Doc# SDS-2025-0046-overview_of_ROS.doc

	Input Contribution

	Meeting ID*
	SDS 69

	Title:*
	Overview of ROS

	Source:*
	SeungMyeong Jeong, KETI, sm.jeong@keti.re.kr
Seongyun Kim, KETI, seongyun.kim@keti.re.kr
Jieun Kim, KETI, jekim@keti.re.kr
Cheol-Min Kim, KETI, cmkim@keti.re.kr

	Date:*
	2025-03-31

	Input related to*
	TR-0079 oneM2M-ROS Interworking

	Intended purpose of

document:*
	 FORMCHECKBOX
 Decision

 FORMCHECKBOX
 Discussion

 Information

 Other <specify>

	Impacted other TS/TR(s)
	n/a

	Decision requested or recommendation:*
	Incorporate this input into the TR

	Template Version: January 2020 (do not modify)

oneM2M Notice

The document to which this cover statement is attached is submitted to oneM2M. Participation in, or attendance at, any activity of oneM2M, constitutes acceptance of and agreement to be bound by terms of the Working Procedures and the Partnership Agreement, including the Intellectual Property Rights (IPR) Principles Governing oneM2M Work found in Annex 1 of the Partnership Agreement.

Introduction
This input contribution provides the overview of ROS (Robot Operating System), which is clause 5 of the TR-0079 v0.0.1.
In R01:
· Replaced the figure 5.1.1-1
· Updated 5.1.3 use cases to have non-commercial and open source projects only

· Rephrased the title and the texts in 5.2.1 regarding ROS1
=== start of input 1 ===
5
Overview of ROS
5.1
ROS middleware
5.1.1
Core concepts and components

ROS (Robot Operating System) middleware serves as the communication backbone for distributed robotic systems, abstracting hardware complexities while enabling modular software development. ROS is not an international standard, but ROS2’s underlying middleware, DDS, complies with the OMG (Object Management Group) standard [i. 1]. Its design emphasizes flexibility, allowing integration with diverse hardware and software stacks.
Core components:
· Packages: The fundamental unit of ROS software organization. A package contains nodes, libraries, configuration files, and message/service definitions (e.g., sensor_msgs for standardized sensor data formats)
· Nodes: Nodes are lightweight, executable processes that perform specific tasks (e.g., sensor data processing, motor control). They communicate via topics or services, enabling decentralized computation
· Topics: Topics facilitate asynchronous, many-to-many communication through named channels. For example, a LiDAR node publishes point cloud data to /scan, which is consumed by mapping and obstacle detection nodes
· Services: Services enable synchronous, request-response interactions. A battery management node might expose a /get_battery_status service for periodic health checks
· Messages: Data structures defining content exchanged via topics or services. Message definitions (.msg files) are compiled into language-specific code during build time, ensuring type-safe communication.
[image: image1.emf]
Figure 5.1.1-1: ROS Service concept diagram [i.2]
5.1.2
Implementation structure
ROS middleware bridges high-level APIs and low-level communication protocols. Key technical elements include:
· RMW (ROS Middleware Interface): A language-agnostic abstraction layer that connects ROS to middleware implementations like DDS (Data Distribution Service). For example, rmw_fastrtps_cpp integrates ROS with Fast DDS.
· XML-RPC: In ROS1, XML-RPC (Extensible Markup Language Remote Procedure Call) was used as the primary protocol for communication between nodes and the centralized ROS Master. XML-RPC is a stateless, HTTP-based protocol that allows remote procedure calls encoded in XML to be transmitted over a network.
· DDS Integration: In ROS 2, Data Distribution Service (DDS) as an OMG standard provides real-time communication features such as:

· Automatic Discovery: Nodes self-register without centralized coordination.

