
Chordant oneM2M AE
Certification Contribution to
ATIS OS-IoT
oneM2M Compliant Upper Tester and Reference AT
Command Test Interface

Context – provide open-source testing tools for AE
developers to enhance oneM2M certification

• oneM2M seeks to expand certification of devices (AEs), an under addressed topic in

comparison to platform (CSE) certification

• The target audience is AE developers who will benefit from open-source support (code,

libraries, tools) to make their AEs testable, a pre-cursor to certification.

• oneM2M has done some preliminary work by:

• defining a testing framework and message structures

• defining a few AE certification profiles. With input from Chordant, the plan is to cover additional

AE host devices (e.g. cellular based devices supporting features such as device triggering, etc.)

• The purpose of this discussion is to explore an approach to build on ATIS’ OS-IoT

foundational work

2© Chordant, Inc. All Rights Reserved.

Testing Framework

3© Chordant, Inc. All Rights Reserved.

Test System
(ETSI/Spirent)

Upper Tester
(specific to oneM2M Profiles)Issue commands

IUT-specific
component*

AE

oneM2M Profiles
- Sensor
- Actuator
- UE (e.g. triggering)

* Implementation Under Test (IUT)

Multiple platforms possible
e.g. BG96, Raspberry Pi etc.

OneM2M Mca
Interface

Existing Open Source Project

New project which Chordant is
developing and intends to open source

CSE Simulator

OS-IoT

Serial interface or Linux
command interface (e.g. Bash)

Testing Framework – Standardized Interfaces View

4© Chordant, Inc. All Rights Reserved.

Test System
(ETSI/Spirent)

Upper Tester
(specific to oneM2M Profiles)STANDARDIZED

IUT-specific
component*

AE

* Implementation Under Test (IUT)

CSE Simulator

OS-IoT

NOT STANDARDIZED

OneM2M TS-0019, TS-0018

See description of IUT-specific
component slide 14 and backup.

Reference AT
Command Test

Interface

© Chordant, Inc. All Rights Reserved. 5

AEs and Certification Processes

• AEs are typically resource-constrained devices.

• The interface between the Upper Tester and the AE is not standardized

• The Ut interface between the Test System and the SUT is standardized (TS-
0019) but is not mandatory to implement by the AE/device

• The AE implementation is not standardized, only its interface to the CSE.

• An AE going through certification should have the following properties:
• Properly chosen certification profile – match the AEs normal oneM2M capabilities

with the certification profile
• Minimized complexity – the test interface kept minimal in complexity and

appropriate to the device’s capabilities, to keep the device footprint small.
• Design for test – leverage operational code as much as possible to support the

required profile test functions. The test interface should be an interface, and
nothing more.

• Binary-same – the AE that is certified should be binary-same to that deployed in
the field. This means we don’t conditionally link code that is “for test only.”

6© Chordant, Inc. All Rights Reserved.

Choosing the Device Profile

• From the oneM2M viewpoint, the ATIS AE does three things: create AE,
create container, create content instances

• This aligns well with ADN Profile #3 of oneM2M [TS-0025]

7© Chordant, Inc. All Rights Reserved.

http://member.onem2m.org/Application/documentapp/downloadLatestRevision/default.aspx?docID=30196

Choosing the Test Interface

• The BG96 is not a highly constrained device, but it is a useful reference platform
for cellular IoT. So we try to adhere to the constrained-device “shoulds” as a
matter of best practice, not necessity.

• The BG96 utilizes the Qualcomm QAPI, which has a set of APIs for AT Command
Forwarding -- i.e. an application can register AT custom commands with the
QAPI, and those commands and their arguments are forwarded to the
application via a callback function.

• This is the chosen method to implement the upper tester interface to the ATIS
BG96 AE, custom AT command over the BG96 AT Command COM Port.

8© Chordant, Inc. All Rights Reserved.

Design for Test

• To support design for test, the AE was refactored such that:

• there is a function interface for creating AEs, creating containers, and creating
content instances. This interface is used by both the operational mode AE and
the test interface in response to AT commands.

• the main loop modified such that it can receive an additional ThreadX event for
AT commands that are forwarded by the QAPI

• a new module added to support the AT command interface

9© Chordant, Inc. All Rights Reserved.

Code Review

• Ref. branch: atcmd in repo atis-os-iot-bg96

• New files

• onem2m_at_cmds.c

• onem2m_at_cmds.h

• http.h

• Modified file

• http.c

• An overview of the code changes is in the backup slides.

10© Chordant, Inc. All Rights Reserved.

oneM2M
Upper Tester

© Chordant, Inc. All Rights Reserved. 11

Interface to Test System and ATIS AE

• The Upper Tester implements the utPort as defined in TS-0019 to communicate
with the Test System

• Protocol: HTTP

• Content Type: JSON

• The Upper Tester contains an IUT-specific component that implements a serial
port interface to communicate with the ATIS AE

• Currently supports Windows only

• The Upper Tester supports ADN Profile #3 of oneM2M [TS-0025]

12© Chordant, Inc. All Rights Reserved.

Implementation

• The Upper Tester is a Spring Boot app built with maven

• Java 1.8

• Spring Boot v2.1.2.RELEASE

• Spring v5.1.4.RELEASE

• Maven 3.6

• The Upper Tester was developed/tested/debugged using Spring Tool Suite
3.9.6.RELEASE

• Use Maven to build a runnable jar file
• mvn clean package -Dmaven.test.skip=true

13© Chordant, Inc. All Rights Reserved.

Code – IUTServiceATISAEImpl.java

14© InterDigital, Inc. All Rights Reserved.

