
	[image: image1.png]

	oneM2M

Technical Report

	Document Number
	oneM2M TR-0009 v0.3.0

	Document Name:
	Technical Report - Protocol Analysis

	Date:
	03 Nov 2013

	Abstract:
	This document identifies protocols deployed in Industry segments, describes their use, then analyses protocols, their security aspects and their data models, with a view towards interoperability with oneM2M protocols.

This Specification is provided for future development work within oneM2M only. The Partners accept no liability for any use of this Specification.
The present document has not been subject to any approval process by the oneM2M Partners Type 1. Published oneM2M specifications and reports for implementation should be obtained via the oneM2M Partners' Publications Offices.
Contents

2Contents

1
Scope
6
2
References
6
2.1
Normative references
6
2.2
Informative references
6
3
Definitions, symbols, abbreviations and acronyms
8
3.1
Definitions
8
3.2
Abbreviations
8
3.3
Acronyms
8
4
Conventions,
9
5
M2M Related Protocols Overview
9
5.1
Analysis of Design Styles
9
5.1.1
RESTful Style protocols
9
5.1.1.1
REST Style
10
5.1.1.2
RESTful Protocols
11
5.1.2
SOAP Style Protocols
11
5.1.2.1
SOAP Style
11
5.1.2.2
SOAP Protocols
11
5.1.3
RPC Style Protocols
11
5.1.3.1
RPC Style
11
5.1.3.2
RPC Style Protocols
11
5.1.4
Comparison of protocol design styles
11
5.2
M2M-specific Protocols
11
5.3
General Protocols used for M2M
11
5.4
Legacy Protocols
11
5.5
Security-specific Protocols
12
5.6
Management-specific Protocols
12
5.7
Other
12
6
Industry Utilization of Protocols
12
6.1
Agriculture
12
6.2
Energy
12
6.3
Enterprise
12
6.4
Finance
12
6.5
Healthcare
12
6.6
Industrial
12
6.7
Public Services
12
6.8
Residential
13
6.9
Retail
13
6.10
Transportation
13
7
Analysis of Protocols
13
7.1
CoAP - Constrained Application Protocol
13
7.1.1
Background
13
7.1.2
Status
13
7.1.2.1
Current Status
13
7.1.2.1
Ongoing IETF Activity
14
7.1.3
Category and Architectural Style
14
7.1.4
Intended use
15
7.1.5
Deployment Trend
15
7.1.6
Key features
15
7.1.7
Protocol Stack
16
7.1.8
Data Model
17
7.1.9
Security
17
7.1.10
Dependencies
18
7.1.11
Benefits and Constraints
18
7.1.11.1
Benefits
18
7.2.11.2
Constraints
18
7.1.12
Support of oneM2M requirements
18
7.1.12.1
Fully Supported Requirements
19
7.1.12.2
Partially Supported Requirements
19
7.1.12.3
Disallowed Requirements
19
7.2
MQTT - Message Queuing Telemetry Transport
19
7.2.1
Background
19
7.2.2
Status
19
7.2.3
Category and Architectural Style
20
7.2.4
Intended use
20
7.2.5
Deployment Trend
20
7.2.6
Key features
20
7.2.6.1
Publish/Subscribe
21
7.2.6.2
Topics/Subscriptions
21
7.2.6.3
Quality of Service
21
7.2.6.4
Retained Messages
21
7.2.6.5
Clean session / Durable connection
22
7.2.6.6
Wills
22
7.2.7
Protocol Stack
22
7.2.8
Data Model
22
7.2.9
Security
22
7.2.10
Dependencies
22
7.2.11
Benefits and Constraints
22
7.2.11.1
Benefits
22
7.2.11.2
Constraints
22
7.2.12
Support of oneM2M requirements
23
7.2.12.1
Fully Supported Requirements
23
7.2.12.2
Partially Supported Requirements
23
7.2.12.3
Disallowed Requirements
23
7.3
TIA TR-50 Protocol
23
7.3.1
Background
23
7.3.2
Status
23
7.3.3
Category and Architectural Style
23
7.3.4
Intended use
23
7.3.5
Deployment Trend
23
7.3.6
Key features
24
7.3.7
Protocol Stack
24
7.3.7.1
Frame Details
24
7.3.7.2
Request Frame Details
24
7.3.7.3
Response Frame Details
25
7.3.8
Data Model
26
7.3.9
Security
26
7.3.10
Dependencies
26
7.3.11
Benefits and Constraints
26
7.3.11.1
Benefits
26
7.3.11.2
Constraints
26
7.3.12
Support of oneM2M requirements
26
7.3.12.1
Fully Supported Requirements
26
7.3.12.2
Partially Supported Requirements
26
7.3.12.3
Disallowed Requirements
27
7.4
HTTP as RESTful API
27
7.4.1
Description
27
7.4.2
HTTP Status
27
7.4.2.1
HTTP/1.x Status
27
7.4.2.2
HTTP/2.0 (httpbis) Status
27
7.4.3
Intended Use
28
7.4.4
Deployment Trend
28
7.4.5
Key Features
28
7.4.5.1
Relevant Instance of RESTful Design
28
7.4.5.2
Using XML and JSON
28
7.4.6
Security
28
7.4.7
Dependencies
28
7.4.8
Benefits and Constrains
29
7.5
XMPP: eXtensible Messaging and Presence Protocol
29
7.5.1
Background
29
7.5.2
Status
29
7.5.3
Category and Architectural Style
29
7.5.4
Intended use
30
7.5.5
Deployment Trend
30
7.5.6
Key features
31
7.5.7
Protocol Stack
32
7.5.7.1
XEP-0323 Sensor data
33
7.5.7.2
XEP-0324 IoT Provisioning
33
7.5.7.3
XEP-0325 Internet of Things - Control
34
7.5.7.4
XEP-0326 Internet of Things - Concentrators
34
7.5.8
Data Model
35
7.5.9
Security
35
7.5.10
Dependencies
35
7.5.11
Benefits and Constraints
35
7.5.11.1
Benefits
35
7.5.11.2
Constraints
36
7.5.12
Support of oneM2M requirements
36
7.5.12.1
Fully Supported Requirements
36
7.5.12.2
Partially Supported Requirements
36
7.5.12.3
Disallowed Requirements
36
7.6
WebSocket Protocol
36
7.6.1
Background
36
7.6.2
Status
37
7.6.3
Category and Architectural Style
37
7.6.4
Intended use
37
7.6.5
Deployment Trend
37
7.6.5.1
Server-Side Implementations
37
7.6.5.2
Client-Side Implementations
37
7.6.6
Key features
37
7.6.7
Protocol Stack
38
7.6.8
Data Model
38
7.6.9
Security
38
7.6.10
Dependencies
38
7.6.11
Benefits and Constraints
38
7.6.11.1
Benefits
38
7.6.11.2
Constraints
38
7.6.12
Support of oneM2M requirements
39
7.6.12.1
Fully Supported Requirements
39
7.6.12.2
Partially Supported Requirements
39
7.6.12.3
Disallowed Requirements
39
7.7
Bluetooth® Wireless Technology
39
7.7.1
Background
39
7.7.2
Status
40
7.7.3
Category and Architectural Style
40
7.7.4
Intended use - Personal Area Network protocols
40
7.7.5
Deployment Trend - Bluetooth and Bluetooth Smart (low energy)
40
7.7.5.1
Bluetooth Smart (low energy) Technology
41
7.7.5.2
Bluetooth High Speed Wireless Technology
41
7.7.6
Key features
41
7.7.7
Protocol Stack
42
7.7.7.1
Single mode and dual mode
45
7.7.8
Data Model
47
7.7.9
Security
47
7.7.10
Dependencies
47
7.7.11
Benefits and Constraints
47
7.7.11.1
Benefits
48
7.7.11.2
Constraints
48
7.7.12
Support of oneM2M requirements
48
7.7.12.1
Fully Supported Requirements
48
7.7.12.2
Partially Supported Requirements
48
7.7.12.3
Disallowed Requirements
48
7.x
Protocol x {template}
48
7.x.1
Background
48
7.x.2
Status
48
7.x.3
Category and Architectural Style
48
7.x.4
Intended use
48
7.x.5
Deployment Trend
49
7.x.6
Key features
49
7.x.7
Protocol Stack
49
7.x.8
Data Model
49
7.x.9
Security
49
7.x.10
Dependencies
49
7.x.11
Benefits and Constraints
49
7.x.11.1
Benefits
49
7.x.11.2
Constraints
49
7.x.12
Support of oneM2M requirements
49
7.x.12.1
Fully Supported Requirements
49
7.x.12.2
Partially Supported Requirements
49
7.x.12.3
Disallowed Requirements
50
8
Summary
50
Proforma copyright release text block
51
Annex A List of M2M-related Protocols (Informative)
52
Annex B Definitions of Radio metrics for Technologies used for M2M releated Protocols (Informative)
60
B.1
Bluetooth® Wireless Technology
60
B.2
ZigBee (IEEE 802.15.4)
61
B.3
Ultra-Wideband (UWB)
61
B.4
Certified Wireless USB
61
B.5
Wi-Fi (IEEE 802.11)
61
B.6
Radio Frequency Identification (RFID)
62
B.7
Near Field Communication (NFC)
62
Annex Z Bibliography
63
History
64

1
Scope

Editor’s Note: From oneM2M-WI-0008-Protocol-TR-V1_0.DOC (2013-06-20)
The present document will:

· Analyze the protocols, with consideration of security aspects (in cooperation with WG4 - Security) and data models (in cooperation with WG5 - Management, Abstraction & Semantics) widely considered for use within oneM2M's target industry segments

· Create a list of those protocols with which oneM2M could encapsulate and/or interoperate

Noting that: Widely used protocol mappings may be candidates for oneM2M work;
Industry or application-specific protocol mappings to oneM2M may be done by external organizations
2
References

References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references,only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

2.1
Normative references

Not applicable.

2.2
Informative references
The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
[i.1]
oneM2M Drafting Rules (http://member.onem2m.org/Static_pages/Others/Rules_Pages/oneM2M-Drafting-Rules-V1_0.doc)
[i.2]
oneM2M TS-0002
oneM2M Requirements

[i.3]
IBM MQ Telemetry Ttranport (MQTT) v3.1 Protocol Specification

[i.4]
IETF draft-ietf-core-coap-18 Constrained Application Protocol

[i.5]
TIA-4940-020, Smart Device Communications Protocol Aspects
TIA TR-50

[i.6]
IETF RFC6120 XMPP: Core
[i.7]
IETF RFC2616 Hypertext Transfer Protocol -- HTTP/1.1

[i.8]
IETF RFC6690 Constrained RESTful Environments (CoRE) Link Format
[i.9]
IETF RFC4944 Transmission of IPv6 Packets over IEEE 802.15.4 Networks

[i.10]
IETF RFC0768 User Datagram Protocol
[i.11]
IETF RFC6347 Datagram Transport Layer Security Version 1.2

[i.12]
W3C Extensible Makup Language (XML) 1.0 (Fifth Edition)

[i.13]
IETF RFC4627 The application/json Media Type for JavaScript Object Notation (JSON)

[i.14]
IETF RFC6121 Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and Presence, March 2011.

[i.15]
IETF RFC6122 Extensible Messaging and Presence Protocol (XMPP): Address Format, March 2011
[i.16]
IETF RFC4492 Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS), May 2006

[i.17]
IETF RFC4422 Simple Authentication and Security Layer (SASL).

[i.18]
XMPP Standards Foundation XEP-0016 Privacy Lists

[i.19]
XMPP Standards Foundation XEP-0030 Service Discovery

[i.20]
XMPP Standards Foundation XEP-0045 Multi-user conferencing service

[i.21]
XMPP Standards Foundation XEP-0060 Publish-Subscribe service

[i.22]
XMPP Standards Foundation XEP-0079 Advanced-Message Processing

[i.23]
XMPP Standards Foundation XEP-0080 User Location
[i.24]
XMPP Standards Foundation XEP-0136 Message Archiving

[i.25]
XMPP Standards Foundation XEP-0138 Stream Compression

[i.26]
XMPP Standards Foundation XEP-0149 Time Periods

[i.27]
XMPP Standards Foundation XEP-0166 Jingle
[i.28]
XMPP Standards Foundation XEP-0167 Jingle RTP Sessions
[i.29]
XMPP Standards Foundation XEP-0177 Jingle Raw UDP Transport Method
[i.30]
XMPP Standards Foundation XEP-0198 Stream Management

[i.31]
XMPP Standards Foundation XEP-0199 XMPP Ping

[i.32]
XMPP Standards Foundation XEP-0124 Bidirectional-streams Over Synchronous HTTP (BOSH)
[i.33]
XMPP Standards Foundation XEP-0206 XMPP Over BOSH

[i.34]
XMPP Standards Foundation XEP-0203 Delayed Delivery

[i.35]
XMPP Standards Foundation XEP-0322 Efficient XML Interchange (EXI) Format for XMPP
[i.36]
XMPP Standards Foundation XEP-0323 Internet of Things – Sensor Data

[i.37]
XMPP Standards Foundation XEP-0324 Internet of Things – Provisioning

[i.38]
XMPP Standards Foundation XEP-0325 Internet of Things – Control
[i.39]
XMPP Standards Foundation XEP-0326 Internet of Things – Concentrators
[i.40]
IETF RFC6455 The Websocket Protocol, 2011
[i.n]

3
Definitions, symbols, abbreviations and acronyms
Delete from the above heading the word(s) which is/are not applicable.
3.1
Definitions

For the purposes of the present document, the following terms and definitions apply:

<defined term>: <definition>

<defined term>[N]: <definition>
3.2
Abbreviations

For the purposes of the present document, the following abbreviations apply:

CHG
Charging Requirement
OPR
Operational Requirement
PHY
Physical layer of the OSI model

<ABBREVIATION>
<Explanation>
3.3
Acronyms

For the purposes of the present document, the following acronyms apply:

6LOWPAN
IPv6 over Low power Wireless Personal Area Networks
ACT
Availability for Concurrent Transactions

AMI
Advanced Metering Infrastructure

API
Application Programming Interface

BLE
Bluetooth Low Energy
BOSH
Bidirectional-streams Over Synchronous HTTP
CoAP
Constrained Application Protocol

CoRE
Constrained RESTful Environments

CRPR
Communications Request Processing Requirement

CRUD
Create Read Update Delete

DI
Distributed Intelligence

DTLS
Datagram Transport Layer Security
EDR
Enhanced Data Rate

EXI
Efficient XML Interchange

GAP
Generic Access Profile
GATT
Generic ATTribute Profile
HATEOAS
Hypermedia As The Engine Of Application State
HIDS
Human Interface Devices
HTML
HyperText Markup Language
HTTP
Hyper Text Transfer Protocol
IESG
Internet Engineering Steering Group
IETF
Internet Engineering Task Force

IBM
International Business Machines

IP
Internet Protocol

IPSO
Internet Protocol for Smart Objects

IPR
Intellectual Property Rights

IoT
Internet of Things

JSON
JavaScript Object Notation

MAC
Media Access Control

MIME
Multipurpose Internet Mail Extensions
MQTT
Message Queuing Telemetry Transport
M2M
Machine to Machine

OASIS
Organization for the Advancement of Structured Information Standards

OSR
Overall System Requirement
P2M
Person to Machine

PC
Personal Computer

QoS
Quality Of Service

RAM
Random Access Memory
REST
REpresentational State Transfer
RF
Radio Frequency

RFC
Request For Comments

ROM
Read Only Memory

RPC
Remote Procedure Call
SASL
Simple Authentication and Security Layer
SCADA
Supervisory Control And Data Acquisition
SDO
Stanadrds Development Organisation

SER
Security Requirement

SIG
Special Interest Group

SIP
Session Initiation Protocol
SMR
Semantics Requirement
SMS
Short Message Service
SOAP
Simple Object Access Protocol
TAG
Technical Architecture Group
TIA
Telecommunications Industry Association
TCP
Transmission Control Protocol
TLS
Transport Layer Security
UCD
Unicast Connectionless Data

UDP
User Datagram Protocol
URI
Uniform Resource Identifier
WADL
Web Application Description Language
WC3
World Wide Web Consortium

WG
Working Group

WSN
Wireless Sensory Nodes
XEP
XMPP Extension Protocol
XML
eXtensible Markup Language
XMPP
Extensible Messaging and Presence Protocol
<ACRONYM>
Explanation>

4
Conventions,

The key words “Shall”, ”Shall not”, “May”, ”Need not”, “Should”, ”Should not” in this document are to be interpreted as described in the oneM2M Drafting Rules [i.1]
5
M2M Related Protocols Overview
Editor’s Note: For convenience, protocols are categorized into the groups below, these will include application, service layer and other middleware, and transport layer protocols.This clause provides a brief overview of protocol groups and will be completed as a result of the progress on the later clauses.
5.1
Analysis of Design Styles

5.1.1
RESTful Style protocols

The REST architectural style was developed by W3C Technical Architecture Group (TAG) in parallel with HTTP/1.1, based on the existing design of HTTP/1.0.

