[image: image1.png]
	oneM2M
Technical Specification

	Document Number
	TS-0012-V-0.6.0

	Document Name:
	Base Ontology

	Date:
	date of this version 2015- November-11

	Abstract:
	oneM2M’s base ontology constitutes a basis framework for specifying the semantics of data that are handled in oneM2M. Sub-classes of some of its concepts are expected to be defined by other bodies in order to enable semantic interworking. In particular interworking with non-oneM2M systems (e.g. Area Networks and their devices) should be facilitated.

	Template Version:23 February 2015 (Dot not modify)

This Specification is provided for future development work within oneM2M only. The Partners accept no liability for any use of this Specification.
The present document has not been subject to any approval process by the oneM2M Partners Type 1. Published oneM2M specifications and reports for implementation should be obtained via the oneM2M Partners' Publications Offices.
About oneM2M

The purpose and goal of oneM2M is to develop technical specifications which address the need for a common M2M Service Layer that can be readily embedded within various hardware and software, and relied upon to connect the myriad of devices in the field with M2M application servers worldwide.

More information about oneM2M may be found at: http//www.oneM2M.org

Copyright Notification

© 2015, oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC).

All rights reserved.
The copyright extends to reproduction in all media.

Notice of Disclaimer & Limitation of Liability

The information provided in this document is directed solely to professionals who have the appropriate degree of experience to understand and interpret its contents in accordance with generally accepted engineering or other professional standards and applicable regulations. No recommendation as to products or vendors is made or should be implied.

NO REPRESENTATION OR WARRANTY IS MADE THAT THE INFORMATION IS TECHNICALLY ACCURATE OR SUFFICIENT OR CONFORMS TO ANY STATUTE, GOVERNMENTAL RULE OR REGULATION, AND FURTHER, NO REPRESENTATION OR WARRANTY IS MADE OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. NO oneM2M PARTNER TYPE 1 SHALL BE LIABLE, BEYOND THE AMOUNT OF ANY SUM RECEIVED IN PAYMENT BY THAT PARTNER FOR THIS DOCUMENT, WITH RESPECT TO ANY CLAIM, AND IN NO EVENT SHALL oneM2M BE LIABLE FOR LOST PROFITS OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES. oneM2M EXPRESSLY ADVISES ANY AND ALL USE OF OR RELIANCE UPON THIS INFORMATION PROVIDED IN THIS DOCUMENT IS AT THE RISK OF THE USER.

Contents

3Contents

1
Scope
5
2
References
5
2.1
Normative references
5
2.2
Informative references
5
3
Definitions, symbols and abbreviations
6
3.1
Definitions
6
3.2
Symbols
6
3.3
Abbreviations
6
4
Conventions
7
5
General information on the oneM2M Base Ontology (informative)
7
5.1
Motivation and intended use of the ontology
7
5.1.1
Why using ontologies in oneM2M?
7
5.1.1.1
Introduction to ontologies
7
5.1.1.2
The purpose of the oneM2M Base Ontology
8
5.1.1.2.1
Syntactic interoperability
8
5.1.1.2.2
Semantic interoperability
9
5.1.2
How are the Base Ontology and external ontologies used?
9
5.1.2.1
Introduction to usage of classes, properties and restrictions
9
5.1.2.2
Methods for jointly using the Base Ontology and external ontologies
10
5.2
Insights into the Base Ontology
11
5.2.1
General design principles of the Base Ontology
11
5.2.1.1
General Principle
11
5.2.1.2
Essential Classes and Properties of the Base Ontology
12
5.2.2
Use of ontologies for Generic Interworking with Area Networks
15
5.2.2.1
General Principle
15
6
Description of Classes and Properties
17
6.1
Classes
17
6.1.1
Class: Thing
17
6.1.2
Class: Value
18
6.1.3
Class: Aspect
19
6.1.4
Class: MetaData
20
6.1.5
Class: Device
21
6.1.6
Class: InterworkedDevice
22
6.1.7
Class: AreaNetwork
23
6.1.8
Class: Service
24
6.1.9
Class: Functionality
26
6.1.9.1
Class: ControllingFunctionality
27
6.1.9.2
Class: MeasuringFunctionality
27
6.1.10
Class: Operation
28
6.1.11
Class: Command
30
6.1.12
Class: Input
31
6.1.13
Class: Output
32
6.1.14
Class: OperationState
34
6.1.15
Class: Method
35
6.1.15.1
Class: CRUDNMethod
36
6.1.15.2
Class: InterworkedMethod
37
6.1.16
Class: Target
37
6.1.16.1
Class: oneM2MTarget
38
6.1.16.2
Class: InterworkedTarget
39
6.2
Object Properties
40
6.2.1
Object Property: canHaveMetaData
40
6.2.2
Object Property: concerns
40
6.2.3
Object Property: consistsOf
40
6.2.4
Object Property: describe
40
6.2.5
Object Property: exposesCommand
41
6.2.6
Object Property: exposesFunctionality
41
6.2.7
Object Property: hasCommand
41
6.2.8
Object Property: hasFunctionality
41
6.2.9
Object Property: hasInput
41
6.2.10
Object Property: hasInputTarget
42
6.2.11
Object Property: hasMetaData
42
6.2.12
Object Property: hasMethod
42
6.2.13
Object Property: hasOperation
42
6.2.14
Object Property: hasOperationState
43
6.2.15
Object Property: hasOperationStateTarget
43
6.2.16
Object Property: hasOutput
43
6.2.17
Object Property: hasOutputTarget
43
6.2.18
Object Property: hasService
44
6.2.19
Object Property: hasTarget
44
6.2.20
Object Property: hasThingProperty
44
6.2.21
Object Property: hasThingRelation
44
6.2.22
Object Property: isControlledBy
44
6.2.23
Object Property: isExposedByOperation
45
6.2.24
Object Property: isExposedByService
45
6.2.25
Object Property: isPartOf
45
6.2.26
Object Property: refersTo
45
6.3
Data Properties
46
6.3.1
Data Property: hasDataTypeAndRange
46
6.3.2
Data Property: netTechnologyCommunicationProtocol
46
6.3.3
Data Property: netTechnologyPhysicalStandard
46
6.3.4
Data Property: netTechnologyProfile
46
7
Instantiation of the Base Ontology and external ontologies to the oneM2M System
47
7.1
Instantiation rules for the Base Ontology
47
7.1.1
Instantiation of classes of the oneM2M Base Ontology and derived external ontologies in the oneM2M System:
47
7.1.1.1
General on instantiating classes of the Base Ontology in the oneM2M System
47
7.1.1.2
Instantiation of individual classes of the Base Ontology
47
7.1.2
Instantiation of Object Properties:
49
7.1.3
Instantiation of Data Properties:
49
7.2
Common mapping principles between the Base Ontology and external ontologies
49
Proforma copyright release text block
50
Annexes
50
Annex A (Normative): OWL representation of Base Ontology
50
Annex B (Informative): Mappings of selected external ontologies to the Base Ontology
51
B.1
Mapping of SAREF
51
B.1.1
Introduction to SAREF
51
B.1.2
Sub-class relationship of SAREF with the Base Ontology
53
B.1.3
Mapping SAREF to oneM2M resource structure
55
B.1.3.1
Introduction
55
B.1.3.2
Mapping rules
55
B.1.3.3
Example showing the ues of the semanticDescriptor resource
55
Annex <y>: Bibliography
57
History
57