• IUT-specific component for the ATIS AE

• Implements IUTService.java

• Marked with profile "atisae"

• Load this component at runtime by specifying the "atisae" profile

• java -jar <jar file> --spring.profiles.active=atisae

Demo

© Chordant, Inc. All Rights Reserved. 15

Backup

© Chordant, Inc. All Rights Reserved. 16

Workplan and roles

17© Chordant, Inc. All Rights Reserved.

Evaluate existing
Upper Tester

Review existing AE
test cases

Define AE test cases
suite

Integrate Upper
Tester and OS-IoT

Conduct Testing
Create Test Package/

Documentation

Chordant

Chordant ATIS*

Chordant Chordant

Chordant

Target release at ETSI
IoT Week event 21-25
Oct 2019 and webinar

Publish Upper Tester
as Open Source on

OS-IoT web site

Chordant ATIS*

Chordant ATIS

* Note: ATIS role marked with “*” is limited to technical
advice on existing OS-IoT software. Development will be
undertaken by Chordant resources

Upper Tester Code – TriggerPrimitiveController.java

18© InterDigital, Inc. All Rights Reserved.

@PostMapping("/")

public ResponseEntity<String> triggerPrimitive(@RequestBody String body)

{

// receive HTTP POST from Test System

// validate trigger primitive

// if validation fails

// send BAD_REQUEST to test system

// else

// send trigger primitive to IUT-specific component

// send OK to test system

}

Upper Tester Code – IUTService.java

19© InterDigital, Inc. All Rights Reserved.

public interface IUTService {

// Setup the IUT

public void setupIUT() throws Exception;

// Tear down the IUT

public void teardownIUT() throws Exception;

// Send trigger primitive to the IUT

public void sendTriggerPrimitiveToIUT(String triggerPrimitive) throws

Exception;

}

• This interface will be implemented by each IUT-specific component

• Each IUT-specific component must be marked with a unique profile so it can be
loaded at runtime according to the active profiles

Upper Tester Code – IUTServiceATISAEImpl.java

20© InterDigital, Inc. All Rights Reserved.

@Service

@Profile("atisae")

public class IUTServiceATISAEImpl implements IUTService {

public void setupIUT() throws Exception {

// Get the AT serial port and configure it

// Setup the ATIS AE for testing

}

public void teardownIUT() throws Exception {

// Put the ATIS AE back to normal mode

}

public void sendTriggerPrimitiveToIUT(String triggerPrimitive) throws

Exception {

// Create custom AE command based on trigger primitive

// Send AT command to ATIS AE

}

AE Code – http.c

21© Chordant, Inc. All Rights Reserved.

qapi_Status_t http_request_using_state() {

qapi_Status_t status;

char content_string [MAX_CONTENT_LEN];

switch (op_state) {

case create_ae:

status = http_request_create_ae(json_object_get_string(config_object, SERVER_PATH_KEY));

break;

case create_container:

status = http_request_create_container(

json_object_get_string(config_object, SERVER_PATH_KEY),

json_object_get_string(config_object, CONTAINER_RESOURCE_NAME_KEY));

break;

case reporting:

get_content_string(content_string);

status = http_request_create_content_inst(

json_object_get_string(config_object, SERVER_PATH_KEY),

json_object_get_string(config_object, CONTAINER_RESOURCE_NAME_KEY),

content_string);

break;

Refactor of http_request_using_state(), to
create an interface for http requests that the
test interface can also use.

AE Code – http.c

22© Chordant, Inc. All Rights Reserved.

tx_status = tx_event_flags_get(events_p, EVENT_CALL_DISCONNECT | EVENT_AT_COMMAND,

TX_OR_CLEAR, &res_events, REQUEST_INTERVAL*TX_TIMER_TICKS_PER_SECOND);

In the AE main loop:

-removed qapi_sleep() call in favor of a wait-for-events-with-
timeout, such that the AE can respond to asynchronous AT
command events.

-added a flag to enable/disable normal main loop processing via
the test interface. (not shown here)

AE Code – http.h

23© Chordant, Inc. All Rights Reserved.

qapi_Status_t http_request_create_ae(char *server_path_key);

qapi_Status_t http_request_create_container(char *server_path_key, char

*container_res_name_key);

qapi_Status_t http_request_create_content_inst(char *server_path_key, char

*container_res_name_key, char *ci_string);

qapi_Status_t http_connect_with_retry(const char * host, uint16_t port);

void http_disconnect(void);

This header file added to expose interfaces to functions needed by
the test interface: (a) the http request functions, and (b) the
connect() and disconnect() functions required pre and post test
request.

AE Code – onem2m_at_cmds

24© Chordant, Inc. All Rights Reserved.

qapi_Status_t register_onem2m_at_cmd(TX_EVENT_FLAGS_GROUP * events_p)

{

// store events_p so the AT callback can signal the main thread

// allocate byte pool for use by the AT callback function

// qapi_atfwd_Pass_Pool_Ptr(atfwd_cmd_handler_cb, byte_pool_at);

// qapi_atfwd_reg(AT_COMMAND_STR, atfwd_cmd_handler_cb);

}

Called by the main thread to initialize AT
command forwarding for the
AT_COMMAND_STR "ONEM2M"

AE Code – onem2m_at_cmds

25© Chordant, Inc. All Rights Reserved.

void atfwd_cmd_handler_cb(boolean is_reg, char *atcmd_name,

uint8* at_fwd_params, uint8 mask, uint32 at_handle)

{

// store AT command parameter pointer

// signal EVENT_AT_COMMAND to the main thread

}

int parse_at_command()

{

// parse AT command and its parameters

// call the appropriate http request function (http.h)

}

Called from main thread when signaled
by the callback. other sub-functions not shown

Callback from the QAPI AT forwarding,
Called when the registered ONEM2M
command is received.