REST-style architectures conventionally consist of clients and servers. Clients initiate requests to servers; servers process requests and return appropriate responses. Requests and responses are built around the transfer of representations of resources. A resource can be essentially any coherent and meaningful concept that may be addressed. A representation of a resource is typically a document that captures the current or intended state of a resource.

The client begins sending requests when it is ready to make the transition to a new state. While one or more requests are outstanding, the client is considered to be in transition. The representation of each application state contains links that may be used the next time the client chooses to initiate a new state-transition

5.1.1.1
REST Style
The REST architectural style describes the following six constraints applied to the architecture, while leaving the implementation of the individual components free to design:

Client–server: A uniform interface separates clients from servers. This separation of concerns means that, for example, clients are not concerned with data storage, which remains internal to each server, so that the portability of client code is improved. Servers are not concerned with the user interface or user state, so that servers can be simpler and more scalable. Servers and clients may also be replaced and developed independently, as long as the interface between them is not altered.

Stateless: The client–server communication is further constrained by no client context being stored on the server between requests. Each request from any client contains all of the information necessary to service the request, and any session state is held in the client.

Cacheable: As on the World Wide Web, clients can cache responses. Responses must therefore, implicitly or explicitly, define themselves as cacheable, or not, to prevent clients reusing stale or inappropriate data in response to further requests. Well-managed caching partially or completely eliminates some client–server interactions, further improving scalability and performance.

Layered system: A client cannot ordinarily tell whether it is connected directly to the end server, or to an intermediary along the way. Intermediary servers may improve system scalability by enabling load-balancing and by providing shared caches. They may also enforce security policies.

Code on demand (optional): Servers can temporarily extend or customize the functionality of a client by the transfer of executable code. Examples of this may include compiled components such as Java applets and client-side scripts such as JavaScript.

Uniform interface: The uniform interface implies that the interactions between the components in a RESTful architectural style depend on the uniformity of its interface. If any of the components do not follow these constraints, then a RESTful architectural system can result in faults.

The components in a RESTful architectural style interoperate consistently in accordance with the uniform interface’s four constraints as follow:

1. Identification of resources: a resource is addressed by a unique identifier, such as URI. (e.g., http://onem2m.com/cse1/application)
2. Manipulation of resources through representations: Clients manipulate representation of resources. The same exact resource can be represented to different clients in different ways. For example, a resource can be represented as HTML or as JSON.

3. Self-descriptive message: A resource’s desired state can be represented within a request message. A resource’s current state may be represented within a response message.
4. Hypermedia as the engine of application state (HATEOAS): a resource’s state representation includes links to related resources.
The only optional constraint of REST architecture is "code on demand". One can characterise applications conforming to the REST constraints described in this section as "RESTful". If a service violates any of the required constraints, it cannot be considered RESTful.
Editor’s Note: The text in Clause 5.1.1 should either be written as original text, and/or the original text source should be delared as a Reference. (per WG3 PRO discussion 09 Sep 2013)
5.1.1.2
RESTful Protocols

The following protocols adhere to the principles of RESTful design:

· HTTP as RESTful API

· CoAP

5.1.2
SOAP Style Protocols

Editor’s Note: Input is needed for this clause
5.1.2.1
SOAP Style

<text>

5.1.2.2
SOAP Protocols

The following protocols adhere to the principles of SOAP style design:
· <protocol name>

· <protocol name>
5.1.3
RPC Style Protocols

Editor’s Note: Input is needed for this clause
5.1.3.1
RPC Style

<text>

5.1.3.2
RPC Style Protocols

The following protocols adhere to the principles of RPC style design:

· <protocol name>

· <protocol name>

5.1.4
Comparison of protocol design styles

Editor’s Note Input is needed for this clause - <Table> should be inserted with analysis

5.2
M2M-specific Protocols
<Text>

5.3
General Protocols used for M2M
<Text>
5.4
Legacy Protocols

Editor’s Note: e.g. industrial control protocols
<Text>
5.5
Security-specific Protocols

<Text>

5.6
Management-specific Protocols

<Text>

5.7
Other

Editor’s Note: Middleware, Syntaxes, Libraries, and Operating Systems
<Text>
6
Industry Utilization of Protocols
Editor’s Note: Summary of protocols used by Key Industry Segments, including where (within protocol stack and geographically) and how (profile) they are used.
<Text>

6.1
Agriculture
<Text>

6.2
Energy

<Text>

6.3
Enterprise

<Text>

6.4
Finance

<Text>

6.5
Healthcare

<Text>

6.6
Industrial

<Text>

6.7
Public Services

<Text>

6.8
Residential

<Text>

6.9
Retail

<Text>

6.10
Transportation

<Text>

7
Analysis of Protocols

Editor’s Note: Analysis of Protocols relevant to oneM2M including: category, status (current release, under development), trending (increasing, flat, decreasing), support of oneM2M requirements, architectural style, intended purpose, security aspects, and data model
7.1
CoAP - Constrained Application Protocol
The following clauses describe the Constrained Application Protocol CoAP. [i.4]
7.1.1
Background
The Constrained Application Protocol (CoAP) is a specialized web transfer protocol for use with constrained nodes and constrained (e.g., low-power, lossy) networks. The nodes often have 8-bit microcontrollers with small amounts of ROM and RAM, while constrained networks such as 6LoWPAN often have high packet error rates and a typical throughput of 10s of kbit/s. The protocol is designed for machine-to-machine (M2M) applications such as smart energy and building automation. CoAP provides a request/response interaction model between application endpoints, supports built-in discovery of services and resources, and includes key concepts of the Web such as URIs and Internet media types. CoAP is designed to easily interface with HTTP for integration with the Web while meeting specialized requirements such as multicast support, very low overhead and simplicity for constrained environments.

One of the main goals of CoAP is to design a generic web protocol for the special requirements of this constrained environment, especially considering energy, building automation and other machine-to-machine (M2M) applications. The goal of CoAP is not to blindly compress HTTP [i.7], but rather to realize a subset of REST common with HTTP but optimized for M2M applications. Although CoAP could be used for refashioning simple HTTP interfaces into a more compact protocol, it more importantly also offers features for M2M such as built-in discovery, multicast support and asynchronous message exchanges.

CoAP is designed to easily translate to HTTP for simplified integration with the web, while also meeting specialized requirements such as multicast support, very low overhead, and simplicity. Multicast, low overhead, and simplicity are extremely important for M2M devices, which tend to be deeply embedded and have much less memory and power supply than traditional internet devices have.

CoAP can run on most devices that support UDP or a UDP analogue, and is intended to be used for M2M / IoT segments such as home building automation and smart metering.
7.1.2
Status
7.1.2.1
Current Status

The IETF Constrained RESTful environments (CORE) Working Group has done the major standardization work for this protocol. In order to make the protocol suitable to IoT and M2M applications, various new functionalities have been added. The protocol has completed IETF last call and is in the final stages of processing for Internet Standards documents.

CoAP is particularly targeted for small low power sensors, switches, valves and similar components that need to be controlled or supervised remotely, through standard Internet networks. CoAP is an application layer protocol that is intended for use in resource-constrained internet devices, such as wireless sensory network (NSN) nodes.

7.1.2.1
Ongoing IETF Activity
CoAP is being standardized with in the IETF CORE working group. Key IETF CoRE WG documents are as follows:

•
CoRE Link Format – RFC6690 [i8]
•
CoAP Protocol [i.4] – With IESG for publication as an RFC

•
Blockwise transfer in CoAP: IETF draft. WG document.

•
Observing resources in CoAP – IETF draft. WG document.

•
CoRE Resource Directory – IETF draft. WG document

•
Group communication for CoAP – IETF draft. WG document.

•
Best practices for HTTP to CoAP Mapping Implementation – IETF draft. WG document.

There are several options proposed for use with CoAP. Some of these are as follows:

•
Conditional observe in CoAP: IETF draft

•
CoAP Patience option: IETF draft

•
Enhanced sleep mode support of IoT / M2M devices: IETF draft

•
Stateful observation in CoAP (to optimize re-registration traffic in the network): IETF draft

•
Minimum request interval for successive CoAP requests – IETF draft

•
Transport of CoAP over SMS – IETF draft

•
TCP transport for CoAP – IETF draft

•
CoAP option to indicate payload length – IETF draft

•
CoAP over SMS – IETF draft

Editor’s Note: IETF CORE WG Status and drafts should be reviewed and updated prior to publication.
7.1.3
Category and Architectural Style
The Constrained Application Protocol (CoAP) is a specialized web transfer protocol for use with constrained nodes and constrained (e.g., low-power, lossy) networks. The nodes often have 8-bit microcontrollers with small amounts of ROM and RAM, while constrained networks such as 6LoWPAN often have high packet error rates and a typical throughput of 10s of kbit/s. The protocol is designed for machine-to-machine (M2M) applications such as smart energy and building automation. CoAP provides a request/response interaction model between application endpoints, supports built-in discovery of services and resources, and includes key concepts of the Web such as URIs and Internet media types. CoAP is designed to easily interface with HTTP for integration with the Web while meeting specialized requirements such as multicast support, very low overhead and simplicity for constrained environments.

The use of web services (web APIs) on the Internet has become ubiquitous in most applications, and depends on the fundamental Representational State Transfer [REST] architecture of the web. The Constrained RESTful Environments (CoRE) work aims at realizing the REST architecture in a suitable form for the most constrained nodes (e.g. 8-bit microcontrollers with limited RAM and ROM) and networks (e.g. 6LoWPAN [i.9]). Constrained networks such as 6LoWPAN support the fragmentation of IPv6 packets into small link- layer frames, however incurring significant reduction in packet delivery probability. One design goal of CoAP has been to keep message overhead small, thus limiting the need for fragmentation.

One of the main goals of CoAP is to design a generic web protocol for the special requirements of this constrained environment, especially considering energy, building automation and other machine-to-machine (M2M) applications. The goal of CoAP is not to blindly compress HTTP [i.7], but rather to realize a subset of REST common with HTTP but optimized for M2M applications. Although CoAP could be used for refashioning simple HTTP interfaces into a more compact protocol, it more importantly also offers features for M2M such as built-in discovery, multicast support and asynchronous message exchanges.

The protocol supports the caching of responses in order to efficiently fulfil requests. Simple caching is enabled using freshness and validity information carried with CoAP responses. A cache could be located in an endpoint or an intermediary.

Proxying is useful in constrained networks for several reasons, including network traffic limiting, to improve performance, to access resources of sleeping devices or for security reasons. The proxying of requests on behalf of another CoAP endpoint is supported in the protocol. When using a proxy, the URI of the resource to request is included in the request, while the destination IP address is set to the address of the proxy.

As CoAP was designed according to the REST architecture [REST] and thus exhibits functionality similar to that of the HTTP protocol, it is quite straightforward to map from CoAP to HTTP and from HTTP to CoAP. Such a mapping may be used to realize an HTTP REST interface using CoAP, or for converting between HTTP and CoAP. This conversion can be carried out by a cross-protocol proxy ("cross-proxy"), which converts the method or response code, media type, and options to the corresponding HTTP feature.
7.1.4
Intended use
CoAP (Constrained Application Protocol) over UDP is used for resource constrained, low-power sensors and devices connected via lossy networks, especially when there is a high number of sensors and devices within the network. Soon to be released as a suite of IETF RFCs, CoAP has already found success as a key enabling technology for electric utility AMI (advanced metering infrastructure) and DI (distributed intelligence) applications

CoAP makes use of two message types, requests and responses, using a simple binary base header format. The base header may be followed by options in an optimized Type-Length-Value format. CoAP is by default bound to UDP and optionally to DTLS, providing a high level of communications security.
7.1.5
Deployment Trend
A First IoT CoAP Plugtest interoperability event organized by ETSI, the IPSO Alliance. and the Probe-IT project was held in March 2012. This interoperability event tested features that included the base CoAP specification, CoAP Block Transfer, CoAP Observation and the the CoRE Link Format. As described in draft-bormann-core-roadmap-03, it was attended by 18 companies and more than 3000 tests were performed during this event. The 2nd CoAP plugtest event was held in November 2012.
7.1.6
Key features
The key features of CoAP are:

· CoAP is a RESTful protocol.

· Four methods similar to HTTP: Get, Put, Post and Delete.

· Three types of response code: 2.xx (success), 4.xx (client error) and 5.xx (server error).

· Four different message types: Confirmable, Non-Confirmable, Acknowledgement and Reset (Nack).

· Synchronous message exchange

· Asynchronous message exchange via Observe / Notifications Client uses Observe option with Get request to indicate interest in getting further updates from server. Client receives an asynchronous notification each time state of resource changes at server.

· Conditional Observe allows CoAP clients to be informed only when certain conditions on observed resources are met (such as inform periodically or only inform when observed value changes by a pre-specified step size)
· East to proxy to and from HTTP.

· Constrained web protocol fulfilling M2M requirements.

· UDP [i.10] binding with optional reliability supporting unicast and multicast requests. Confirmable and Acknowledgement / Reset messages to provide optional reliability when required. Asynchronous message exchanges.

· Low header overhead and parsing complexity.

· URI and Content-type support.

· Simple proxy and caching capabilities.

· A stateless HTTP mapping, allowing proxies to be built providing access to CoAP resources via HTTP in a uniform way or for HTTP simple interfaces to be realized alternatively over CoAP.

· Security binding to Datagram Transport Layer Security (DTLS) (RFC6347 [i.11]) A wide variety of key management mechanisms may be used for this purpose.
· CoRE link format that defines use of Web Linking using link formats for use by constrained devices to describe hosted resources, their attributes and relationships between links (RFC6690 [i.8]) A well known URI “./well-known/core” is used as a default entry point for requesting list of links about the resources hosted by a server

· A Resource Directory mechanism where IoT / M2M devices (i.e. CoAP servers) can register / update their list of resources. It stores the URIs (called links) to resources stored on servers. If a device is in sleep mode and not able to communicate with the network, it can be discovered via this resource directory. It could also be used if network doesn’t support multicast traffic efficiently.

· Mechanism to transfer multiple blocks of information from a resource representation in multiple request-response pairs at CoAP message level itself (i.e. without relying on IP fragmentation). Large file transfers (such as firware updates) can be done using this mechanism.

· Group based communication using (unreliable) IP multicast by source sending non-confirmable CoAP message to a multicast IP address (and via serial unicast for links that do not support multicast). Some other group based communication mechanisms being explored include the following: overlay multicast that uses proxies to deliver IP packets to end devices, and support of multicast at CoAP level without any explicit multicast support from lower layers.

· CoAP Patience option that informs a recipient of the preferred time frame for a response or request depending on usage context. Useful for time (or delay) tolerant exchanges

· Proposal for a mechanism where device can register its sleep state and related parameters (such as sleep duration, sleep / active state etc.) with the Resource Directory

· Stateful Observation intends to reduce overhead in the network due to multiple re-registration requests from CoAP client to CoAP server when server (i.e. IoT / M2M device) is not in a position to accept additional clients

· Identification of Proxies between a CoAP client and CoAP server.

· Provides mechanism where a client and server can negotiate the minimum time between two subsequent requests. Helps to reduce excessive load at the CoAP server

· An IETF draft “CoAP Payload Length Option Extension” defines a way to indicate length of the payload when underlying transport layer (such as for RS 232, RS 422 or RS 485) doesn’t indicate payload length.

· Mechanism to transport CoAP over SMS for cellular networks

· Representation of links in JSON format in unconstrained environment

· Editor’s Note: IETF draft reference and status should be reviewed and updated prior to publication.
7.1.7
Protocol Stack

The interaction model of CoAP is similar to the client/server model of HTTP. However, machine-to-machine interactions typically result in a CoAP implementation acting in both client and server roles. A CoAP request is equivalent to that of HTTP, and is sent by a client to request an action (using a method code) on a resource (identified by a URI) on a server. The server then sends a response with a response code; this response may include a resource representation.

