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Context – provide open-source testing tools for AE 
developers to enhance oneM2M certification

• oneM2M seeks to expand certification of devices (AEs), an under addressed topic in 

comparison to platform (CSE) certification 

• The target audience is AE developers who will benefit from open-source support (code, 

libraries, tools) to make their AEs testable, a pre-cursor to certification.

• oneM2M has done some preliminary work by:

• defining a testing framework and message structures

• defining a few AE certification profiles. With input from Chordant, the plan is to cover additional 

AE host devices (e.g. cellular based devices supporting features such as device triggering, etc.)

• The purpose of this discussion is to explore an approach to build on ATIS’ OS-IoT 

foundational work
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Testing Framework
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Testing Framework – Standardized Interfaces View
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OneM2M TS-0019, TS-0018

See description of IUT-specific 
component slide 14 and backup.



Reference AT 
Command Test 

Interface
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AEs and Certification Processes

• AEs are typically resource-constrained devices.

• The interface between the Upper Tester and the AE is not standardized

• The Ut interface between the Test System and the SUT is standardized (TS-
0019) but is not mandatory to implement by the AE/device

• The AE implementation is not standardized, only its interface to the CSE.

• An AE going through certification should have the following properties:
• Properly chosen certification profile – match the AEs normal oneM2M capabilities 

with the certification profile
• Minimized complexity – the test interface kept minimal in complexity and 

appropriate to the device’s capabilities, to keep the device footprint small.
• Design for test – leverage operational code as much as possible to support the 

required profile test functions. The test interface should be an interface, and 
nothing more.

• Binary-same – the AE that is certified should be binary-same to that deployed in 
the field. This means we don’t conditionally link code that is “for test only.”
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Choosing the Device Profile

• From the oneM2M viewpoint, the ATIS AE does three things: create AE, 
create container, create content instances

• This aligns well with ADN Profile #3 of oneM2M [TS-0025]

7© Chordant, Inc. All Rights Reserved.

http://member.onem2m.org/Application/documentapp/downloadLatestRevision/default.aspx?docID=30196


Choosing the Test Interface

• The BG96 is not a highly constrained device, but it is a useful reference platform 
for cellular IoT.  So we try to adhere to the constrained-device “shoulds” as a 
matter of best practice, not necessity.

• The BG96 utilizes the Qualcomm QAPI, which has a set of APIs for AT Command 
Forwarding -- i.e. an application can register AT custom commands with the 
QAPI, and those commands and their arguments are forwarded to the 
application via a callback function.

• This is the chosen method to implement the upper tester interface to the ATIS 
BG96 AE, custom AT command over the BG96 AT Command COM Port.
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Design for Test

• To support design for test, the AE was refactored such that:

• there is a function interface for creating AEs, creating containers, and creating 
content instances. This interface is used by both the operational mode AE and 
the test interface in response to AT commands.

• the main loop modified such that it can receive an additional ThreadX event for 
AT commands that are forwarded by the QAPI

• a new module added to support the AT command interface
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Code Review

• Ref. branch: atcmd in repo atis-os-iot-bg96

• New files

• onem2m_at_cmds.c

• onem2m_at_cmds.h

• http.h

• Modified file

• http.c

• An overview of the code changes is in the backup slides.
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oneM2M
Upper Tester
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Interface to Test System and ATIS AE

• The Upper Tester implements the utPort as defined in TS-0019 to communicate 
with the Test System

• Protocol: HTTP

• Content Type: JSON

• The Upper Tester contains an IUT-specific component that implements a serial 
port interface to communicate with the ATIS AE

• Currently supports Windows only

• The Upper Tester supports ADN Profile #3 of oneM2M [TS-0025]
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Implementation

• The Upper Tester is a Spring Boot app built with maven

• Java 1.8

• Spring Boot v2.1.2.RELEASE

• Spring v5.1.4.RELEASE

• Maven 3.6

• The Upper Tester was developed/tested/debugged using Spring Tool Suite 
3.9.6.RELEASE

• Use Maven to build a runnable jar file
• mvn clean package -Dmaven.test.skip=true
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Code – IUTServiceATISAEImpl.java
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• IUT-specific component for the ATIS AE

• Implements IUTService.java

• Marked with profile "atisae"

• Load this component at runtime by specifying the "atisae" profile

• java -jar <jar file> --spring.profiles.active=atisae



Demo
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Backup
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Workplan and roles
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Evaluate existing 
Upper Tester

Review existing AE 
test cases

Define AE test cases 
suite

Integrate Upper 
Tester and OS-IoT

Conduct Testing
Create Test Package/ 

Documentation

Chordant

Chordant ATIS*

Chordant Chordant

Chordant

Target release at ETSI 
IoT Week event 21-25 
Oct 2019 and webinar

Publish Upper Tester 
as Open Source on 

OS-IoT web site

Chordant ATIS*

Chordant ATIS

* Note: ATIS role marked with “*” is limited to technical 
advice on existing OS-IoT software. Development will be 
undertaken by Chordant resources



Upper Tester Code – TriggerPrimitiveController.java

18© InterDigital, Inc. All Rights Reserved.