1
Scope

The present document …
EXAMPLE:
The present document provides the necessary adaptions to the endorsed document.

The Scope shall not contain requirements.

2
References

The following text block applies.

References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references,only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

2.1
Normative references

Clause 2.1 only shall contain normative (essential) references which are cited in the document itself. These references have to be publicly available and in English.
The following referenced documents are necessary for the application of the present document.
· Use the EX style, enclose the number in square brackets and separate it from the title with a tab (you may use sequence fields for automatically numbering references, see clause A.4: "Sequence numbering") (see example).

[1]
 oneM2M TS-0011 “Common Terminology”.
[2]
oneM2M TS-0001 “Functional Architecture”
2.2
Informative references
Clause 2.2 shall only contain informative references which are cited in the document itself.

The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
· Use the EX style, add the letter "i" (for informative) before the number (which shall be in square brackets) and separate this from the title with a tab (you may use sequence fields for automatically numbering references).
 [i.1]
oneM2M Drafting Rules (http://member.onem2m.org/Static_pages/Others/Rules_Pages/oneM2M-Drafting-Rules-V1_0.doc)
[i.2]
The Smart Appliances REFerence (SAREF) ontology: http://ontology.tno.nl/saref/
[i.3]
Open-source ontology editor PROTÉGÉ: http://protege.stanford.edu/

[i.4]
W3C OWL Working Group, OWL 2 Web Ontology Language Document Overview.

NOTE:
Available at http://www.w3.org/TR/owl2-overview/.

3
Definitions, symbols and abbreviations

3.1
Definitions

For the purposes of the present document, the terms and definitions given in TS-0011 [1] and the following apply:

Annotation Property: Is a Property that can be used to add information (metadata / data about data) to classes, individuals and Object/Data Properties
Class: In the OWL standard ontology language from the World Wide Web Consortium (W3C) (see [i.4]), Concepts are called “Classes”.
Concept: Entity of an Ontology that has an agreed, well defined, meaning within the domain of interest of that ontology. A Concept is conceptually grouping a set of Individuals

Data Property: Is a Property that relates an individual of a Class to data of a stecified type and range.
Ontology: formal specification of a conceptualization, that is defining Concepts as objects with their properties and relationships versus other Concepts

Object Property: Is a Property that relates an individual of a domain Class to an individual of a range Class.

Property: In the OWL standard ontology language Properties represent relations among individuals. Properties can be sub-categorized as Object Properties, Data Properties and Annotation Properties

Relation: (also called "interrelation" or "property") stating a relationship among individuals

Restriction: A Restriction describes a class of individuals based on the relationships that members of the class participate in. Restrictions can be sub-categorized as: existential Restrictions, universal Restrictions, Cardinality restrictions and hasValue Restrictions.