Unlike HTTP, CoAP deals with these interchanges asynchronously over a datagram-oriented transport such as UDP. This is done logically using a layer of messages that supports optional reliability (with exponential back-off). CoAP defines four types of messages: Confirmable, Non-confirmable, Acknowledgement, Reset; method codes and response codes included in some of these messages make them carry requests or responses. The basic exchanges of the four types of messages are somewhat orthogonal to the request/response interactions; requests can be carried in Confirmable and Non- confirmable messages, and responses can be carried in these as well as piggy-backed in Acknowledgement messages. One could think of CoAP logically as using a two-layer approach, a CoAP messaging layer used to deal with UDP and the asynchronous nature of the interactions, and the request/response interactions using Method and Response codes (see Figure 7.1.7 below). CoAP is however a single protocol, with messaging and request/response just features of the CoAP header.
+----------------------+

| Application |

+----------------------+

+----------------------+ \

| Requests/Responses | |

|----------------------| | CoAP
| Messages | |

+----------------------+ /

+----------------------+

| UDP |

+----------------------+
Fig. 7.1.7 Abstract layering of CoAP
7.1.8
Data Model
CoAP allows to explicitly indicate payload of the content type in its header. CoAP Content Format Registry provides following initial entries: plain text, XML, JSON, EXI, octet stream, link-format. New Internet media types may be used depending on the target IoT segment
7.1.9
Security
As CoAP realizes a subset of the features in HTTP/1.1, the security considerations of RFC2616 [i.7] are also pertinent to CoAP. This section analyzes the possible threats to the protocol. There are a number of security limitations with CoAP, and this section will describe those in detail. These will include:
· Protocol Parsing, Processing URIs

· Proxying and Caching

· Risk of amplification

· IP Address Spoofing Attacks

· Cross-Protocol Attacks

· Constrained node considerations

COAP uses DTLS1.2 and security keys generated by DTLS are used to protect CoAP level messages. Some constraints associated with DTLS are as follows:
· It may be challenging to support DTLS in constrained M2M devices that have limited memory (such as RAM ~ 10 KB) and processing power. This is the reason for the current IETF initiative “DTLS In Constrained Environments” (DICE) initiative (http://www.ietf.org/proceedings/87/slides/slides-87-dice-0)
· Use of DTLS (handshake protocol) results in high overhead in the network and that may not be desirable.

· No clear standardized definition of a constrained DTLS profile

No efficient support of multicast with IP DTLS. The multicast suitability of CoAP are lost when using DTLS (point-to-point). On this aspect, there are also initiatives attempting to find solutions, e.g. “DTLS-based multicast security for Low power Lossy Networks” (http://tools.ietf.org/id/draft-keoh-tls-multicast-security-00.txt)
· No standardized approaches for (dynamic) key management for group based communication

Editor’s Note: Reference to IETF Drafts need to be checked prior to publication.
7.1.10
Dependencies
CoAP is designed to run over datagram transport protocol such as UDP. In this case, it uses DTLS to provide application layer security.

An IETF draft “A TCP transport for CoAP” is exploring changes needed to run CoAP over TCP. Use of CoAP over RS 232 / 422 / 485 is also being explored.
Editor’s Note: IETF draft reference and status should be reviewed and updated prior to publication.
7.1.11
Benefits and Constraints
Editor’s Note: To be completed

7.1.11.1
Benefits
CoAP is a lightweight application layer protocol designed for constrained devices (such as devices with 8-bit microcontroller and limited memory) and constrained networks (such as low power, low data rate, lossy networks that use IEEE802.15.4)

•
It runs over UDP and avoids overhead of TCP

•
It is easy to do HTTP – CoAP translation
7.2.11.2
Constraints

CoAP has:
•
Constraints associated with DTLS (as listed in the Security subsection)

•
No standardized framework for authorization and access control for CoAP exists as of now. The IETF draft “Access Control Framework for constrained environments” (http://datatracker.ietf.org/doc/draft-selander-core-access-control/?include_text=1) attempts to resolve this issue.
Editor’s Note: Reference to IETF Draft needs to be checked prior to publication.
•
No explicit support for real-time IoT application at present.

7.1.12
Support of oneM2M requirements
Support of oneM2M Requirements [i.2] by CoAP is shown in the following clauses:
7.1.12.1
Fully Supported Requirements

OSR-001, OSR-002, OSR-008, OSR-009, OSR-010, OSR-014, OSR-21, OSR-24, OSR-25, OSR-28, OSR-30, OSR-37…
Editor’s Note: To be reviewed and completed in alignment with Approved oneM2M Requirements

7.1.12.2
Partially Supported Requirements

OSR-00
, OSR-013, OSR-015, OSR-020, OSR-022, OSR-029, OSR-030, OSR-033,OSR-035, OSR-036, OSR-040…
Editor’s Note: To be completed

7.1.12.3
Disallowed Requirements

Editor’s Note: To be completed

7.2
MQTT - Message Queuing Telemetry Transport
<Text> Editor’s Note: To be completed
7.2.1
Background
MQTT was invented by IBM and Arcom (now Eurotech), in 1999. It was designed for low-bandwidth, high latency networks. As a result, the designers made a number of key choices which influenced the way it “looks and feels”.

1. Simplicity, simplicity, simplicity! Don't add too many “bells and whistles” but provide a solid building block which can easily be integrated into other solutions. Be simple to implement.

2. Publish/subscribe messaging. Useful for most sensor applications, and enables devices to come online and publish “stuff” that hasn't been previously known about or predefined.

3. Zero administration (or as close as possible). Behave sensibly in response to unexpected actions and enable applications to “just work” e.g. dynamically create topics when needed.

4. Minimise the on-the-wire footprint. Add an absolute minimum of data overhead to any message. Be lightweight and bandwidth efficient.

5. Expect and cater for frequent network disruption (for low bandwidth, high latency, unreliable, high cost-to-run networks)… → Last Will and Testament

6. Continuous session awareness → Last Will and Testament

7. Expect that client applications may have very limited processing resources available.

8. Provide traditional messaging qualities of service where the environment allows. Provide “quality of service”

9. Data agnostic. Don't mandate content formats, remain flexible.
MQTT v3.1 was published by IBM in Aug 2010 under a royalty free license. Further pre-OASIS information is available at MQTT.org.
7.2.2
Status
Based on the pre-standard MQTT v3.1 specifications [i.3] there is an OASIS standardization process which started in March 2013 to make MQTT an open, simple and lightweight standard protocol for M2M telemetry data communication. The target for completion is March 2014.
The OASIS MQTT TC is producing a standard for the Message Queuing Telemetry Transport Protocol compatible with MQTT V3.1, together with requirements for enhancements, documented usage examples, best practices, and guidance for use of MQTT topics with commonly available registry and discovery mechanisms. It operates under the Non-Assertion Mode of the OASIS IPR Policy. Changes to the input document, other than editorial changes and other points of clarification, will be limited to the Connect command, and should be backward compatible with implementations of previous versions of the specification such that a client coded to speak an older version of the protocol will be able to connect to, and successfully use, a server that implements a newer version of the protocol. Candidates for enhancements include message priority and expiry, message payload typing, request/reply, and subscription expiry.
The Eclipse foundation through their M2M working group, is providing open source MQTT client code via their Paho Project.
7.2.3
Category and Architectural Style
MQTT is an M2M/Internet of Things (IoT) connectivity protocol. It is connection session reliant. It supports 14 command messages; the message format includes a fixed and variable header plus the payload.

The grouped commands are:

•
Client requests a connection to a server, Acknowledge connection request & Disconnect notification

•
Publish message & Publish acknowledgment

•
Assured publish received (part 1), Assured publish release (part 2) & Assured publish complete (part 3)

•
Subscribe to named topics & Subscription acknowledgement

•
Unsubscribe from named topics & Unsubscribe acknowledgment

•
Ping request & Ping response
7.2.4
Intended use
MQTT is designed to support messaging transport from remote locations/devices involving small code footprints (e.g., 8-bit, 256KB ram controllers), low power, low bandwidth, high-cost connections, high latency, variable availability, and negotiated delivery guarantees. For example, MQTT is being used in sensors communicating to a server / broker via satellite links, SCADA, over occasional dial-up connections with healthcare providers (medical devices), and in a range of home automation and small device scenarios. MQTT is also a fit for mobile applications because of its small size, minimized data packets, and efficient distribution of information to one or many receivers (subscribers).
7.2.5
Deployment Trend
MQTT is estimated to be running on 250k devices. It is deployed in the Healthcare Industry Segment (hospitals use the protocol to communicate with pacemakers and other medical devices) and in the Energy Industry Segment (oil and gas companies use MQTT to monitor thousands of miles of oil pipelines). It is also used in Facebook’s Messenger application.

MQTT is not deployed in the largest message queue-based telemetry projects.
7.2.6
Key features
The key features of MQTT are:

•
Publish/Subscribe - to provide one-to-many message distribution and decoupling of applications

•
Topics/Subscriptions – to categorise messages into channels for delivery to subscribers

•
Quality of Service – to provide different assurances of message delivery

•
Retained messages – to provide past published messages to new subscribers

•
Clean session / Durable connections – to choose whether a client’s state is to be stored between connection sessions

•
Wills – to send messages after a client disconnects unexpectedly
7.2.6.1
Publish/Subscribe
The MQTT protocol is based on the principle of publishing messages and subscribing to topics, or "pub/sub". Multiple clients connect to a server / broker and subscribe to topics that they are interested in. Clients also connect to the broker and publish messages to topics. Many clients may subscribe to the same topics. The server / broker and MQTT act as a simple, common interface for clients to connect to. A publisher may publish a message once and be received by multiple subscribers.
[image: image2.png]Publisher

Figure 7.2.6.1 MQTT publish-subscribe messaging
7.2.6.2
Topics/Subscriptions
Messages in MQTT are published on topics. Topics are structured into topic trees, which are treated as hierarchies, using a forward slash (/) as a separator. This allows arrangement of common themes to be created. Topic trees and topics are created by using publish messages.

A subscription may contain special characters, which allow clients to subscribe to multiple topics at once, within a single level or within multiple levels in a topic tree.
7.2.6.3
Quality of Service
MQTT defines three levels of Quality of Service (QoS). The QoS defines how hard the broker & client will try to ensure that a message is received. Messages may be sent at any QoS level, and clients may attempt to subscribe to topics at any QoS level. This means that the client chooses the maximum QoS it will receive. For example, if a message is published at QoS 2 and a client is subscribed with QoS 0, the message will be delivered to that client with QoS 0. If a second client is also subscribed to the same topic, but with QoS 2, then it will receive the same message but with QoS 2. For a second example, if a client is subscribed with QoS 2 and a message is published on QoS 0, the client will receive it on QoS 0.

Higher levels of QoS are more reliable, but involve higher latency and have higher bandwidth requirements.

0.
The server / broker & client will deliver the message once, according to the best efforts of the underlying TCP/IP network, with no confirmation. The message arrives at the server either once or not at all.

1.
The server / broker & client will deliver the message at least once, with confirmation required. If there is an identified failure of either the communications link or the sending device, or the acknowledgement message is not received after a specified period of time, the sender resends the message

2.
The server / broker & client will deliver the message exactly once by using additional protocol flows.
7.2.6.4
Retained Messages
Publish messages may be set to be retained. This means that the server / broker will keep the message even after sending it to all current subscribers. If a new subscription is made that matches the topic of the retained message, then the message will be sent to the client. This is useful as a "last known good" mechanism. If a topic is only updated infrequently (such as for “report by exception”), then without a retained message, a newly subscribed client may have to wait a long time to receive an update. With a retained message, the client will receive an instant update.
7.2.6.5
Clean session / Durable connection
MQTT clients choose whether to use clean or durable connection session. If a clean connection is used then the server / broker discards any previously maintained information about the client, the client needs to re-subscribe to topics of interest, and the server / broker discards any state when the client disconnects.

If a durable connection is used, then when the client disconnects, any subscriptions it has will remain and any subsequent QoS 1 or QoS 2 messages will be stored until it connects again.
7.2.6.6
Wills

When a client connects to a broker, it may inform the broker that it has a Will. This is a message that it wishes the broker to send to interested parties when the client disconnects abnormally. The Will message has a topic, QoS and retain status just the same as any other message. Abnormal disconnection occurs when either an I/O error is encountered by the server / broker during communication with the client, or the client fails to communicate within the Keep Alive timer schedule.
7.2.7
Protocol Stack

Editor’s Note: To be completed

7.2.8
Data Model
No formal data model has been published. The data elements included in the version 3.1 specification include: topic trees, user name and password, connection state, subscriptions, retained messages, and message headers (fixed and variable).
7.2.9
Security
MQTT supports user names and passwords in connection requests. Connections can be refused due to a bad user name or password.
7.2.10
Dependencies
MQTT uses the TCP/IP layer to provide basic network connectivity.
7.2.11
Benefits and Constraints
7.2.11.1
Benefits
· Protocol compressed into bit-wise headers and variable length fields. Typical message header size is 6 bytes.

· MQTT has been implemented in devices with less than 64kb of RAM

· In comparison to HTTPS, MQTT tested faster throughput, required less battery, and less network overhead.

7.2.11.2
Constraints

· The simple user name and password scheme is insufficient to support comprehensive access control

· MQTT does not permit fragmentation of messages, making it difficult to transmit large messages to constrained memory devices

· MQTT does not support transactions; it does support basic acknowledgments.

· MQTT does not address connection security

· MQTT does not support discovery of clients or servers

· MQTT is not extensible, requiring a new protocol revision to evolve capabilities
7.2.12
Support of oneM2M requirements
Support of oneM2M Requirements [i.2] by MQTT is shown in the following clauses:
7.2.12.1
Fully Supported Requirements

Editor’s Note: To be reviewed and completed in alignment with Approved oneM2M Requirements

Editor’s Note: Some of the following requirements may only be “Partially Supported”; and some of the requirements listed are not fully agreed within REQ WG1. The present list needs further review and input.

OSR-001, OSR-002, OSR-003, OSR-008, OSR-009, OSR-012, OSR-20, OSR-21, OSR-24, OSR-25, OSR-29, OSR-30, OSR-32, OSR-39, SMR-001, SMR-002, SMR-004, SER-002, SER-008, SER-011, and SER-025.
7.2.12.2
Partially Supported Requirements

Editor’s Note: To be reviwed:
7.2.12.3
Disallowed Requirements

Editor’s Note: To be completed

7.3
TIA TR-50 Protocol
The following clauses describe an implementation of the oneM2M “x” Interface based on the current TIA TIA-4940-020 [i.5].

7.3.1
Background
Editor’s Note: To be completed
7.3.2
Status
Editor’s Note: To be completed
7.3.3
Category and Architectural Style
Editor’s Note: To be completed
7.3.4
Intended use
Editor’s Note: To be completed
7.3.5
Deployment Trend
Editor’s Note: To be completed
7.3.6
Key features
Editor’s Note: To be completed
7.3.7
Protocol Stack

The TIA TR-50 Protocol is based on a frame that is flexible to provide extensions for further enhancements and/or improvements. Communication on the onem2M “x” Interface assumes a reliable network connection.
7.3.7.1
Frame Details

The communication is based on:

· Requests

· Responses

7.3.7.2
Request Frame Details
The M2M request frames are based on a JSON structure and consist of two major sections:

· Authentication – this is the place where the entire authentication items are placed.

· Command(s) – this is the place where the commands items are placed

Below is the structure of the OneM2M frame:

{

"auth": {

"applicationToken": "<application token>",

"sessionId": "<session token>"

},

"ref": {

"command": "<command keyword>",

"params": []

}

}

In order to minimize the traffic, it is possible to have M2M frames with multiple commands:

"ref1": {

"command": "<first command>",

"params": []

},

"ref2": {

"command": "<second command>",

"params": []

}

The description of the fields is presented in Table 7.3.7.2 below

Table 7.3.7.2: Request Frame Field Descriptions

	Name
	Description
	Type
	Mandatory

	auth
	Keyword. Identifies the authentication stanza in the M2M request frame
	String
	Yes

	applicationToken
	Keyword. Identifies the application making the request
	String
	Yes

	sessionId
	Keyword. Unique ID received after the use of the authentication services. Identifies the current session between the two entities
	String
	Yes

	ref1, ref2, ref3
	Identifies the commands that are in the request. Can be simple identifiers. They are not keyword. It is expected that the response will contain them.
	String
	Yes

	command
	Keyword. Identifies a known command that can be executed
	String
	Yes

	params
	Keyword. Identifies the parameters required by the command. The field must exist, but it can be empty.
	String
	Yes

7.3.7.3
Response Frame Details
The response frame is based on the JSON format and it has the following structure:
{

 "ref1": {

"success": true,

"params": []

 },

 "ref2": {

"success": false,

"errorCodes":

[

<errorCode1>,

<errorCode2>

]

"errorMessages":

[

<errorMessage>,

<errorMessage>

]

 },

}

· “ref1” response is an example for a positive return of a request

· “ref2” response is an example for an negative or error return of a request

The description of the fields is presented Table 7.3.7.3 below

Table 7.3.7.3: Response Frame Field Descriptions

	Name
	Description
	Type
	Mandatory

	ref1,ref2, ref3
	Identifies the request commands.
	String
	Yes

	success
	Keyword. Identifies the response. Can be true or false
	String
	Yes

	errorCodes
	Keyword. Identifies the error codes .
	
