Chordant oneM2M AE
Certification Contribution to
ATIS OS-IoT

oneM2M Compliant Upper Tester and Reference AT
Command Test Interface

(CCHORDANT’"

@ Context — provide open-source testing tools for AE
developers to enhance oneM2M certification

oneM2M seeks to expand certification of devices (AEs), an under addressed topic in
comparison to platform (CSE) certification

« The target audience is AE developers who will benefit from open-source support (code,
libraries, tools) to make their AEs testable, a pre-cursor to certification.

« oneM2M has done some preliminary work by:
defining a testing framework and message structures

defining a few AE certification profiles. With input from Chordant, the plan is to cover additional
AE host devices (e.g. cellular based devices supporting features such as device triggering, etc.)

« The purpose of this discussion is to explore an approach to build on ATIS’ OS-IoT
foundational work

CC: CHORDANT" © Chordant, Inc. All Rights Reserved. ‘

© Testing Framework

Existing Open Source Project

New project which Chordant is
developing and intends to open source

Upper Tester oneM2M Profiles
fest SyStem |ssue commands (specificto oneM2M Profiles) - Sensor
(ETSI/Spirent) - Actuator
- UE (e.g. triggering)
CSE Simulator
or Linux
OneM2M Mca --. face (e.g. Bash)
Interface

* Implementation Under Test (IUT)

@ CHORDANT"

© Chordant, Inc. All Rights Reserved.

@ Testing Framework - Standardized Interfaces View

Upper Tester

Test System STANDARDIZED
(ETSI/Spirent) OneM2M TS-0019, TS-0018

(specific to oneM2M Profiles)

IUT-specific

CSE Simulator component*
See description of IUT-specific
component slide 14 and backup.
sy,
Of) RN '4/‘/0
3
Yen, 7‘54/1) O12g,
‘0001 7 NOT STANDARDIZED
’ S\ \~\\
0
0004 e

* Implementation Under Test (IUT)

<< CHORDANT" © Chordant, Inc. All Rights Reserved.

Reference AT
Command Test
Interface

~
TEST SYSTEM SUT

@ AEs and Certification Processes

« AEs are typically resource-constrained devices.
« The interface between the Upper Tester and the AE is not standardized

« The Ut interface between the Test System and the SUT is standardized (TS'-
0019) but is not mandatory to implement by the AE/device

« The AE implementation is not standardized, only its interface to the CSE.

 An AE going through certification should have the following properties:

 Properly chosen certification profile - match the AEs normal oneM2M capabilities
with the certification profile

« Minimized complexity - the test interface kept minimal in complexity and
appropriate to the devicCe’s capabilities, to keep the device footprint small.

« Design for test - leverage operational code as much as possible to support the

required profile test functions. The test interface should be an interface, and
nothing more.

« Binary-same - the AE that is certified should be binary-same to that deployed in
the field. This means we don’t conditionally link code that is “for test only.”

@ CHORDANT" © Chordant, Inc. All Rights Reserved. n

@ Choosing the Device Profile

 From the oneM2M viewpoint, the ATIS AE does three things: create AE,
create container, create content instances

« This aligns well with ADN Profile #3 of oneM2M [TS-0025]
Table 5.4.3-1: Fundamental feature set for ADN profile 3

FL:;)nnCtl Feature Set Feature Remark

GEN |AE/GEN/00001 |Atleast one Support one of the format

of resource identification
AE/GEN/00002 |AE/GEN/00002/00001 |Support Create request

targeting one resource
REG |AE/REG/00002 |AE/REG/00002/00001 |Create <AE> with

mandatory atfributes
DMR |AE/DMR/00001 |AE/DMR/00001/00001 |Create <container> with

no attribute set
AE/DMR/00002 |AE/DMR/00002/00001 |Create <contentlnstance>

with mandatory attributes

<C CHORDANT" © Chordant, Inc. All Rights Reserved.

http://member.onem2m.org/Application/documentapp/downloadLatestRevision/default.aspx?docID=30196

@ Choosing the Test Interface

« The BG96 is not a highly constrained device, but it is a useful reference platform
for cellular IoT. So we try to adhere to the constrained-device “shoulds” as a
matter of best practice, not necessity. '

« The BG96 utilizes the Qualcomm QAPI, which has a set of APIs for AT Command
Forwarding -- i.e. an application can register AT custom commands with the
QAPI, and those commands and their arguments are forwarded to the
application via a callback function.