· QoS Policies: Configurable parameters for reliability, latency, and security.
· Message Serialization: ROS messages are serialized using IDL (Interface Definition Language) for cross-language compatibility. For example, std_msgs/String maps to string data in C++/Python.
5.1.3
Use cases
ROS middleware is deployed in diverse domains:
· Autonomous Vehicles: The open-source Autoware.Auto project, built on ROS 2, planning (A* algorithm), and control modules. Its QoS policies ensure real-time obstacle detection even on unstable networks.
·
· Space Exploration: NASA’s VIPER lunar rover uses ROS 2’s fault-tolerant architecture to manage navigation and scientific payloads in extreme environments.
5.2
ROS1
5.2.1
Centralized architecture
ROS1 provides a centralized architecture centered around the ROS Master, a core component that is responsible for coordinating node discovery and communication routing. This design simplifies initial system setup and resource management, making it well-suited for prototypes and small-scale research applications.

The communication protocol in ROS1 utilizes XML-RPC for node registration and connection negotiation, complemented by TCP/UDP for message transport. XML-RPC was selected during ROS1’s development for its cross-language compatibility and ease of debugging. However, this protocol prioritizes simplicity over advanced functionality, omitting built-in support for dynamic QoS configurations.

In terms of operating system support, ROS1 was primarily optimized for Linux-based systems, reflecting the dominant operating system in robotics research at the time. ROS1 can run on Windows using tools like rosserial, but it works best and has more features on Linux.

·
·
·
·
·
·
5.3
ROS2
5.3.1
Decentralized Architecture
ROS2 eliminates the ROS Master, adopting DDS for peer-to-peer communication. Key advancements include:
· QoS Policies: ROS2’s Quality of Service (QoS) system enables fine-grained control over communication reliability and resource management [i.3]. Key policies include:
· Reliability

· Best Effort: Prioritizes timely delivery over guaranteed delivery (e.g., high-frequency sensor data).

· Reliable: Ensures message delivery through retries (e.g., emergency stop commands).
· Durability

· Volatile: Discards messages for late-joining subscribers.

· Transient Local: Retains messages for late-joining subscribers (e.g., map data).
· Deadline: Specifies the maximum allowable latency between messages (μs precision). Critical for real-time systems like motor control.

· Liveliness
· Automatic: Node liveliness is inferred from message activity.

· Manual: Requires explicit node status assertions.
· Predefined QoS Profiles: ROS2 provides optimized profiles for common use cases for example:

· Sensor Data: Best effort reliability + small queue depth for real-time prioritization.

· Services: Reliable delivery + volatile durability to avoid processing stale requests.
· ROS2 supports multiple DDS implementations including the open sources:

· Fast DDS is optimized for low-latency communication (e.g., robotic arms).
· Cyclone DDS implements OMG DDS specification with minimal resource usage and suitable for embedded systems.
· Nodes lifecycle management: Nodes with lifecycle states are called Managed Nodes, and their transitions between states (Unconfigured → Inactive → Active) enable safe firmware updates without restarting the entire system.
· Micro-ROS: A lightweight variant for embedded systems (e.g., STM32 microcontrollers). Supports real-time tasks like motor control with a memory footprint under 256KB.
5.3.3
Security framework
SROS2 (Secure ROS2) enforces access control through DDS-Security integration, leveraging X.509 certificates and access control polices [i.4].

· Authentication: Nodes use X.509 certificates signed by a Certificate Authority (CA)
· Access Control: SROS2 integrates DDS-Security, where access control is enforced via XML policies translated to DDS permissions.
=== end of input 1 ===
=== start of input 2 ===
2.2 Informative references

Clause 2.2 shall only contain informative references which are cited in the document itself.
The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.

[i.1]
OMG, "Data Distribution Service (DDS) Specification," 2023.
NOTE:
Available at https://www.omg.org/spec/DDS
[i.2]
ROS2 Documentation, Understanding services, 2025.

NOTE:
Available at https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Services/Understanding-ROS2-Services.html.
[i.3]
ROS2 Documentation, Quality of Service Settings, 2025.

NOTE:
Available at https://docs.ros.org/en/rolling/Concepts/Intermediate/About-Quality-of-Service-Settings.html.
[i.4]
ROS2 Documentation, Setting access controls, 2025.

NOTE:
Available at https://docs.ros.org/en/rolling/Tutorials/Advanced/Security/Access-Controls.html.
=== end of input 2 ===
© 2020 oneM2M Partners

Page 1 (of 2)