	

	errorMessages
	Keyword. Identifies the error message.
	String
	No

	params
	Keyword. Identifies the response parameters. Can be empty.
	String
	Yes

7.3.8
Data Model
Editor’s Note: To be completed
7.3.9
Security
Editor’s Note: To be completed
7.3.10
Dependencies
Editor’s Note: To be completed
7.3.11
Benefits and Constraints
Editor’s Note: To be completed
7.3.11.1
Benefits
Editor’s Note: To be completed
7.3.11.2
Constraints

Editor’s Note: To be completed
7.3.12
Support of oneM2M requirements
Support of oneM2M Requirements [i.2] by <protocol x> is shown in the following clauses:
Editor’s Note: The requirments listed herein will need review and alignment with the final approved oneM2M Requirements TS-0002 [i.2]

7.3.12.1
Fully Supported Requirements

Editor’s Note: Per discussion in PRO WG3 - TP#6

7.3.12.2
Partially Supported Requirements

Editor’s Note: Added per discussion in PRO WG3 - TP#6

7.3.12.3
Disallowed Requirements

Editor’s Note: Added per discussion in PRO WG3 - TP#6

7.4
HTTP as RESTful API

7.4.1
Description

HTTP protocol is widely used for Web Services in different ways . One of those usages is using HTTP as RESTful API (HTTP-REST-API).

Editor’s Note: Need to add additional examples other than RESTful API.

HTTP-REST-API, will provides CRUD (Create/Read/Update/Delete) operational primitives naturally with its method (e.g. POST/GET/PUT/DELETE) and well-defined status codes.

HTTP-REST-API is subset of HTTP with RESTful design style.

Editor’s Note: further text may added to improve wording

HTTP-REST-API usually supports XML or JSON (JavaScript Object Notation) for passing API parameters. HTTP-REST-API can handle various data formats using Content-Negotiation feature which is part of HTTP specification.

7.4.2
HTTP Status

7.4.2.1
HTTP/1.x Status
· HTTP version 1.1 was published as RFC 2616 [i.7] (Draft Standard) in June 1999.

· Extensible Markup Language (XML) 1.0 (Fifth Edition) [i.12] was published as W3C Recommendation on 26 November 2008.

· “The application/json Media Type for JavaScript Object Notation (JSON)” [i.13] was published as RFC4627 on July 2006.

7.4.2.2
HTTP/2.0 (httpbis) Status
The Hypertext Transfer Protocol Bis (httpbis) Working Group of the IETF is working on HTTP/2.0, which is intended to supersede HTTP/1.1. It is expected that HTTP/2.0 will be submitted to IESG for consideration as a Proposed Standard in Nov 2014. HTTP/2.0 is intended to retain the semantics of HTTP without the legacy of HTTP/1.x message framing and syntax, which have been identified as hampering performance and encouraging misuse of the underlying transport. As part of the HTTP/2.0 work, the following issues are being considered:

•
A negotiation mechanism that is capable of not only choosing between HTTP/1.x and HTTP/2.x, but also for bindings of HTTP URLs to other transports (for example).

•
Header compression (which may encompass header encoding or tokenisation)

•
Server push (which may encompass pull or other techniques)

It is expected that HTTP/2.0 will:

•
Substantially improve end-user perceived latency in most cases, over HTTP/1.1 using TCP.

•
Address the "head of line blocking" problem in HTTP/1.1 created by pipelining

•
Not require multiple connections to a server to enable parallelism, thus improving its use of TCP, especially regarding congestion control

•
Retain the semantics of HTTP/1.1, including HTTP methods, status codes, URIs, and where appropriate, header fields.

•
Define how HTTP/2.0 interacts with HTTP/1.x, (both 2->1 and 1->2).

•
Identify any new extensibility points and policy for their appropriate use.

The resulting specification(s) are expected to meet these goals for common existing deployments of HTTP; in particular, Web browsing (desktop and mobile), non-browsers ("HTTP APIs"), Web serving (at a variety of scales), and intermediation (by proxies, corporate firewalls, "reverse" proxies and Content Delivery Networks). Likewise, current and future semantic extensions to HTTP/1.x (e.g., headers, methods, status codes, cache directives) should be supported in HTTP/2.0.

7.4.3
Intended Use

HTTP-REST-API provides easy to understand, scalable, secure APIs for Web service in distributed computing environments, such as the Internet.

7.4.4
Deployment Trend

According to the ‘API Directory’ provided by independent web site ‘programableweb.com’, over 6000 RESTful APIs are published (as of Aug 27th, 2013).

Since API’s value can be enhanced by combined use of other APIs, called ‘mush up’, choosing API to be ‘RESTful’ potentially increase its value as twice or more.

W3C published WADL specification to describe HTTP-REST-API. Several tool can generate skelton codes for web application from WADL definition.

7.4.5
Key Features

7.4.5.1
Relevant Instance of RESTful Design

Since HTTP specification are designed to implement RESTful architecture, you can develop robust, secure, scalable system with HTTP-REST-API.

HTTP-REST-API also can be secured by applying TLS. Unlike other solutions, TLS will not imply the complexity. Additionally, there are many hardware-based solutions to accelerate crypt graphical processing like load balancer, embedded co-processor.

7.4.5.2
Using XML and JSON

Both XML and JSON can carry extensible data structures easily.

Even JSON format can transfer same information in smaller size than XML, XML can provide strong message-level security, like partial encryption and/or digital signature which cannot be provided by JSON.

REST isn't just about JSON or XML though, but any of the media types that the browser or platform can natively handle with content negotiation mechanism which is part of HTTP specification.

7.4.6
Security

HTTP-REST-API is based Web services are prone to the same vulnerabilities as standard web applications, including broken authentication, injection attacks, cross-site scripting and cross-site request forgery.

Fortunately, many HTTP security practices can be successfully applied for securing HTTP-REST-API.

The Web Service with HTTP-REST-API can be secured by those rules with configuring a policy, ensuring that access to the service requires usage of TLS and authorizing service access based on group membership.

7.4.7
Dependencies

HTTP-REST-API depends on HTTP, XML, JSON, and MIME specifications.

7.4.8
Benefits and Constrains

The greatest benefit of HTTP-REST-API is the use of HTTP, but the largest pitfall can also be the use of HTTP.

7.5
XMPP: eXtensible Messaging and Presence Protocol
The following clauses describe the eXtensible Messaging and Presence Protocol (XMPP). [i.6]
7.5.1
Background
XMPP was first proposed by Jabber open source community and later formalized by IETF in RFC3920. It is an open XML-based protocol for near real-time messaging, presence and request-response services. Several extensions have been added to achieve other capabilities.
7.5.2
Status
IETF RFCs and drafts:

•
RFC6120: XMPP: Core (Standards Track RFC. Obsoleted RFC3920) [i.6]. It defines the base XMPP protocol along with RFC6121.

•
RFC6121: XMPP: Instant Messaging and Presence [i.14]. Standards track RFC (obsoletes RFC 3921)

•
RFC6122: XMPP Address Format (Standards Track) [i.15]. Updates RFC3920

XEP (XMPP Extension Protocol) documents specify extensions to XMPP and are standardized by XSF (XMPP Standards Foundation, http://xmpp.org/extensions/).

7.5.3
Category and Architectural Style
XMPP uses a federated client-server model with multiple interconnected servers as shown in Figure 7.5a. Each server is responsible for managing its own domain and works cooperatively with servers of other domains as peers.
XMPP supports Availability for Concurrent Transactions (ACT) style where asynchronous end-to-end exchange of structured data is carried out using direct and persistent XML streams among a distributed network of globally addressable, presence aware clients and servers (RFC6120 [i.6]).

[image: image3.jpg]Gateway Client
(XMPP — another | «——5| {non-XMPP)
Protocol Y)
XMPP Client
()
XMPP server .
XMPP Server | (Home server [« XMPP Client
(of¥) for client X) (x)

XMPP Client X — XMPP ClientY communication:
XMPP Client X — Server {(Home server for X) — Server for Y — XMPP Client Y

Figure 7.5a: XMPP Federated Client – Server Model
Editor’s Note: Need editable source for Fig 7.5a
7.5.4
Intended use
XMPP is intended to be used for P2P, P2M and M2M / IoT purposes.
7.5.5
Deployment Trend
Millions of users world-wide use XMPP for instant messaging and presence based applications.

List of some servers that support XMPP is given at http://xmpp.org/xmpp-software/servers/. These servers provide basic messaging, presence and XML routing features. These servers are available for different platforms such as Linux, Solaris, Windows and Mac OS X.

A list of XMPP clients is available at http://xmpp.org/xmpp-software/clients/. Clients are available for different platforms such as Linux, Windows, Android, Blackberry, iOS, Mac OS X, J2ME, Palm OS and Browser.

A list of XMPP software libraries is available at http://xmpp.org/xmpp-software/libraries/. These libraries are implemented in various languages such as C, C++, Java, Perl, Ruby, PHP, Python, JavaScript, Tcl, Objective C, Flash / Action Script and C # /.Net/Mono.

XMPP is used by the Jabber messaging client. The first instant messaging service based on XMPP was Jabber.org.
· Jabber is used for text conferencing of IETF meetings.

· Cisco / WebEx uses XMPP.

· Google Talk uses XMPP protocol for instant messaging and presence. It uses extensions of XMPP for VoIP, video and peer-to-peer communication.

· Microsoft provides XMPP interface to its Microsoft Messenger Service and have XMPP gateways integrated in their messaging systems.

· Facebook presents an XMPP interface to its clients for its chart feature

7.5.6
Key features
XMPP supports Availability for Concurrent Transactions (ACT) style (RFC6120 [i.6]).

XMPP supports a distributed client server architecture where a client needs to connect with a server to gain access to network. Only after that, it is allowed to exchange XML stanzas with other entities in the network (e.g. in a different domain). End-to-end communication is logically peer-to-peer but physically client-to-server, server-to-server and server-to-client.

TLS (RFC 4492 [i.16]) is supported for encryption purposes (between client – server and server – server).

SASL (Simple Authentication and Security Layer, RFC 4422 [i.17]) is used for authentication of initiating entity (e.g. an XMPP client) with the receiving entity (e.g. XMPP server) before the initiating entity is allowed to send XML stanzas to receiving entity.

Server to server model allows authenticated and secure inter-domain communication.

Each domain is controlled by a server in a decentralized architecture. Each domain owner can define level of security needed, QoS and policies that are needed for that domain.

Relevant XMPP Extension Protocols (XEPs) include:

· XEP-0016 Privacy Lists [i.18]: It can be used to block communication from some XMPP users. It can be potentially used for M2M applications as well. In some sense, it allows to implement simple policies to allow or block access to an M2M device from another M2M device.

· XEP-0030 Service Discovery [i.19]: Allows to discover XMPP entities and features supported by these entities.

· XEP-0045 Multi-user conferencing service. [i.20]

· XEP-0060 Publish-Subscribe service [i.21]. It enables a service to generate notifications and deliver those to multiple subscribers. It is more generalized than the special form of publish-subscribe model supported by presence service. Personal Event Profile (XEP-0163) specifies a stripped down profile of pubSub. Publish-Subscribe feature helps to support asynchronous communication for IoT / M2M applications.

· XEP-0079 Advanced-Message Processing [i.22]. Allows including message expiration feature. It can be useful to indicate expiration time for M2M data that is cached.

· XEP-0080: Allows publishing location information [i.23]; Useful to associate location information with M2M devices.

· XEP-0136 Message Archiving [i.24]: In addition to P2P applications, this can be potentially used for caching M2M data at an XMPP server.

· XEP-0138 – Supports application layer compression [i.25]; Useful in constrained IoT environment.

· XEP-0149 – Allows XMPP entities to specify time period for state, event or activity [i.26].

· Jingle specifications (XEP-0166 [i.27], XEP-0167 [i.28], XEP-0177 [i.29], ….) extend XMPP for initiating and managing peer-to-peer media sessions between two XMPP entities. It uses XMPP for signaling purposes and uses different transport methods (such as TCP, UDP, ….) for data plane packets.

· XEP-0198 Reliability, Stream Management Protocol [i.30]
· XEP-0199 : Provides support for application level pings [i.31]
· XEP-0124 [i.32] and XEP-0206 [i.33] : Allows use of HTTP as transport for XML streams.

· XEP-0203 [i.34]: In addition to P2P applications, this can potentially be also used for M2M applications. It allows an XMPP server to store a message if corresponding XMPP client (e.g. an M2M device) is in offline (e.g. sleep) state and send message as soon as it gets to know that the client / device is available. It gets to know the status via presence notification as the client / device moves from offline (sleep) state to available state.

· XEP-0322 Efficient XML Interchange (EXI) Format for XMPP [i.35]. Useful for M2M applications.

· XEP-0323 Sensor data [i.36]: It provides architecture, data structures and basic operations for sensor (M2M) data communication over XMPP networks. This is designed for implementation in sensors that may have limited amount of memory or processing power.

· XEP-0324 IoT Provisioning [i.37]
· XEP-0325 Internet of Things – Control [i.38]: It provides mechanism to control actuators in XMPP based sensor networks.
· XEP-0326 Internet of Things – Concentrators [i.39]
7.5.7
Protocol Stack

As described in RFC6120 [i.6], XMPP is an application profile of XML that enables near real-time exchange of structured yet extensible data between any two or more network aware entities. An XMPP address (called a Jabber Identifier or JID) is represented as localpart@domainpart/resourcepart. An example of JID is tom@jabber.org/Laptop.

For client-to-server communication, client resolves FQDN of the receiving entity to an IP address and opens a TCP connection to the advertised port at receiver’s IP address. Channel encryption is optionally supported using TLS and authentication is done using SASL. After a client authenticates with a server, it binds a specific resource to the stream so that server can properly address the client. Address for use over that stream is a full Jabber ID of the form <localpart@domainpart/resource>. Client opens an XML stream over TCP with a server (of its domain) and exchanges XML stanzas.

Here, an XML stream is a container for carrying XML elements between two elements in a network. XML elements in an XML stream carry XML stanzas (i.e. actual payload message in XML format) or the elements that are used to negotiate the stream (e.g. for TLS and SASL purposes). Each stream is unidirectional and thus two streams are needed between an initiating entity and a receiving entity for bidirectional transfer of XML stanzas. An XML stanza is a basic unit of meaning in XMPP. An XML stream begins with an open tag <stream> and ends with a close tag </stream>. Each direction of conversation is represented as a streaming XML document that ends when that connection is terminated. Root node of that streaming document is the <stream/> element.