« This is the chosen method to implement the upper tester interface to the ATIS
BG96 AE, custom AT command over the BG96 AT Command COM Port.

@ CHORDANT" © Chordant, Inc. All Rights Reserved. ﬂ

@ Design for Test

« To support design for test, the AE was refactored such that:

« there is a function interface for creating AEs, creating containers, and creating
content instances. This interface is used by both the operational mode AE and
the test interface in response to AT commands.

« the main loop modified such that it can receive an additional ThreadX event for
AT commands that are forwarded by the QAPI

a hew module added to support the AT command interface

@ CHORDANT" © Chordant, Inc. All Rights Reserved.

@ Code Review

Ref. branch: atcmd in repo atis-os-iot-bg96

New files
onem2m_at_cmds.c
onem2m_at _cmds.h
http.h

Modified file
http.c

An overview of the code changes is in the backup slides.

C CHORDANT" © Chordant, Inc. All Rights Reserved.

oneM2M
Upper Tester

@ Interface to Test System and ATIS AE

« The Upper Tester implements the utPort as defined in TS-0019 to communicate
with the Test System

Protocol: HTTP
Content Type: JSON

« The Upper Tester contains an IUT-specific component that implements a serial
port interface to communicate with the ATIS AE

Currently supports Windows only

 The Upper Tester supports ADN Profile #3 of oneM2M [TS-0025]

CC: CHORDANT" © Chordant, Inc. All Rights Reserved.

@ Implementation

« The Upper Tester is a Spring Boot app built with maven
Java 1.8

Spring Boot v2.1.2.RELEASE

Spring v5.1.4.RELEASE
Maven 3.6

« The Upper Tester was developed/tested/debugged using Spring Tool Suite
3.9.6.RELEASE

« Use Maven to build a runnable jar file

* mvn clean package -Dmaven.test.skip=true

@ CHORDANT" © Chordant, Inc. All Rights Reserved.

@ Code - IUTServiceATISAEImpl.java

« IUT-specific component for the ATIS AE
« Implements IUTService.java
« Marked with profile "atisae"

« Load this component at runtime by specifying the "atisae" profile

Java —-Jjar <jar file> --spring.profiles.active=atisae

<C CHORDANT © InterDigital, Inc. All Rights Reserved.

Demo

© Chordant, Inc. All Rights Reserved.

Backup

© Chordant, Inc. All Rights Reserved.

(© Workplan and roles

* Note: ATIS role marked with “*” is limited to technical
advice on existing OS-loT software. Development will be
undertaken by Chordant resources

Evaluate existing
Upper Tester

=
y__\

Integrate Upper
Tester and OS-loT

==

Create Test Package/ P:Sb(l;:he:gzi::-zsotsr

-)
ocumentatio 0S-loT web site

e ESE
| Chordant | Targetrelease at ETSI

Oct 2019 and webinar

@ CHORDANT" © Chordant, Inc. All Rights Reserved.

Review existing AE Define AE test cases
test cases suite

@ Upper Tester Code - TriggerPrimitiveController.java

{

//
//
//
//
//
//
//

@QPostMapping ("/")
public ResponseEntity<String> triggerPrimitive (@RequestBody String body)

receive HTTP POST from Test System

validate trigger primitive

if validation fails
send BAD REQUEST to test system

else
send trigger primitive to IUT-specific component
send OK to test system

<C CHORDANT"

© InterDigital, Inc. All Rights Reserved.

