windows defined by start and end time

Example:

{daily 04:30 –06:00, 11:30 –12:30, 22:15 –00:30}

Set of location regions defined by list of objects

representing geographical regions

Example:

{geoRegion1, geoRegion2, geoRegion3}

Set of IP addresses or address blocks

Example (IPv4):

{212.75.201.105, 88.77.0.0/16, 116.27.123.0/24}

Set of child resource type Ids allowed to be created

under the target resource . Examples:

(a) Target resource type = 3 (container)

Child resource type = {4} (contentInstance)

(b) Target resource type = 2 (AE)

Child resource type = {3 23} (container

and subscription)

Set of child resource type Ids allowed to be created

under the target resource . Examples:

(a) Target resource type = 3 (container)

Child resource type = {4} (contentInstance)

(b) Target resource type = 2 (AE)

Child resource type = {3 23} (container

and subscription)

oleObject1.bin
Set of originator parameters. Examples:
{CSE-ID1, AE-ID1, AE-ID2, Role-ID1}
{all}

Set of child resource type Ids allowed to be created under the target resource . Examples:
(a) Target resource type = 3 (container)
 Child resource type = {4} (contentInstance)
(b) Target resource type = 2 (AE)
 Child resource type = {3 23} (container
 and subscription)

image2.wmf
î

í

ì

Î

=

else

0

or

FALSE

setX

if

1

or

TRUE

setX)

,

ismember(

x

x

oleObject2.bin

image3.wmf
ï

î

ï

í

ì

¹

=

=

urceTypeID

targetReso

pe

resourceTy

urceTypeID

targetReso

pe

resourceTy

m

k

acr

m

k

ceType

res_resour

and

present

if

0,

or

FALSE

and

present

if

1,

or

TRUE

)

tDetails(

ntrolObjec

)_accessCo

(

in

present

not

if

1,

or

TRUE

)

,

(

oleObject3.bin

image4.png