For server-to-server communication, a server opens an XML stream over TCP with a server of different domain for inter-server (or inter-domain) communication. Server-to-server streams are typically negotiated in the initialization phase.
[image: image4.jpg]XML Stanzas

XMPP
XML Streams

TCP

SASL: Simple Authentication and Security Layer
TLS: Transport Layer Security
XMPP: eXtensible Messaging and Presence Protocol

Figure 7.5b: XMPP Protocol Stack

Editor’s Note: Need editable source for Fig 7.5b

There are three core stanza types, <presence/>, <message/> and <iq/>, each with its own semantics. These three core stanzas are briefly described below:

· presence stanza: A basic publish-subscribe mechanism that allows several entities to receive information (about presence or availability) of a specific entity to which they have subscribed. In an IM application, presence information of a user’s (or client’s) contacts is displayed in user’s contact list or roster. When a user gets online, XMPP software announces user’s current status to server of user’s domain and that server informs user’s contacts about its online status. It is a simple broadcast mechanism in that sense. The server also informs the presence status of user’s contacts to user. An M2M device if not available for processing some action can use “do not disturb” to indicate that it is not available.
· message stanza: This supports a push mechanism where one entity pushes information to another entity. It supports real-time as well as delayed (i.e. store and push) delivery of messages. In an IM scenario, the message typically encapsulates chat data. Messages are also used for group chat, event delivery and notifications. Message type includes the following: normal, chat, groupchat, headline and error. Message type “headline” is used to send alert and notifications. Type “chat” is used for Instant Messaging.
For IM, XMPP servers are optimized to handle large number of small messages. As an XMPP server knows about the availability (or presence) status of XMPP clients, it can quickly take an appropriate decision. It can either send message to that client quickly if that client is available or can store it in buffer and send as soon as it gets to know that the client is available. This feature can also be used for M2M purposes.
· IQ (Info/Query) stanza: A request-response mechanism that allows structured exchange of data between an initiating entity and a requesting entity in a somewhat reliable way. It allows operations such as get (reading), set (a variable), result and error. Values of type attribute used with IQ stanza are get, result, set and error.
7.5.7.1
XEP-0323 Sensor data

XEP-0323 [i.36] describes framework for sensor data exchange in an XMPP based sensor network (SN). Specific support of XMPP SN feature is indicated by including “urn”xmpp:sn” in the service discovery procedure. A sensor device, an actuator or a gateway is an example of a node in a sensor network. A Concentrator is a device that handles multiple nodes (e.g. a node handling multiple sensors) behind it. Field Name is name of a field of sensor data (e.g. pressure or vibration level). Possible values of Field Type include the following: momentary value, calculated value, peak value, status value, historical value etc.
7.5.7.2
XEP-0324 IoT Provisioning
XEP-0324 [i.37], IoT provisioning, deals with access rights, user privileges and provisioning of services in a sensor network. This architecture uses distributed third parties that provide the following services:

· Control who can communicate with whom (i.e. control friendship)

· Control read access

· Control configure / write access

· Provide a user interface to set / update these policies

· Provide interoperability services (such as unit conversion)

A trust relationship is created between a device and a provisioning server using some mechanisms. A device, client or user can get a token from a provisioning server that it can use to validate access rights with the server. <iq> stanza with xmlns ‘urn:xmpp:sn:provisioning’ is used for this purpose. If a device supports provisioning feature, it advertises this feature in service discovery.

If there are multiple provisioning servers, device / client / user has one token from each of the provisioning server. While sending request to another entity (e.g. read or write some data), it includes all these tokens. As an IoT device gets a request to read or write some data, it contacts a provisioning server with the tokens provided in the request and validates access rights of the requesting entity (Figure 7.5c). As an IoT device gets friendship request from a third party, it contacts provisioning server and checks whether or not to accept that request. A provisioning server can also delegate a secondary trust to a device by which that device can add its own friends.

[image: image5.jpg]user X loT device (e.g. sensor) Provisioningserver

Request to read or write
{along with all the tokens
that user has received from
provisioningservers earlier)

loT device checks access
rights of user X

< | Acceptorrejectthe
request of user X,
dependingonthe
access status provided
by the provisioning
server

Figure 7.5c: Validation of access rights during a read or write operation
Editor’s Note: Need editable source for Fig 7.5c

7.5.7.3
XEP-0325 Internet of Things - Control
XEP-0325 [i.38] specifies mechanisms to control actuators in an XMPP based sensor network. <message> or <iq> stanzas can be used for this purpose. Response from device is suppressed when using <message> stanza but <iq> stanza can be used if an acknowledgement is needed from the actuator. Operation “Set” and the xmlns “urn:xmpp:sn:control” are used for this purpose in the message stanza. A control form can also be used to set values for various fields at the actuator. Actuators behind a concentrator can be controlled by specifying node elements for those actuators.
7.5.7.4
XEP-0326 Internet of Things - Concentrators
XEP-0326 [i.39] deals with IoT Concentrators. A concentrator is defined to be a device that concentrates management of a subset of devices (of a sensor network) at a point. A concentrator can be small (e.g. a PLC managing a set of sensors and actuators), medium (e.g. a branch of a network using a different communication protocol), large (e.g. a sub-system managed by a partner organization) or massive. A concentrator works with multiple data sources where a data source is defined to contain a collection of nodes. There are three types of data sources: Singular, Flat and Tree. There is only one node object in a singular data source while a flat data source contains list of node objects. Nodes are represented in a tree structure in a tree data source. Asynchronous events are sent from a concentrator to each client that has subscribed to these using message stanzas. A concentrator can also store data from sensors locally (or at a remote server but controlled locally).

A client that needs to communicate with a concentrator can get type of commands supported by getting capabilities of the concentrator. The xmlns ‘urn:xmpp:sn:concentrators’ is used for this purpose. Some such commands are given below:

· Get all data sources managed by the concentrator,

· Get root data sources,

· Get child data sources (of a root data source),

· Given node id, check to see if a node is supported by a (given) concentrator,

· Get basic information about a node supported by a concentrator (e.g. is it readable? Is it configurable? what are the parameters supported by a node e.g. location of a meter? etc.)

· Change order of nodes in a tree (by moving nodes up or down among siblings),

· Get and set parameters of a node,

· Create or destroy a node,

· Get commands that are supported by a node,

· Subscribe to changes in data source by allowing devices to register for asynchronous events,

· Allow retrieval of historic events

7.5.8
Data Model
XMPP is based on XML. EXI (Efficient XML Interchange) is also supported for M2M applications.
7.5.9
Security
TLS is supported for encryption of client-to-server and server-to-server communication; Its use is optional. A receiving entity (such as a client or a peer server) can mandate that the initiating entity use TLS for data encryption.

An initiating entity needs to authenticate with the receiving entity before sending XML stanzas. If TLS is used, it is used before negotiating for SASL (Simple Authentication and Security Layer Protocol). It helps protect the authentication information exchanged during SASL negotiation.
7.5.10
Dependencies
· XMPP streams as defined in RFC6120 [i.6] use TCP as transport

· Use of HTTP as transport is allowed as per XEP-0124 [i.32] and XEP-0206 [i.33]
· Uses TLS and SASL for security.

· Jingle extensions use XMPP for signalling but data plane packets are sent over other transport mechanisms such as TCP, UDP, ….

· XML
7.5.11
Benefits and Constraints
XMPP is an open standard. IETF has approved XMPP RFCs for core methods (RFC6121), instant messaging and presence technology (RFC6121 [i.14]) and address format (RFC6122 [i.15]). XMPP standard foundation and IETF continue to extend this.

7.5.11.1
Benefits
· XMPP is easily extensible. It provides basic set of features that can be expanded by protocol extensions (XEPs) to provide new set of features.

· Resource location is specified in the address itself and that makes it easy to identify different resources of an XMPP user.

· XMPP is already used by some devices for IM applications. In that sense, it improves Person-to-Machine (P2M) communication as user is able to directly interact with smart object running XMPP. It does not necessarily require use of protocol gateways as may be needed with CoAP (e.g. for HTTP to CoAP conversion) and MQTT.

· It supports a federated client-server architecture where no (global) centralized server is needed. Anyone with a domain name can run an XMPP server on its own domain. Public XMPP servers are available for everyone.

· Support of message, presence and IQ stanza types helps meet needs of several IoT applications.

· As it uses “store and push” mechanism to transfer data, it can store contents if the receiving entity is offline (e.g. if IoT device is in sleep mode).

· <xml:lang> common attribute enables internationalization.

· An XMPP address (or JID) can include any Unicode character and is not restricted to ASCII characters.

· Some of the existing mechanisms (such as publish-subscribe, caching, delayed delivery, support for EXI, etc.) are applicable for IoT use cases as well.
7.5.11.2
Constraints

· Use of TCP may not be desirable for some IoT segments.

· Overhead may be high if XML data is used but EXI extensions available for IoT applications.
7.5.12
Support of oneM2M requirements
Support of oneM2M Requirements [i.2] by <protocol x> is shown in the following clauses:
Editor’s Note: The requirments listed herein will need review and alignment with the final approved oneM2M Requirements TS-0002 [i.2]

7.5.12.1
Fully Supported Requirements

Editor’s Note: To be completed
7.5.12.2
Partially Supported Requirements

Editor’s Note: To be completed

7.5.12.3
Disallowed Requirements

Editor’s Note: To be completed

7.6
WebSocket Protocol
The following clauses describe the WebSocket Protocol.
7.6.1
Background
The HTTP protocol is widely used for Web Services in different ways . One of those usages is standardized as WebSocket Protocol.

WebSocket Protocol provides an alternative way to ‘HTTP polling’ for two-way communication, which transmits data with upgrading established HTTP connection with remote host.

WebSocket Protocol was originally introduced as part of HTML5 specification, but later the transport protocol specification was standardized as the extension for HTTP in IETF.
7.6.2
Status
WebSocket Protocol specification is published as RFC6455 [i.40] (PROPOSED STANDARD) by the IETF in 2011.

SIP over WebSocket and XMPP over WebSocket are under development.
7.6.3
Category and Architectural Style
Editor’s Note: To be completed
7.6.4
Intended use
WebSocket Protocol provides relatively simple transport for two-way communication with remote host, which can coexist with HTTP and deployed HTTP infrastructure.

Unlike HTTP 2.0, which also possible to two-way communication over HTTP connection, WebSocket is designed for use in Ajax applications.
7.6.5
Deployment Trend
Following are some of implementations which include WebSocket support:

7.6.5.1
Server-Side Implementations

· Apache Tomcat 7 (or later)

· Jetty 8 (or later)

· Tornado

· em-websocket (Ruby)

· gevent-websocket (Python)

· Node.js

7.6.5.2
Client-Side Implementations

· Google Chrome 14.0 (or later)

· Firefox 10.0 (or later)

· Safari 6.0 (or later)

· Internet Explorer 10.0 (or later)

· Cordova (AKA PhoneGap)
7.6.6
Key features
NOTE: The following text is exerpted from Section “1.5 Design Philosophy” of RFC6455 [i.40]
The WebSocket Protocol is designed on the principle that there should be minimal framing (the only framing that exists is to make the protocol frame-based instead of stream-based and to support a distinction between Unicode text and binary frames). It is expected that metadata would be layered on top of WebSocket by the application layer, in the same way that metadata is layered on top of TCP by the application layer (e.g., HTTP).

Conceptually, WebSocket is really just a layer on top of TCP that does the following:

· adds a web origin-based security model for browsers

· adds an addressing and protocol naming mechanism to support multiple services on one port and multiple host names on one IP address

· layers a framing mechanism on top of TCP to get back to the IP packet mechanism that TCP is built on, but without length limits

· includes an additional closing handshake in-band that is designed to work in the presence of proxies and other intermediaries

Other than that, WebSocket adds nothing. Basically it is intended to be as close to just exposing raw TCP to script as possible given the constraints of the Web. It's also designed in such a way that its servers can share a port with HTTP servers, by having its handshake be a valid HTTP Upgrade request. One could conceptually use other protocols to establish client-server messaging, but the intent of WebSockets is to provide a relatively simple protocol that can coexist with HTTP and deployed HTTP infrastructure (such as proxies) and that is as close to TCP as is safe for use with such infrastructure given security considerations, with targeted additions to simplify usage and keep simple things simple (such as the addition of message semantics).

The protocol is intended to be extensible; future versions will likely introduce additional concepts such as multiplexing.
7.6.7
Protocol Stack
Editor’s Note: To be completed
7.6.8
Data Model
Editor’s Note: To be completed
7.6.9
Security
Security feature on WebSocket can be independent, but HTTP can provide necessary protections in transport layer.
7.6.10
Dependencies
· WebSocket Protocol depends on HTTP (1.1 or later) protocol.

· TCP stack should be provided for HTTP communication.
7.6.11
Benefits and Constraints
Editor’s Note: To be completed
7.6.11.1
Benefits
· Allowing co-existance with existing Web infrastructures

· Reuse security solutions which is applied on HTTP Servers

· HTML5 browser can supports WebSocket natively (seamless integration on HTTP based application)
7.6.11.2
Constraints

· Leaving WebSocket connection opened for long time periods may cause DoS attack risk

· Server-side WebSocket implementation can host limited number of connections
7.6.12
Support of oneM2M requirements
Support of oneM2M Requirements [i.2] by <protocol x> is shown in the following clauses:
Editor’s Note: The requirments listed herein will need review and alignment with the final approved oneM2M Requirements TS-0002 [i.2]

7.6.12.1
Fully Supported Requirements

Editor’s Note: To be completed
7.6.12.2
Partially Supported Requirements

Editor’s Note: To be completed
7.6.12.3
Disallowed Requirements

Editor’s Note: To be completed
7.7
Bluetooth® Wireless Technology
This section outline the background and practical use and charatersitics of Bluetooth® with particular focus on the Bluetooth Low Energy (BLE) version that is well-suited to M2M type of applications. There is also a description of the application layer and attribute protocol based on the GATT (Generic Attribute Profile) interactions and data structure (Services and Characterstics), that is included in the Bluetooth Smart version 4.0. Finally the GATT although a general purpose solution and well specified to be interoperable is not immediately available of plain HTTP. For this reason there is a host of developer resources provided by the Bluetooth SIG developer portal that outline how to develop for Bluetooth Low Energy and GATT for various popular OS and platforms. A more recent activity (Whitepaper, publication in process) also present a practical method to transfer and interact with GATT devices using HTTP and JSON data over Internet and Web.
7.7.1
Background
Bluetooth® technology is a wireless communications system intended to replace the cables connecting electronic devices. Bluetooth technology is powerful, low energy and lower in cost to make your development faster and easier.

The Bluetooth Core System consists of an RF transceiver, baseband, and protocol stack. The system offers services enabling the connection of devices and the exchange of a variety of classes of data between these devices. Many features of the core specification are optional, allowing product differentiation.

The most recent enhancement, Bluetooth v4.0, is like three specifications in one—Classic Bluetooth technology, Bluetooth low energy technology, and Bluetooth high speed technology—all of which can be combined or used separately in different devices according to their functionality.

To use Bluetooth wireless technology, a device must be able to interpret certain Bluetooth profiles. Bluetooth profiles are definitions of possible applications and specify general behaviors that Bluetooth enabled devices use to communicate with other Bluetooth devices. There is a wide range of Bluetooth profiles describing many different types of applications or use cases for devices. By following the guidance provided by the Bluetooth specification, developers can create applications to work with other Bluetooth devices.

7.7.2
Status
When the Bluetooth® SIG announced the formal adoption of Bluetooth Core Specification version 4.0, it included the Bluetooth Smart (low energy) feature. This final step in the adoption process opened the door for qualification of all Bluetooth product types to version 4.0.
Bluetooth v.1.2 is endorsed and ratified as IEEE 802.15.1; this is based on the standard issued in 2005). Recent versions of Bluetooth now known as 4.0 – or “Bluetooth Smart” are openly & publically available thought the Bluetooth SIG. The specificatons may be endorsed ratified & published. Publication is an option, if preferred by an SDO or partnership project. The Bluetooth SIG is encourages direct liaison with oneM2M.
The Bluetooth SIG consideres that Version 4.0 Bluetooth Smart is frozen and stable. It is being tested agaist for devices and conformance, new profiles are being added. However the core specification is being used and updated toward.

7.7.3
Category and Architectural Style
The Bluetooth® core system covers the four lowest layers and associated protocols defined by the Bluetooth specification as well as one common service layer protocol, the service discovery protocol (SDP) and the overall profile requirements specified in the generic access profile (GAP). A complete Bluetooth application requires a number of additional services and higher layer protocols defined in the Bluetooth specification.

To use Bluetooth wireless technology, a device must be able to interpret certain Bluetooth profiles. Bluetooth profiles are definitions of possible applications and specify general behaviors that Bluetooth enabled devices use to communicate with other Bluetooth devices. There is a wide range of Bluetooth profiles describing many different types of applications or use cases for devices. By following the guidance provided by the Bluetooth specification, developers can create applications to work with other Bluetooth devices.