@PostMapping("/")

public ResponseEntity<String> triggerPrimitive(@RequestBody String body) 

{

// receive HTTP POST from Test System

// validate trigger primitive

// if validation fails

// send BAD_REQUEST to test system

// else

// send trigger primitive to IUT-specific component

// send OK to test system

}



Upper Tester Code – IUTService.java
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public interface IUTService {

// Setup the IUT

public void setupIUT() throws Exception;

// Tear down the IUT

public void teardownIUT() throws Exception;

// Send trigger primitive to the IUT

public void sendTriggerPrimitiveToIUT(String triggerPrimitive) throws 

Exception;

}

• This interface will be implemented by each IUT-specific component

• Each IUT-specific component must be marked with a unique profile so it can be 
loaded at runtime according to the active profiles



Upper Tester Code – IUTServiceATISAEImpl.java
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@Service

@Profile("atisae")

public class IUTServiceATISAEImpl implements IUTService {

public void setupIUT() throws Exception {

// Get the AT serial port and configure it

// Setup the ATIS AE for testing

}

public void teardownIUT() throws Exception {

// Put the ATIS AE back to normal mode

}

public void sendTriggerPrimitiveToIUT(String triggerPrimitive) throws 

Exception {

// Create custom AE command based on trigger primitive

// Send AT command to ATIS AE

}



AE Code – http.c
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qapi_Status_t http_request_using_state() {

qapi_Status_t status;

char content_string [MAX_CONTENT_LEN];

switch (op_state) {

case create_ae:

status = http_request_create_ae(json_object_get_string(config_object, SERVER_PATH_KEY));

break;

case create_container:

status = http_request_create_container(

json_object_get_string(config_object, SERVER_PATH_KEY),

json_object_get_string(config_object, CONTAINER_RESOURCE_NAME_KEY));

break;

case reporting:

get_content_string(content_string);

status = http_request_create_content_inst(

json_object_get_string(config_object, SERVER_PATH_KEY),

json_object_get_string(config_object, CONTAINER_RESOURCE_NAME_KEY),

content_string);

break;

Refactor of http_request_using_state(), to 
create an interface for http requests that the 
test interface can also use.



AE Code – http.c
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tx_status = tx_event_flags_get(events_p, EVENT_CALL_DISCONNECT | EVENT_AT_COMMAND, 

TX_OR_CLEAR, &res_events, REQUEST_INTERVAL*TX_TIMER_TICKS_PER_SECOND);

In the AE main loop:

-removed qapi_sleep() call in favor of a wait-for-events-with-
timeout, such that the AE can respond to asynchronous AT 
command events.

-added a flag to enable/disable normal main loop processing via 
the test interface. (not shown here)



AE Code – http.h
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qapi_Status_t http_request_create_ae(char *server_path_key);

qapi_Status_t http_request_create_container(char *server_path_key, char 

*container_res_name_key);

qapi_Status_t http_request_create_content_inst(char *server_path_key, char 

*container_res_name_key, char *ci_string);

qapi_Status_t http_connect_with_retry(const char * host, uint16_t port);

void http_disconnect(void);

This header file added to expose interfaces to functions needed by 
the test interface: (a) the http request functions, and (b) the 
connect() and disconnect() functions required pre and post test 
request.



AE Code – onem2m_at_cmds
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qapi_Status_t register_onem2m_at_cmd(TX_EVENT_FLAGS_GROUP * events_p)

{

// store events_p so the AT callback can signal the main thread

// allocate byte pool for use by the AT callback function

// qapi_atfwd_Pass_Pool_Ptr(atfwd_cmd_handler_cb, byte_pool_at);

// qapi_atfwd_reg(AT_COMMAND_STR, atfwd_cmd_handler_cb);

}

Called by the main thread to initialize AT 
command forwarding for the 
AT_COMMAND_STR "ONEM2M"



AE Code – onem2m_at_cmds
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void atfwd_cmd_handler_cb(boolean is_reg, char *atcmd_name,

uint8* at_fwd_params, uint8 mask, uint32 at_handle)

{

// store AT command parameter pointer 

// signal EVENT_AT_COMMAND to the main thread

}

int parse_at_command()

{

// parse AT command and its parameters

// call the appropriate http request function (http.h)

}

Called from main thread when signaled 
by the callback. other sub-functions not shown

Callback from the QAPI AT forwarding,
Called when the registered ONEM2M 
command is received.


