ADM-0019-Guidelines_for_GitLab_usage-V0_0_1

	

	[image: image1.png]

	Administrative Document

	

	ADM-0019-V-0.0.1

	Title: Guidelines for GitLab usage

	

	Copyright Notification

	No part may be reproduced except as authorized by written permission.

	The copyright and the foregoing restriction extend to reproduction in all media.

This document is intended for distribution only to oneM2M Participants.

	

	© oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC)

	Template Version: January 2020

Contents

2Contents

1
Scope
3
2
Summary
3
3
Repositories
3
4
CR process
3
5
Branching and Tagging conventions
4
Annex A: GitLab repo creation requests
5
Annex B: Repository configuration
5
History
6

1
Scope

The present document proposes guidelines on how oneM2M should use the oneM2M gitlab as part of the CR process for the machine-readable parts of our specifications (i.e. XSD files).
2
Summary
The present document defines the following items:

· oneM2m gitlab repositories as described in section 2 and Annexes A and B.

· CR processes described in section 3

· Branching and tagging conventions defined in clause 5
3
Repositories
Repositories are recommended to be created for each distinct topic. Each topic is associated to one of the oneM2M groups (RDM, SDS and TDE).

Files contained in the repository, unless strictly necessary, do not contain the version number nor the release number in the filename nor the content of the files. If needed, only one file is allowed to contain the version number, for instance, README.MD.

Annex A contains the appropriate request forms to seek the creation of the repositories as described.

Annex B contains information on how the repositories should be configured, including user permissions and default branch behaviours.

4
CR process

Step 0 - Preparing for a meeting

A meeting branch is created (i.e. branch specific to the meeting) following the branching convention given in clause 5.

Step 1 - Drafting a CR

The CR Author creates a branch specific to their CR, following the branching convention given in clause 5, based on the meeting branch where CR is planned to be treated.

The CR Author commits the desired changes to their branch. Other delegates may collaborate with the CR Author, either by pushing commits to their branch or creating merge requests from their own branches. As a matter of etiquette, the CR author should be consulted on if and how such collaboration is achieved. In the absence of other guidance, creating a merge request is advised since it gives the CR Author most control and visibility of the changes.

Changes made to the CR branch are visible to everyone as oneM2M repositories are public. Delegates may comment on and, if appropriate, contribute to, the changes in the CR branch.

Step 2 – Submitting a CR to a meeting

The CR Author creates a Merge Request from their CR branch to the desired meeting branch.

Changes for a CR are made in a branch of their own (see Branching convention)

When ready for submission, the CR contributor makes sure that their CR branch is rebased onto the desired meeting branch and makes a Merge Request , following the Merge Request naming convention, from the CR branch to the meeting branch.

The CR Author prepares a CR document as per the existing oneM2M processes. This CR document should contain a reference to the specific Merge Request (including a link) as well as a link to the latest commit on the CR branch.

Step 3 – Consideration of the CR at the meeting

The CR Author presents the CR from the oneM2M gitlab to the meeting.

The CR Author makes any necessary changes by making additional commits to the CR branch and creating a revision CR branch. The CR document is updated as necessary following the usual process (revision and updating the link to the latest commit on the revised CR branch).

Step 4 - Agreement of the CR

When the CR is agreed, the Rapporteur accepts the merge request into the meeting branch

	!
	Accepting a Merge Request may result in a Merge Conflict appearing for any other CRs that have yet to be agreed. The repository configuration given in Annex B ensures that in most common cases these can be automatically resolved in the GitLab UI. However, if two changes genuinely conflict (i.e because they change the same piece of code) then the conflict will require manual resolution. This is already true today – but this processes ensures that the conflict must be resolved prior to agreement and is properly audited.

When accepting the Merge Request, the Rapporteur ensures that commits are squashed, and the original branch deleted as all information is kept in the Merge Request history.
Step 5 - Agreement of the CR

The Rapporteur merges the agreed meeting branch into the relevant release branch and tags the head of the release branch following tagging convention given in clause 5 if necessary.

The Secretariat removes the meeting branch and any remaining CR branches if CR is withdrawn. If CR needs more work, CR branch is maintained and CR Author can allocate it to another meeting branch by simply rebasing it to the desired meeting branch

5
Branching and Tagging conventions
The following convention for branches in each repository associated with a topic.
	Branch
	Description
	Example

	Release{release}
	Latest version of a release
	Release3

	Release{release}/{meeting number}

	Branch representing a meeting
	Release3/SDS#45

	Release{release}/{meeting number}/{CR number}

	Branch representing a CR
	Release3/SDS#45/SDS-2020-XYZA

	Release{release}/{meeting number}/{revised CR number}

	Branch representing a revised CR
	Release3/SDS#45/SDS-2020-XYZAR01

Release branches are tagged for each new version of the associated specifation The tag follows the standard version numbering convention: <topic>-<version number>-baseline. Example:

XSD-v3_11_0-baseline

The release notes for each tag contain the relevant extract from the associated specification’s revision history, indicating which CRs were accepted.

Merge Requests follows the naming convention: {CR number}
Annex A:
GitLab repo creation requests
This Annex contains the request forms required to create the repositories as described in section 2.

TS-0004 - XSD

Repository Title: XSD

Repository URI: XSD

Repository namespace: rep/PRO/XSD

Repository description: oneM2M xsd files

Issue tracker requested: Yes

Issue tracker type (Bugzilla / Gitlab): Gitlab

Issue tracker specific requirements: None

Wiki pages requested: No

Visibility: Public

Mirror on Github: No

Other requirements: None
Annex B:
Repository configuration
Repositories are by default configured as follows:

Permissions

Delegates with a GitLab account and who request access to the repository are given Developer access.

Developers may do the following

· Create new public branches
· Push commits to unprotected branches
· Create merge requests

· Only Rapporteurs are permitted to the following:

· Accept Merge Requests on protected branches (meetings and releases)

· Create tags

Merge Requests

The repository Merge Method is set to “Merge commit with semi-linear history”. This only allows merges when fast-forward merging is possible, but allows the user to rebase automatically via the GUI.

This method is selected to keep cleaner and more linear history and keep changes more centralized.

Merge Requests are allowed to be merged even if the CI/CD pipeline fails. This allows CRs that fail the pipeline to still be agreed, although this must only be done strictly by exception.

Branches

The default branch is set to the latest release version (e.g. Release4).

Meeting and release branches are protected.

CI/CD

A CI/CD pipeline is created to automatically check all commits for XSD syntax errrors and contraventions of the drafting rules.
	?
	This requires someone to provide the compute resources for the pipeline to run. Ideally, this would be done centrally by ETSI.

History

	History

	V.0.0.1
	2020-06-19
	First version of the document

	
	
	

© oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC)
Page 6 of 6