At a minimum, each Bluetooth profile contains information on the following topics:

· Dependencies on other profiles

· Suggested user interface formats

· Specific parts of the Bluetooth protocol stack used by the profile. To perform its task, each profile uses particular options and parameters at each layer of the stack and this may include, if appropriate, an outline of the required service record

7.7.4
Intended use - Personal Area Network protocols
Bluetooth Smart (low energy) technology allows enhancement of devices like watches, toothbrushes or toys with Bluetooth wireless technology. It also provides the ability for developers to incorporate new functionalities into devices already enabled by Bluetooth technology such as sports & fitness, health care, human interface (HIDs) and entertainment devices. For example, sensors in pedometers and glucose monitors will only run low energy technology. These single mode devices benefit from the power savings provided by v4.0 as well as the low cost implementation. Watches take advantage of both low energy technology while collecting data from body-worn fitness sensors and Classic Bluetooth technology when sending that information to a PC, or displaying caller ID information when wirelessly connected to a smartphone. Smartphones and PCs, which support the widest range of use cases for the specification, utilizing the full dual-mode package with Classic, low energy and high speed versions of the technology running side by side.
7.7.5
Deployment Trend - Bluetooth and Bluetooth Smart (low energy)
Originally intended to be a wireless replacement for cables on phones, headsets, keyboards and mice, Bluetooth technology now goes way beyond that. Bluetooth technology is bringing everyday devices into a digital and connected world. In the health and fitness market, the use cases vary widely — from sensors that monitor activity levels to medical and wellness devices that monitor healthcare, like a glucometer, inhaler or toothbrush. The top-selling Smartphones, PCs and tablets all support Bluetooth technology. In-vehicle systems give the ability to make phone calls, send texts, and even make dinner reservations. The Bluetooth SIG is also seeing developments where drivers will monitor important information like vehicle diagnostics, traffic, even driver health — all in real time. Bluetooth technology is creating opportunities for companies to develop solutions that make a consumer's life better.

Bluetooth Smart and Bluetooth Smart Ready are extensions of the original Bluetooth brand introduced in 2011. The Smart and Smart Ready designations indicate compatibility of products using the low energy feature of the Bluetooth v4.0 specification. A Bluetooth Smart Ready product connects to both classic Bluetooth and Bluetooth Smart low energy products. By contrast, a Bluetooth Smart product collects data and runs for months or years on a tiny battery. Think of a Smart product as a sensor that works for a long time without changing the battery (like a fitness heart rate monitor) and a Smart Ready product as a collector (like a smart phone or tablet receiving the information and displaying it in an application).

7.7.5.1
Bluetooth Smart (low energy) Technology

When the Bluetooth® SIG announced the formal adoption of Bluetooth Core Specification version 4.0, it included the hallmark Bluetooth Smart (low energy) feature. This final step in the adoption process opened the door for qualification of all Bluetooth product types to version 4.0.

Bluetooth Smart (low energy) technology allows it to be included in devices like watches, toothbrushes or toys to enable the connectivity using Bluetooth wireless technology. It also provides the ability for developers to incorporate new functionalities into devices already enabled by Bluetooth technology such as sports & fitness, health care, human interface (HIDs) and entertainment devices. For example, sensors in pedometers and glucose monitors will only run low energy technology. These single mode devices benefit from the power savings provided by v4.0 as well as the low cost implementation. Watches take advantage of both low energy technology while collecting data from body-worn fitness sensors and Classic Bluetooth technology when sending that information to a PC, or displaying caller ID information when wirelessly connected to a smartphone. Smartphones and PCs, which support the widest range of use cases for the specification, utilizing the full dual-mode package with Classic, low energy and high speed versions of the technology running side by side.

7.7.5.2
Bluetooth High Speed Wireless Technology

Bluetooth high speed wireless technology delivers new opportunities in the home entertainment and consumer electronics markets. By enabling wireless users to quickly send video, music and other large files between devices, Bluetooth high speed wireless technology provides a richer experience while maintaining the same familiar user interface.

Key features of Bluetooth high speed wireless technology include:

· Power Optimization. The new Bluetooth technology reduces power consumption. The high speed radio is used only when necessary, which means longer battery life for your devices

· Improved Security. The Generic Alternate MAC/PHY in Bluetooth high speed enables the radio to discover other high speed devices only when they are needed in the transfer of music, video and other large data files. This decreases power consumption and increases radio security

· Enhanced Power Control. Drop-out reduction is now a reality: enhanced Bluetooth technology makes power control faster and reduces the impact of a power or signal loss. Users are now less likely to experience a dropped headset connection – even when a phone is deep inside a coat pocket or tote

· Lower Latency Rates. Unicast Connectionless Data (UCD) improves the user’s speed experience by moving small amounts of data faster, which lowers latency rates

7.7.6
Key features
· Bluetooth wireless technology is geared towards voice and data applications

· Bluetooth wireless technology operates in the unlicensed 2.4 GHz spectrum

· The range of Bluetooth wireless technology is application specific. The Bluetooth Specification mandates operation over a minimum distance of 10 meters or 100 meters depending on the Bluetooth device class, but there is not a range limit for the technology. Manufacturers may tune their implementations to support the distance required by the use case they are enabling.

· The peak data rate with EDR is 3 Mbps

NOTE:
The term Enhanced Data Rate (EDR) is used to describe π/4-DPSK and 8DPSK schemes, each giving 2 and 3 Mbit/s respectively

· EDR Profiles in steps 10 to 100 metres.

· Bluetooth wireless technology is able to penetrate solid objects

· Bluetooth technology is omni-directional and does not require line-of-sight positioning of connected devices

· Security has always been and continues to be a priority in the development of the Bluetooth specification. The Bluetooth specification allows for three modes of security, see below for security.

Bluetooth Smart (low energy) wireless technology features:

· Ultra-low peak, average and idle mode power very low consumption

· Ability to run for years on standard coin-cell batteries

· Multi-vendor interoperability

· Enhanced range (EDR Profiles in steps 10 to 100+ metres).
	Technology
	Bluetooth BR/EDR/HS Technology
	Bluetooth Low Energy Technology

	Radio Frequency
	2.4 GHz ISM
	2.4 GHz ISM

	Range
	10 to 100 meters
	10 to 100+ meters

	Data Rate
	1-3 Mbps (Classic) >400 Mbps (AMP, 802.11n)
	1 Mbps

	Nodes/Active Slaves
	7 / 16777184
	Unlimited

	Security
	56b E0 (classic)/128b AES (AMP) and applications layer user defined
	128b AES and application layer user defined

	Robustness
	Adaptive frequency hopping,
	FEC Adaptive frequency hopping

	Latency (from non-connected state)
	100ms
	<3ms

	Regulatory Acceptance
	Worldwide
	Worldwide

	Voice Capable
	Yes
	No

	Network Topology
	Scatternet
	Star-bus

	Power Consumption
	1 as the reference, x10 for AMP
	0.01 to 0.5 (use case dependent)

	Service Discovery
	Yes
	Yes

Table 7.7a: Table of Blutooth capabilities
7.7.7
Protocol Stack

The Bluetooth 4.0 specification uses a service-based architecture based on the attribute protocol (ATT). All communication in low energy takes place over the Generic Attribute Profile (GATT). An application or another profile uses the GATT profile so a client and server can interact in a structured way.

The server contains a number of attributes, and the GATT Profile defines how to use the Attribute Protocol to discover, read, write and obtain indications. These features support a service-based architecture. The services are used as defined in the profile specifications. GATT enables to expose service and characteristics defined in the profile specification.

The GATT profile is also part of the core and defined in the core specification.

Profiles: The first specification of Bluetooth 4.0 low energy wireless technology included profiles to optimize its functionality for a specific group of products.

Adopted GATT based Bluetooth Profiles and Services: The GATT architecture makes it easy to both create and implement new profiles. Many new profiles are under development so this continues to grow. The simplicity of implementing the profiles contributes to a rapid growth of applications and embedded devices supporting these.

Generic Attribute Profile (GATT) is built on top of the Attribute Protocol (ATT) and establishes common operations and a framework for the data transported and stored by the Attribute Protocol. GATT defines two roles: Server and Client. The GATT roles are not necessarily tied to specific GAP roles and but may be specified by higher layer profiles. GATT and ATT are not transport specific and can be used in both BR/EDR and LE. However, GATT and ATT are mandatory to implement in LE since it is used for discovering services

The GATT server stores the data transported over the Attribute Protocol and accepts Attribute Protocol requests, commands and confirmations from the GATT client. The GATT server sends responses to requests and when configured, sends indication and notifications asynchronously to the GATT client when specified events occur on the GATT server. GATT also specifies the format of data contained on the GATT server.

Attributes, as transported by the Attribute Protocol, are formatted as services and characteristics. Services may contain a collection of characteristics. Characteristics contain a single value and any number of descriptors describing the characteristic value.

With the defined structure of services, characteristics and characteristic descriptors a GATT client that is not specific to a profile can still traverse the GATT server and display characteristic values to the user. The characteristic descriptors can be used to display descriptions of the characteristic values that may make the value understandable by the user.
[image: image6.png]Applications

Generic Access Profile

_

Generic Attribute Profile

Attribute Protocol I Security Manager

Logical Link Control and Adaptation Protocol

ﬁ

Host Controller Interface

Link Layer I Direct Test Mode

Physical Layer

< y

Figure 7.7: Bluetooth Protocol Architecture
Editor’s Note: Need editable source for Fig 7.7
Below are links to the specifications for the current list of profiles supported by GATT in the above protocol architecture.
	GATT-Based Specifications (Qualifiable)
	Adopted Versions

	ANP
	Alert Notification Profile
	1.0 [image: image7.png]K

	ANS
	Alert Notification Service
	1.0 [image: image8.png]K

	CTS
	Current Time Service
	1.0 [image: image9.png]K

	DIS
	Device Information Service
	1.0 [image: image10.png]K

	FMP
	Find Me Profile
	1.0 [image: image11.png]K

	HTP
	Health Thermometer Profile
	1.0 [image: image12.png]K

	HTS
	Health Thermometer Service
	1.0 [image: image13.png]K

	HRP
	Heart Rate Profile
	1.0 [image: image14.png]K

	HRS
	Heart Rate Service
	1.0 [image: image15.png]K

	IAS
	Immediate Alert Service
	1.0 [image: image16.png]K

	LLS
	Link Loss Service
	1.0 [image: image17.png]K

	NDCS
	Next DST Change Service
	1.0 [image: image18.png]K

	PASP
	Phone Alert Status Profile
	1.0 [image: image19.png]K

	PASS
	Phone Alert Status Service
	1.0 [image: image20.png]K

	PXP
	Proximity Profile
	1.0 [image: image21.png]K

	RTUS
	Reference Time Update Service
	1.0 [image: image22.png]K

	TIP
	Time Profile
	1.0 [image: image23.png]K

	TPS
	Tx Power Service
	1.0 [image: image24.png]K

Table 7.7b: List of Profiles
The link layer provides low power idle mode operation, simple device discovery and reliable point-to-multipoint data transfer with advanced power-save and encryption functionalities.

7.7.7.1
Single mode and dual mode

Bluetooth Smart (low energy) wireless technology contains two equally important implementation alternatives: single mode and dual mode:

· Small devices like watches and sports sensors use the single mode Bluetooth Smart (low energy) implementation.

· Dual mode implementations use parts of the Bluetooth hardware, sharing one physical radio and antenna.

	BR/EDR Profiles
	Description

	A2DP
	Advanced Audio Distribution Profile
	describes how stereo quality audio can be streamed from a media source to a sink.

	AVRCP
	Audio/Video Remote Control Profile
	is designed to provide a standard interface to control TVs, stereo audio equipment, or other A/V devices. This profile allows a single remote control (or other device) to control all A/V equipment to which a user has access.

	BIP
	Basic Imaging Profile
	defines how an imaging device can be remotely controlled, how an imaging device may print, and how an imaging device can transfer images to a storage device.

	BPP
	Basic Printing Profile
	allows devices to send text, e-mails, v-cards, images or other information to printers based on print jobs.

	DI
	Device ID Profile
	provides additional information above and beyond the Bluetooth Class of Device and to incorporate the information into both the Service Discovery Profile (SDP) record and the EIR response.

	DUN
	Dial-Up Network Profile
	provides a standard to access the Internet and other dial-up services via Bluetooth technology.

	FTP
	File Transfer Profile
	defines how folders and files on a server device can be browsed by a client device.

	GAVDP
	Generic Audio/Video Distribution Profile
	provides the basis for A2DP and VDP, which are the basis of the systems designed for distributing video and audio streams using Bluetooth technology.

	GOEP
	Generic Object Profile
	is used to transfer an object from one device to another.

	HFP
	Hands-Free Profile
	HFP describes how a gateway device can be used to place and receive calls for a hand-free device.

	HCRP
	Hard Copy Cable Replacement Profile
	defines how driver-based printing is accomplished over a Bluetooth wireless link.

	HDP
	Health Device Profile
	enables Healthcare and Fitness device usage models.

	HSP
	Headset Profile
	describes how a Bluetooth enabled headset should communicate with a Bluetooth enabled device.

	HID
	Human Interface Device Profile
	defines the protocols, procedures and features to be used by Bluetooth keyboards, mice, pointing and gaming devices and remote monitoring devices.

	MAP
	Message Access Profile
	defines a set of features and procedures to exchange messages between devices.

	MPS
	Multi Profile
	defines a set of features and procedures between Multiple Profiles Single Device and Multiple Profiles Multiple Devices

	OPP
	Object Push Profile
	defines the roles of push server and push client.

	PBAP
	Phone Book Access Profile
	defines the procedures and protocols to exchange Phone Book objects between devices.

	PAN
	Personal Area Networking Profile
	describes how two or more Bluetooth enabled devices can form an ad-hoc network and how the same mechanism can be used to access a remote network through a network access point.

	SAP
	SIM Access Profile
	defines the protocols and procedures that shall be used to access a GSM SIM card, a UICC card or an R-UIM card via a Bluetooth link.

	SDAP
	Service Discovery Application Profile
	describes how an application should use SDP to discover services on a remote device.

	SPP
	Service Port Profile
	defines how to set-up virtual serial ports and connect two Bluetooth enabled devices.

	SYNC
	Synchronization Profile
	used in conjunction with GOEP to enable synchronization of calendar and address information (personal information manager (PIM) items) between Bluetooth enabled devices.

	VDP
	Video Distribution Profile
	defines how a Bluetooth enabled device streams video over Bluetooth wireless technology.

Table 7.7c: List of BR/EDR Profiles
The following table is a list of the Core Bluetooth spaecication version 4.0 that may be found at https://www.bluetooth.org/en-us/specification/adopted-specifications.

	Specification
	Adopted Date
	Notes

	Core Specification Addendum (CSA) 4
	12 February 2013
	Refer to the Mixing of Specification Versions Part for applicability

	Core Specification Supplement (CSS) v3
	12 February 2013
	

	Core Specification Addendum (CSA) 3
	24 July 2012
	Refer to the Mixing of Specification Versions Part for applicability

	Core Specification Addendum (CSA) 2
	27 December 2011
	Refer to the Mixing of Specification Versions Part for applicability

	Core Version 4.0
	30 June 2010
	

Table 7.7d: Bluetooth Core Specifications
7.7.8
Data Model
The GATT Profile specifies the structure in which profile data is exchanged. This structure defines basic elements such as services and characteristics, used in a profile. The top level of the hierarchy is a profile. A profile is composed of one or more services necessary to fulfill a use case. A service is composed of characteristics or references to other services. Each characteristic contains a value and may contain optional information about the value. The service and characteristic and the components of the characteristic (i.e., value and descriptors) contain the profile data and are all stored in attributes on the server.

A service is a collection of data and associated behaviors to accomplish a particular function or feature of a device or portions of a device. A service may reference other primary or secondary services and/or a set of characteristics that make up the service.

There are two types of services: primary and secondary. A primary service provides the primary functionality of a device. A secondary service provides auxiliary functionality of a device and is referenced from at least one primary service on the device.

To maintain backward compatibility with earlier clients, later revisions of a service definition can only add new referenced services or optional characteristics. Later revisions of a service definition are also forbidden from changing behaviors from previous revision of the service definition. Services may be used in one or more profiles to fulfill a particular use case.

A referenced service is a method incorporating another service definition on the server as part of the service referencing it. When a service references another service, the entire referenced service becomes part of the new service including any nested referenced services and characteristics. The referenced service still exists as an independent service. There are no limits to the depth of nested references.

A characteristic is a value used in a service along with properties and configuration information about how the value is accessed and information about how the value is displayed or represented. A characteristic definition contains a characteristic declaration, characteristic properties, and a value. It may also contain descriptors that describe the value or permit configuration of the server with respect to the characteristic value.
7.7.9
Security
Bluetooth® Smart (low energy) technology has some security differences with respect to BR/EDR security features such as Secure Simple Pairing. The association models are similar to Secure Simple Pairing from the user perspective and have the same names but differences in the quality of the protection provided.