@ Upper Tester Code - IUTService.java

« This interface will be implemented by each IUT-specific component

« Each IUT-specific component must be marked with a unique profile so it can be
loaded at runtime according to the active profiles

public interface IUTService {
// Setup the IUT
public void setuplIUT () throws Exception;

// Tear down the IUT
public void teardownIUT () throws Exception;

// Send trigger primitive to the IUT
public void sendTriggerPrimitiveTolIUT (String triggerPrimitive) throws
Exception;

}

C CHORDANT © InterDigital, Inc. All Rights Reserved. ﬂ

@ Upper Tester Code — IUTServiceATISAEImpl.java

@Service
@Profile("atisae™)
public class IUTServiceATISAEImpl implements IUTService {
public void setuplIUT () throws Exception ({
// Get the AT serial port and configure it
// Setup the ATIS AE for testing

public void teardownIUT () throws Exception ({
// Put the ATIS AE back to normal mode

public void sendTriggerPrimitiveTolIUT (String triggerPrimitive) throws
Exception {
// Create custom AE command based on trigger primitive
// Send AT command to ATIS AE

1
J

<C CHORDANT © InterDigital, Inc. All Rights Reserved. n

(© AE Code - http.c

Refactor of http _request _using_state(), to

gapi_Status_t http request using state() ({
gapli Status t status;
char content string [MAX CONTENT LEN];

create an interface for http requests that the
testinterface can also use.

switch (op_ state) {
case create ae:
status = http request create ae(json object get string(config object, SERVER PATH KEY));

break;

case create container:
status = http request create container (
json object get string(config object, SERVER PATH KEY),
json object get string(config object, CONTAINER RESOURCE NAME KEY));
break;

case reporting:
get content string (content string);
status = http request create content inst (
json object get string(config object, SERVER PATH KEY),
json object get string(config object, CONTAINER RESOURCE NAME KEY),
content string);
break;

<C CHORDANT" © Chordant, Inc. All Rights Reserved.

@ AE Code - http.c

tx status =
TX OR CLEAR,

tx event flags get (events p, EVENT CALL DISCONNECT | EVENT AT COMMAND,
sres_events, REQUEST INTERVAL*TX TIMER TICKS PER SECOND) ;

CC:CHORDANT"

In the AE main loop:

-removed gapi_sleep() call in favor of a wait-for-events-with-
timeout, such that the AE can respond to asynchronous AT

command events.

-added a flag to enable/disable normal main loop processing via
the test interface. (not shown here)

© Chordant, Inc. All Rights Reserved.

@ AE Code - http.h

gapl Status t http request create ae(char *server path key);

gapl Status t http request create contailner (char *server path key, char
*contalner res name key);

gapl Status t http request create content inst (char *server path key, char
*container res name key, char *ci string);

gapl Status t http connect with retry(const char * host, uintl6 t port);
void http disconnect (void);

This header file added to expose interfaces to functions needed by
the testinterface: (a) the http request functions, and (b) the

connect() and disconnect() functions required pre and post test
request.

<< CHORDANT" © Chordant, Inc. All Rights Reserved.

@ AE Code - onem2m_at cmds

gapl Status t register onemZ2m at cmd(TX EVENT FLAGS GROUP * events p)
{
// store events p so the AT callback can signal the main thread
// allocate byte pool for use by the AT callback function
// gapi atfwd Pass Pool Ptr(atfwd cmd handler cb, byte pool at);
// dapi atfwd reg (AT COMMAND STR, atfwd cmd handler cb);

Called by the main thread to initialize AT

command forwarding for the
AT _COMMAND_STR"ONEM2M"

C CHORDANT" © Chordant, Inc. All Rights Reserved.

@ AE Code - onem2m_at cmds

volid atfwd cmd handler cb(boolean i1is reg, char *atcmd name,
uint8* at fwd params, uint8 mask, uint32 at handle)
{
// store AT command parameter pointer
// signal EVENT AT COMMAND to the main thread

) Callback from the QAPI AT forwarding,

Called when the registered ONEM2M
/ command is received.

int parse at command () (//
{

// parse AT command and its parameters
// call the appropriate http request function (http.h)

Called from main thread when signaled
CCHORDANT" by the callback. other sub-functions not shown