The overall goal of keeping the cost of the controller and the complexity of a slave device to a minimum was used in making compromises on security capabilities in Bluetooth Smart (low energy) technology.

Bluetooth Smart (low energy) technology uses three association models referred to as Just Works, Out of Band and Passkey Entry. Bluetooth low energy technology does not have an equivalent of Numeric Comparison. Each of these association models is similar to Secure Simple Pairing with the following exception; Just Works and Passkey Entry do not provide any passive eavesdropping protection. This is because Secure Simple Pairing uses Elliptic Curve Diffie-Hellman and Bluetooth Smart (low energy) does not. The use of each association model is based on the I/O capabilities of the devices in a similar manner as Secure Simple Pairing.

Bluetooth Smart (low energy) technology supports a feature that reduces the ability to track a Bluetooth device over a period of time by changing the address on a frequent basis. The privacy feature is not used in the GAP discovery mode and procedures but it is used when supported during connection mode and connection procedures.
7.7.10
Dependencies
7.7.11
Benefits and Constraints
Editor’s Note: To be completed
7.7.11.1
Benefits
Editor’s Note: To be completed
7.7.11.2
Constraints

Editor’s Note: To be completed
7.7.12
Support of oneM2M requirements
Support of oneM2M Requirements [i.2] by <protocol x> is shown in the following clauses:
Editor’s Note: The requirments listed herein will need review and alignment with the final approved oneM2M Requirements TS-0002 [i.2]

7.7.12.1
Fully Supported Requirements

Editor’s Note: To be completed
7.7.12.2
Partially Supported Requirements

Editor’s Note: To be completed
7.7.12.3
Disallowed Requirements

Editor’s Note: To be completed
7.x
Protocol x {template}
7.x.1
Background
7.x.2
Status
7.x.3
Category and Architectural Style
7.x.4
Intended use
7.x.5
Deployment Trend
7.x.6
Key features
7.x.7
Protocol Stack
Editor’s Note: Added per discussion in PRO WG3 - TP#6
7.x.8
Data Model
7.x.9
Security
7.x.10
Dependencies
7.x.11
Benefits and Constraints
7.x.11.1
Benefits
7.x.11.2
Constraints

7.x.12
Support of oneM2M requirements
Support of oneM2M Requirements [i.2] by <protocol x> is shown in the following clauses:
Editor’s Note: The requirments listed herein will need review and alignment with the final approved oneM2M Requirements TS-0002 [i.2]

7.x.12.1
Fully Supported Requirements

Editor’s Note: Per discussion in PRO WG3 - TP#6

7.x.12.2
Partially Supported Requirements

Editor’s Note: Added per discussion in PRO WG3 - TP#6

7.x.12.3
Disallowed Requirements

Editor’s Note: Added per discussion in PRO WG3 - TP#6

8
Summary
Editor’s Note: Summary and “list of those protocols with which oneM2M could encapsulate and/or interoperate” to be provided
The following tables summarise how selected traits are addressed by the analysed protocols. The selected traits include:

•
Traits explicitly titled in clauses: 7.x.3 (architectural style), 7.x.5 (deployment), 7.x.8 (data model), 7.x.9 (security) and 7.x.10 (dependencies)

•
Traits incorporated into clauses 7.x.x , e.g. QoS, Stability

•
Traits which are highly relevant to M2M e.g. Multicast, Pub/sub, efficiency, time services
	Protocol / Traits
	Archi-tecture Style
	Primary deployment & size
	QoS
	Messaging

(Req/Res, Pub/Sub)
	Multicast (app level, IP level)
	Compute Resources
Req’d
	Domain scale

	CoAP
	
	
	
	
	
	
	

	MQTT
	
	
	
	
	
	
	

	RESTful HTTP
	
	
	
	
	
	
	

	XMPP
	
	
	
	
	
	
	

	TR-50
	
	
	
	
	
	
	

	Websockets
	
	
	
	
	
	
	

	BT
	
	
	
	
	
	
	

Table 8a: Summary of Protocols' Traits
	Protocol / Traits
	Data Model
	Dependencies

-Underlying protocols (UDP/TCP, L2, serial interfaces)

-Infrastructure (server/broker)
	Time services (time-stamp)
	Efficiency
	Data conditional actions
	Security
	Stability (last update, next update)

	CoAP
	
	
	
	
	
	
	

	MQTT
	
	
	
	
	
	
	

	RESTful HTTP
	
	
	
	
	
	
	

	XMPP
	
	
	
	
	
	
	

	TR-50
	
	
	
	
	
	
	

	Websockets
	
	
	
	
	
	
	

	BT
	
	
	
	
	
	
	

Table 8b: Summary of Protocols' Traits [continued]
Editor’s Note: Additional traits to consider include: message size, session management, encryption, integrity, authentication, protocol addressability limitations, and involved SDO.

Editor’s Note: We may wish to format the tables by categories of the traits and/or the protocols.

Editor’s Note: Some traits (e.g. efficiency and scale) may best be considered in context of a few use case scenarios since they may be dependent upon number of data elements, frequency of exchange, etc.

The following text is to be used when appropriate:

Proforma copyright release text block

This text box shall immediately follow after the heading of an element (i.e. clause or annex) containing a proforma or template which is intended to be copied by the user. Such an element shall always start on a new page.

Notwithstanding the provisions of the copyright clause related to the text of the present document, OneM2M grants that users of the present document may freely reproduce the <proformatype> proforma in this {clause|annex} so that it can be used for its intended purposes and may further publish the completed <proformatype>.

Annex A
List of M2M-related Protocols (Informative)
NOTE: The following list table has been created for reference from publicly-available sources, and no representation is made regarding the accuracy or timeliness of the information it contains. In addition, the appearance or omission of any M2M-related information in this list does not imply either the intention, or lack of intention, to undertake any normative or other work within oneM2M.

Table A.1: M2M-related Protocols
Editor’s Note: “Context” Column Added per discussion in PRO WG3 - TP#6
	Short Name
(docs link)
	Full Name /
Description
	Originating org
(source link)
	Context
	Notes

	
	
	
	tbc
	

	1-Wire®
	1-Wire®
	[Dallas-Maxim]
	
	

	6LoWPAN
	IPv6 over Low-Power Wireless Personal Area Networks
	IETF 6LoWPAN
	
	RFC 4944

	AllJoyn™
	AllJoyn™
	AllJoyn Alliance
[Qualcomm]
	
	(open source)

	ANSI
	~~
	ANSI
	
	

	ANSI C12.18
	Protocol Specification for ANSI Type 2 Optical Port
	ANSI / NEMA
	
	

	ANSI C12-21
	Protocol Specification for Telephone Modem Communication
	ANSI / NEMA
	
	

	ANSI C12.22
	Interfacing to Data Communication Networks
	ANSI / NEMA
	
	Advanced Metering Infrastructure (AMI)

	ANT+
	ANT+
	ThisIsAnt

 HYPERLINK "http://www.dynastream.com"

[Dynastream Inc]

	
	

	BACnet™
	Building Automation & Control Network
	ASHRAE SSPC 135
BACnet International
	
	

	BâtiBUS,
	Bâtiment-Bus
-superceded-
	
	
	see KNX

	BitXML
	BitXchange Markup Language
	BitXML
[Your Voice S.P.A.]
	
	

	Bluetooth
	~~
	Bluetooth SIG
	
	IEEE 802.15.1

	Bluetooth HDP
	Bluetooth
Health Device Profile
	Continua Health Alliance
Bluetooth SIG
	
	Partner Type 2

	Bluetooth
LE / SMART
	Bluetooth Low Energy / Smart Devices
	Bluetooth SIG
	
	

	C-Bus
	C-Bus
	[Clipsal / Schneider Electric]
	
	

	CANOpen
	Controller Area Network - Open
	CANOpen Forum
[CiA. e.V.]
	
	EN 50325-4 2002 Part 4

	CC-Link
	CC-Link
	CC-Link Partner Association
[Mitsubishi]
	
	SEMI E54.12-0701E

	CEBus
	Consumer Electronics Bus
	CEA (was EIA)
	
	EIA 600

	CIP
	Common Industrial Protocol
	Open DeviceNet Vendors Association
[Rockwell Automation]
	
	

	CoAP
	Constrained Application Protocol
	IETF CORE WG
	
	See Clause 7.1

	CompoNet
	CompoNet (CIP)
on TDMA Technology
	Open DeviceNet Vendors Association
	
	

	Contiki
	Contiki Operating System
	Contiki Project
	
	(open source)

	ControlNet
	ControlNet (CIP)
on CTDMA Technology
	Open DeviceNet Vendors Association
	
	

	DALI
	Digital Addressable Lighting Interface
	DALI
	
	IEC 62386

	DLMS
	Device Language Message Specification
	
	
	see IEC 62056

	DASH7
	(ISO 18000) - Dash 7
	DASH7 Alliance
	
	ISO/IEC 18000-7

	DDS
	Data Distribution Service for Real-Time Systems
	OMG
	
	

	DDS-RTPS
	DDS Real-Time Publish-Subscribe
	OMG
	
	

	DECT™ ULE
	Digital Enhanced Cordless Telecommunications - Ultra Low Energy
	ETSI TC DECT
	
	TS 102 939-1

	DeviceNet
	DeviceNet (CIP)
on CAN Technology
	Open DeviceNet Vendors Association
[Allen-Bradley / Rockwell]
	
	

	DNP
	Distributed Network Protocol
	IEEE / DNP
	
	IEEE Std 1815™

	Dynet 1 / 2
	Dynalite Network
	[Philips Dynalite]
	
	RS-485

	E5
	(Ease, Energy, Efficiency, Environment and Earth)
Smart Thermostat
	[EarthNetworks]
	
	

	Eclipse
	~~
	Eclipse Foundation
	
	

	Concierge (proposed)
	Lightweight, embeddable OSGi framework
	Eclipse Foundation
	
	(open source)

	Kura
(proposed)
	Java M2M framwork
	Eclipse Foundation
	
	(open source)

	Lua API
	Scripting API
	Eclipse Foundation
	
	(open source)

	Mihini / M3DA
	Mihini/M3DA Specification
	Eclipse Foundation
	
	(open source)

	Paho
	Implementations of Open and Standard Messaging Protocols
	Eclipse Foundation
	
	(open source)

	Ponte
(proposed)
	M2M to REST bridge
	Eclipse Foundation
	
	(open source)

	SCADA
	open Supervisory Control and Data Acquisition
	Eclipse Foundation
(was openSCADA)
	
	(open source)

	E-DCP
	Ericsson Device Connection Platform
	[Ericsson]
	
	

	EHS
	European Home Systems
-superceded-
	
	
	see KNX

	EIB
	European Installation Bus
-superceded-
	
	
	see KNX

	Energyhub
	Mercury™ smart thermostat platform
	[Energyhub]
	
	

	EnOcean
	EnOcean Weqipment Profiles (EEP)
	EnOcean Alliance
[EnOcean / Siemens]
	
	EN 50090,
ISO/IEC 14543

	ETSI M2M
TS 102 921
	Machine-to-Machine communications (M2M);

mIa, dIa and mId interfaces
	ETSI M2M
	
	Partner Type 1
oneM2M Pool Document

	EXALTED
	EXpAnding LTE for Devices
	Exalted consortium
[Eurescom]
	
	EC FP7, 2010-2013

	FieldBus
	FieldBus
	Fieldbus Foundation
	
	IEC 61158

	FlatMesh
	Remote Condition Monitoring
	[Senceive]
	
	IEEE 802.15.4

	flexWARE
	Flexible Wireless Automation in Real-Time Environments
	flexWARE Interest Group (FIG)
	
	EU FP7

	HBS
	Honeywell Building Solutions
	[Honeywell]
	
	

	IEC
	~~
	IEC
	
	

	IEC 60870-5-xxx
	Telecontrol
(Supervisory Control and Data Acquisition)
	IEC TC57 WG03
	
	IEC 101
IEC 103
IEC 104

	IEC 61107
	Smart Meter Communications Protocol
	IEC TC57
	
	

	IEC 61850
	Electrical Substation Automation.
	IEC TC57
	
	

	IEC 62056

DLMS/
COSEM
	Device Language Message Specification/Companion Specification for Energy Metering
	IEC TC13 WG 14
DLMS User Association
	
	

	IEC 62351
	Security
	IEC TC57 WG15
	
	

	INSTEON
	Dual-mesh (RF/PL) Home Management Metwork
	Insteon
[SmartLabs, Inc.]
	
	

	IEEE
	~~
	IEEE
	
	

	1451.x
	Smart Transducer Interface for Sensors and Actuators
	IEEE
	
	

	P1451.1.4
	Smart Transducer Interface for Sensors, Actuators, and Devices - XMPP
	IEEE IM/ST - TC9
	
	ISO/IEC/IEEE
21451-1-4

	802.11a
802.11b
802.11g
802.11n
	Wi-Fi
	IEEE
Wi-Fi Alliance
	
	

	802.11p
	WAVE - Wireless Access in Vehicular Environments
	IEEE
	
	IEEE 1609

	802.11ag
	WiGig
	IEEE
Wi-Fi Alliance
(was WiGig)
	
	

	802.11ah
(in progress)
	Sub 1 GHz (S1G) Wireless Sensor Network for Smart Metering
	IEEE
	
	

	802.15
	Wireless Personal Area Network (WPAN)
	IEEE
	
	

	802.16
	WiMAX
Wireless Metropolitan Area Networks
	WiMAX Forum
IEEE
	
	

	IETF
	~~
	IETF
	
	

	IP (v4)
	Internet Protocol
	IETF
	
	RFC791
Updated by:
RFC1349,
RFC2474,
RFC6864

	IPv6
	Internet Protocol version 6
	IETF
	
	RFC2460
Updated by: RFC5095,
RFC5722,
RFC5871,
RFC6437,
RFC6564,
RFC6935,
RFC6946

	TCP
	Transmission Control Protocol
	IETF
	
	RFC793
Updated by:
RFC1122,
RFC3168,
RFC6093,
RFC6528

	UDP
	User Datagram Protocol
	IETF
	
	RFC768

	Instabus
	-superceded-
	
	
	see KNX

	IPDR
	IP Data Record
	TM Forum
	
	

	IrDA
	~
	Infrared Data Association
	
	

	FIR
	Fast IrDA
	Infrared Data Association
	
	

	SIR
	Serial Infrared
	Infrared Data Association
	
	

	IRsimple™
	IrDA Simple
(high-speed wireless)
	Infrared Data Association
	
	

	ISA100.11a
	ISA100.11a
	ISA
ISA100 Wireless Compliance Institute (WCI)
	
	

	ISO 21215
CALM M5
	Communication Access for Land Mobile
	ISO TC 204/WG 16
	
	

	KNX
	KNX (Konnex)
	KNX Association
	
	ISO/IEC 14543-3
CENELEC EN 50090
CEN EN 13321-1
[CN] GB/Z 20965

	HGI
(in progress)
	~~
	Home Gateway Initiative (HGI)
	
	Partner Type 2

	RWD036
	Smart Home Architecture and System Requirements
	Home Gateway Initiative (HGI)
	
	

	RWD043
	Requirements for RP1 on the Smart Home Platform
	Home Gateway Initiative (HGI)
	
	

	GWD042
	Smart Home Appliance (Device) Model Template
	Home Gateway Initiative (HGI)
	
	

	HL7
	Health Level Seven
	Health Level Seven International
	
	

	Jabber
	-
	
	
	see XMPP

	LonWorks®
	Control Network Protocol Specification
	LonMark
[Echelon]
	
	ANSI/CEA-709.1-B
SO/IEC 14908-1)

	M2MXML
	Machine-To-Machine XML-based Protocol
	M2MXML Project
	
	(open source)

	Mango
	Mango Automation
	[Serotonin Software]
	
	(open source)

	M-Bus
	Meter Bus
	M-Bus Usergroup
	
	EN 13757-2, -3

	MiWi
	Microchip P2P Wireless Protocol
	[Microchip Tech]
	
	IEEE 802.15.4

	ModBus
	Modicon Bus
	Modbus Organization
[Schneider Automation]
(was Modicon)
	
	

	ModBus TCP
(in progress)
	Modicon Bus TCP/IP
	Modbus Organization
[Schneider Automation]
	
	

	MyriaNed®
	Self organizing Wireless Sensor Network
	[DevLab]
[Chess]
	
	

	OASIS
	~~
	OASIS
	
	

	AMQP
	Advanced Message Queuing Protocol
	OASIS AMQP TC
[JPMorgan-Chase]
	
	

	MQTT
	Message Queuing Telemetry Transport
	OASIS MQTT TC
MQTT.org
[IBM/Eurotec (Arcom)]
	
	See Clause 7.2

	oBIX
	Open Building Information Exchange
	OASIS oBIX TC
oBix
	
	

	OMA M2M Enablers
	~~
	Open Mobile Alliance
	
	Partner Type 2

	CPNS
	Converged Personal Network Services
	Open Mobile Alliance
	
	

	DM 1.3
	Device Management
	Open Mobile Alliance
	
	

	DM 2.0
	Device Management
	Open Mobile Alliance
	
	

	GwMO
	Gateway Management Object
	Open Mobile Alliance
	
	

	LWM2M
	Lightweight M2M protocol
	Open Mobile Alliance
	
	

	M2M DC
	M2M Device Classification
	Open Mobile Alliance
	
	

	OCMAPI
	Open Connection Manager API
	Open Mobile Alliance
	
	

	oneNet
	Low Power Wireless Protocol
	ONE-NET
	
	(open source)

	OpenSCADA
	-superceded-
	-
	
	see Eclipse SCADA

	OpenTag
	-superceded-
	-
	
	see DASH7

	OpenWSN
	Open Wireless Sensor Networks
	OpenWSN Project
(was UC Berkeley)
	
	(open source)

	OSGi™ R5
	OSGi R5 for embedded devices
	OSGi™ Alliance
	
	

	OSGP
	Open Smart Grid Protocol
	ETSI
(was ISG OSG)
	
	GS OSG 001
Ver. 1.1.1
with ISO/IEC 14908

	OSIAN
	Open Source IPv6 Automation Network
	OSIAN Project
	
	(open source)

	Profibus
	Process Field Bus
	Profibus & Profinet International (PI)
	
	

	RFID
	Radio-Frequency IDentification
	
	
	

	EN 300 220
	ERM Short Range Devices
	ETSI
	
	

	EN 302 208
	ERM Radio Frequency Identification Equipment
	ETSI
	
	

	EPC Gen2
	EPCglobal UHF
Class 1 Generation 2
	EPCglobal
	
	

	ISO/IEC 14443
	HighFID Proximity Card
	ISO/IEC
	
	

	ISO/IEC 15693
	HighFID non-contact Smart Tags
	ISO/IEC
	
	

	ISO/IEC 18000
	Radio frequency identification for item management
	ISO/IEC
	
	

	ISO/IEC 18092
	Near Field Communication
NFCP-1
	ISO/IEC
	
	

	ISO/IEC 21481
	Near Field Communication
NFCP-2
	ISO/IEC
	
	

	RS-232
	-superceded-
	EIA
	
	see TIA-232-F

	RS-422
	-superceded-
	EIA
	
	see TIA -422

	RS-485
	-superceded-
	EIA
	
	see TIA-485

	RuBee
	High security Wireless Asset Visibility Network
	RuBee
[Visible Assets]
	
	IEEE 1902.1, 1901.2

	Sinec H1
	Siemens Ethernet Control - H1

-legacy-
	[Siemens]
	
	

	SOAP
	Simple Object Access Protocol
	W3C
	
	

	SMART
	-superceded-
	
	
	see Bluetooth SMART

	SmartBus
	SmartBus Home Automation Control (HAC)
	Smart Home Group
[Digitcom Technology]
	
	

	SMS
	Short Message Service
	3GPP
	
	TS 23.040

	SNMP
	~~
	IETF OPSA WG
(was SNMP WG)
	
	

	SNMP v3
	Simple Network Management Protocol v3
	IETF OPSA WG
	
	RFC3411

	SNMP MIB
	Management Information Block
	IETF OPSA WG
	
	RFC3418

	TIA
	~~
	TIA
	
	Partner Type 1

	TIA-232-F
	Interface Between Data Terminal Equipment and Data Circuit-Terminating Equipment Employing Serial Binary Data Interchange
	TIA TR-30
(was EIA RS-232)
	
	

	TIA-422
	Electrical Characteristics of the Balanced Voltage Digital Interface Circuit
	TIA TR-30
(was EIA RS-422)
	
	

	TIA-485
	Electrical Characteristics of Generators and Receivers for Use in Balanced Digital Multipoint Systems
	TIA TR-30
(was EIA RS-485)
	
	

	TIA-4940.020
	Smart Device Communications
Protocol Aspects
	TIA TR-50
	
	Partner Type 1
oneM2M Pool Document

	UPnP
	Universal Plug and Play
	UPnP Forum
	
	

	TR-069
	CPE WAN Management Protocol
	Broadband Forum (BBF)
	
	Partner Type 2

	VSCP
	Very Simple Control Protocol
	VSCP Project
[Grodans Paradis AB]
	
	(open source)

	WAP
	Wireless Application Protocol
	Open Mobile Alliance
(was: WAP Forum)
	
	

	WAVE2M
	Open Low-Power Wireless
	WAVE2M
	
	

	Wavenis
	-superceded-
	
	
	see WAVE2M

	Weightless 1.0
	Low-power White-space Wireless Network
	Weightless SIG
[Neul]
	
	

	Wibree
	-superceded-
	
	
	see Bluetooth SMART

	WirelessHART
	Wireless Highway Addressable Remote Transducer
	HART Communication Foundation
	
	IEEE 802.15.4 /
IEC 62591

	Wireless HD
	Wireless High-Definition Digital Interface
	WirelessHD Consortium
	
	

	Wireless USB
	Wireless Universal Serial Bus
	USB Implementers Forum
	
	

	WorldFIP
	World Factory
Instrumentation Protocol
	WorldFIP
	
	

	X-10
	X-10
	[X-10 (USA)]
	
	

	xAP
	XAP Home Automation Protocol
	XAP Forum
	
	(open source)

	xPL
	xPL Home Automation Project
	xPL Project
	
	

	XMPP
	eXtensible Messaging and Presence Protocol
	IETF XMPP WG
	
	RFC6120

	XMPP XEP
	eXtensible Messaging and Presence Protocol Extensions
	XMPP Standards Foundation
	
	

	ZigBee®
	ZigBee 2012
	ZigBee Alliance
	
	IEEE 802.15.4

	ZigBee IP
	ZigBee IPv6 for Smart Energy
	ZigBee Alliance
	
	

	ZigBee RF4CE
	ZigBee for Consumer Electronics
	ZigBee Alliance
	
	

	SEP 2
	Smart Energy Profile 2.0
	CSEP
ZigBee Alliance
	
	

	Z-Wave
	Wireless RF-based Communications Technology
	Z-Wave Alliance
Z-Wave
	
	ITU G.9959

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

Annex B
Definitions of Radio metrics for Technologies used for M2M releated Protocols (Informative)
NOTE: The following definitions are quoted for reference from publicly-available sources, and no representation is made regarding the accuracy or timeliness of the information it contains. In addition, the appearance or omission of any M2M-related information in this list does not imply either the intention, or lack of intention, to undertake any normative or other work within oneM2M.
	
	ZigBee
	Bluetooth
	802.11b
	802.11g
	802.11a
	802.11n
	UWB

	Throughput
	Mbps
	0.03
	1-3
	11
	54
	54
	200
	200

	Max range
	ft
	75
	30
	200
	200
	150
	150
	30

	Sweet spot
	Mbps-ft
	.03@75
	1-3@10
	2@200
	2@200
	36@100
	100@100
	200@10

	Service
	bps-ft2
	530
	314M
	251G
	251G
	1.13T
	3.14T
	62G

	Power
	mW
	30
	100
	750
	1000
	1500
	2000
	400

	Bandwidth
	MHz
	0.6
	1
	22
	20
	20
	40
	500

	Spectral efficiency
	b/Hz
	0.05
	1
	0.5
	2.7
	2.7
	5
	0.4

	Power efficiency1
	mW/Mbps
	1000
	100
	68
	19
	27
	10
	2

	Power efficiency2
	mAh/GB
	2211
	67
	46
	12
	18
	7
	1.3

	TTGB
	Time
	3.1 day
	2.2 hr
	12 min
	2.5 min
	2.5 min
	40 sec
	40 sec

	Price
	US$
	$2
	$3
	$5
	$9
	$12
	$20
	$7

	Note: TTGB: Time To Generate (the time to live for a security session key).

Table B-1: Wireless access technologies in the M2M landscape
B.1
Bluetooth® Wireless Technology

· Bluetooth wireless technology is geared towards voice and data applications

· Bluetooth wireless technology operates in the unlicensed 2.4 GHz spectrum

· The range of Bluetooth wireless technology is application specific. The Bluetooth Specification mandates operation over a minimum distance of 10 meters or 100 meters depending on the Bluetooth device class, but there is not a range limit for the technology. Manufacturers may tune their implementations to support the distance required by the use case they are enabling.

· The peak data rate with EDR is 3 Mbps

· Bluetooth wireless technology is able to penetrate solid objects

· Bluetooth technology is omni-directional and does not require line-of-sight positioning of connected devices

· Security has always been and continues to be a priority in the development of the Bluetooth specification. The Bluetooth specification allows for three modes of security

B.2
ZigBee (IEEE 802.15.4)

The promoter companies of the ZigBee Alliance include: Philips, Honeywell, Mitsubishi Electric, Motorola, Samsung, BM Group, Chipcon, Freescale and Ember; more than 70 members

· Capacity of 250 Kbits at 2.4 GHz, 40 Kpbs at 915 Mhz, and 20 Kpbs at 868 Mhz with a range of 10-100 M

· Its purpose is to become a wireless standard for remote control in the industrial field

· The ZigBee technology is targeting the control applications industry, which does not require high data rates, but must have low power, low cost and ease of use (remote controls, home automation, etc.)

· The specification was formally adopted in December 2004

· Security was not considered in the initial development of the specification. Currently there are three levels of security

B.3
Ultra-Wideband (UWB)

· UWB technology for Personal Area Networks offers a unique combination of low power consumption (~1mW/Mbps) and high data throughput (up to 480 Mbps).

· WiMedia UWB is an internationally recognized standard (ECMA-368, ISO/IEC 26970 and ECMA-369, ISO/IEC 26908) and has regulatory approval in major markets worldwide, including US, EU, Korea and Japan. Additional regions, e.g. China and Canada are expecting regulatory approval in the near future.

· Ideally, it will have low power consumption, low price, high speed, use a wide swath of radio spectrum, carry signals through obstacles (doors, etc.) and apply to a wide range of applications (defense, industry, home, etc.)

· WiMedia UWB takes a "Common Radio Platform" approach allowing the same radio to be used for a variety of applications.

· WiMedia UWB allows for data rates up to 480Mbps at ranges of several meters and a data rate of approximately 110 Mbps at a range of up to 10 meters

· While Wireless USB has initially utilized UWB technology, it is expected that the Bluetooth high speed solution will not suffer the same performance and interoperability issues due to the specification development and qualification process employed by the Bluetooth SIG.

· The Bluetooth SIG announced in May 2005 its intentions to work with UWB to develop a high rate Bluetooth specification on the UWB radio

B.4
Certified Wireless USB

· Speed: Wireless USB is projected to be 480 Mbps up to 2 meters and 110 Mbps for up to 10 meters. Wireless USB hub can host up to 127 wireless USB devices

· Wireless USB will be based on and run over the UWB radio promoted by the WiMedia Alliance.

· Allows point-to-point connectivity between devices and the Wireless USB hub

· Intel established the Wireless USB Promoter Group in February 2004

· The USB Implementers Forum, Inc. (USB-IF) tests and certifies the "certified Wireless USB" based wireless equipment

B.5
Wi-Fi (IEEE 802.11)

· Bluetooth technology uses a fifth of the power of Wi-Fi

· The Wi-Fi Alliance tests and certifies 802.11 based wireless equipment

· 802.11a: This uses OFDM, operates in the 5 GHz range, and has a maximum data rate of 54 Mbps

· 802.11b: Operates in the 2.4 GHz range, has a maximum data rate of 11 Mbps and uses DSSS. 802.11b is the original Wi-Fi standard

· 802.11g: Operates in the 2.4 GHz range, uses OFDM and has a maximum data rate of 54 Mbps. This is backwards compatible with 802.11b

· 802.11e: This standard will improve quality of service

· 802.11h: This standard is a supplement to 802.11a in Europe and will provide spectrum and power control management. Under this standard, dynamic frequency selection (FS) and transmit power control (TPC) are added to the 802.11a specification

· 802.11i: This standard is for enhanced security. It includes the advanced encryption standard (AES). This standard is not completely backwards compatible and some users will have to upgrade their hardware. The full 802.11i support is also referred to as WPA2

· 802.11k: Under development, this amendment to the standard should allow for increased radio resource management on 802.11 networks

· 802.11n: This standard is expected to operate in the 5 GHz range and offer a maximum data rate of over 100 Mbps (though some proposals are seeking upwards of 500 Mbps). 802.11n will handle wireless multimedia applications better than the other 802.11 standards

· 802.11p: This standard will operate in the automotive-allocated 5.9 GHz spectrum. It will be the basis for the dedicated short range communications (DSRC) in North America. The DSRC will allow vehicle to vehicle and vehicle to roadside infrastructure communication

· 802.11r: This amendment to the standard will improve users' ability to roam between access points or base stations. The task group developing this form in spring/summer 2004

· 802.11s: Under development, this amendment to the standard will allow for mesh networking on 802.11 networks. The task group developing this formed in spring/summer 2004.

Editor’s Note: verify Dates/status
B.6
Radio Frequency Identification (RFID)

There are over 140 different ISO standards for RFID for a broad range of applications

· With RFID, a passive or unpowered tag can be powered at a distance by a reader device. The receiver, which must be within a few feet, pulls information off the 'tag,' and then looks up more information from a database. Alternatively, some tags are self-powered, 'active' tags that can be read from a greater distance

· RFID can operate in low frequency (less than 100 MHz), high frequency (more than 100 MHz), and UHF (868 to 954 MHz)

· Uses include tracking inventory both in shipment and on retail shelves

B.7
Near Field Communication (NFC)

The NFC Forum is involved in the development and promotion of NFC. The 12 sponsor members of the NFC Forum include MasterCard International, Microsoft, Motorola, NEC, Nokia, Panasonic, Philips, Renesas, Samsung Electronics, Sony, Texas Instruments and Visa

· Capacity: 212 kbps over a distance from 0 to 20 centimeters over the 13.56 Mhz frequency range

· The NFC standard is based on RFID technology

· Applications suggested for NFC include ticketing, payment and gaming.

· Support for a passive mode of communication leads to savings on battery power
Annex Z
Bibliography

Note: It shall contain a list of standards, books, articles, or other sources on a particular subject which are not mentioned in the document itself.

<Publication>: "<Title>".

<Publication>: "<Title>".

<Publication>: "<Title>".

History

	Approval history

	V.1.x.x
	xx-mmm-2013
	<Approved Version>

	
	
	

	
	
	

	
	
	

	
	
	

	Draft history (to be removed on publication)

	V.0.0.1
	dd Mmm 2013
	Skeleton Draft

	V.0.1.1
	08 Aug 2013
	Output Draft - PRO WG3 at TP#6 - Toronto - Including Contributions:
oneM2M-PRO-2013-023, -024R01, -029R02

	V0.1.2
	08 Aug 2013
	Revised Output Draft - PRO WG3 at TP#6 - Toronto:
adding input from oneM2M-PRO-2013-025R03,

	V0.2.0
	02 Sep 2013
	PRO WG3 Agreed output from TP#6

	V0.2.1
	25 Sep 2013
	Output from PRO WG3 meeting 11 Sep 2013, including
oneM2M-PRP-2013-0034R02, oneM2M-PRP-2013-0041R01

	V0.2.2
	30 Sep 2013
	Output from PRO WG3 meeting 25 Sep 2013, including V0.2.1 and
oneM2M-PRO-2013-0044R01, oneM2M-PRO-2013-0045, and oneM2M-PRO-2013-0046R01.

	V0.2.3
	23 Oct 2013
	Output Draft - PRO WG3 at TP#7 - Sophia Antipolis; Including Contributions:
oneM2M-PRO-2013-0050R02, 0051R01 (w/text from 0058), -0053R02, -0054R03, -0056R02, and -0062. Added references and acronyms.

	V0.3.0
	03 Nov 2013
	PRO WG3 Agreed output from TP#7

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

�Moved to 7.1.2.1 - PRO-2013-0046R01

�Review & Correct requirement?

© oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC)
Page 1 of 1
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