Definition format

<defined term>: <definition>

If a definition is taken from an external source, use the format below where [N] identifies the external document which must be listed in Section 2 References.
<defined term>[N]: <definition>

example 1: text used to clarify abstract rules by applying them literally

NOTE:
This may contain additional information.

3.2
Symbols

Clause numbering depends on applicability.

For the purposes of the present document, the [following] symbols [given in ... and the following] apply:

Symbol format

<symbol>
<Explanation>

<2nd symbol>
<2nd Explanation>

<3rd symbol>
<3rd Explanation>

3.3
Abbreviations

For the purposes of the present document, the abbreviations given in in TS-0011 [1] and the following apply:
AE
Application Entity

OWL
Web Ontology Language

SAREF
Smart Appliances REFerence ontology

SPARQL
SPARQL Protocol and RDF Query Language

Abbreviation format

<ABREVIATION1>
<Explanation>

<ABREVIATION2>
<Explanation>

<ABREVIATION3>
<Explanation>

4
Conventions

The key words “Shall”, ”Shall not”, “May”, ”Need not”, “Should”, ”Should not” in this document are to be interpreted as described in the oneM2M Drafting Rules [i.1]
5
General information on the oneM2M Base Ontology (informative)
5.1
Motivation and intended use of the ontology
5.1.1
Why using ontologies in oneM2M?
5.1.1.1
Introduction to ontologies

In a nutshell an ontology is a vocabulary with a structure. The vocabulary applies to a certain domain of interest (e.g. metering, appliances, medicine …) and it contains concepts that are used within that domain of interest, similar to the “defined terms” in the “Definitions” clause 3 of this document.

An ontology should:

· Capture a shared understanding of a domain of interest.
· Provide a formal and machine manipulable model of the domain.
The ontology lists and denominates these concepts which have agreed, well defined, meanings within the domain of interest (e.g. the concept of “Device” has an agreed, well defined, meaning within the scope of the Smart Appliances REFerence (SAREF) ontology see [i.2]).

Concepts do not identify individuals but they identify classes of individuals. Therefore, in the OWL standard ontology language from the World Wide Web Consortium (W3C) (see [3]), concepts are called “Classes”.

The structure part of the ontology is introduced through agreed, well defined, relationships between its concepts. Such a relationship – in OWL called “Object Property” – links a subject concept to an object concept.

subject concept (relationship (object concept

in OWL:
domain Class (Object Property (range Class

EXAMPLE:
in SAREF an Object Property “accomplishes” relates the “Device” class to the “Task” class

Device (accomplishes (Task

Also the relationships / Object Properties of an ontology have agreed, well defined, meanings within the domain of interest. In the example above the “accomplishes” part of the relationship is well documented as part of SAREF (see [i.2]).

A second type of Properties in OWL is called “Data Properties”. A Data Property is linking a subject Class to a data. These data may be typed or untyped

EXAMPLE:
in SAREF the Data Property “hasManufacturer” links the class “Device with data of datatype “Literal”

Device (hasManufacturer (Literal

Again, the Data Properties of an ontology have agreed, well defined, meanings within the domain of interest.
In the example above, the Data Property “hasManufacturer” indicates that the Literal, that is linked via this Data Property will indicate the manufacturer of the Device.

Data Properties can be considered similar to attributes in oneM2M.

In general, an individual of a certain Class may or may not have a particular relation (Object Property or Data Property) that is defined by the ontology. However, if such a relation exists for the individual then that relation shall be used with the meaning specified by the ontology.

One additional, crucial aspect differentiates an ontology from a vocabulary with a structure. An ontology enables specified, allowed constructs (based on predicate logic) and can be represented in a formal, machine interpretable form e.g. by the OWL standard ontology language. This allows the creation of queries (e.g. through the SPARQL query language) that search for individuals of specified classes, having specified relationships, etc..

The OWL flavour OWL-DL (where DL stands for "Description Logic"), that is used in the present document and that is supported by the ontology-editing tool “Protégé” (see [i.3]), has the additional advantage that it is underpinned by a description logic. For ontologies that fall into the scope of OWL-DL we can use a reasoner to automatically check the consistency of classes, and take what we have explicitly stated in the ontology and use it to infer new information. OWL-DL ensures that queries are decidable.

Additionally, OWL-DL allows the creation of Intersection, Union and Complement classes, restrictions (e.g. on the required/allowed number of relationships for any individual of the Class along this property) an other useful constructs.

Editor’s Note: The use of OWL-DL needs to be confirmed later.

5.1.1.2
The purpose of the oneM2M Base Ontology

Ontologies and their OWL representations are used in oneM2M to provide syntactic and semantic interoperability of the oneM2M System with external systems. These external systems are expected to be described by ontologies.

The only ontology that is specified by oneM2M is the oneM2M Base Ontology, as described in the present document. However, external organizations and companies are expected to contribute their own ontologies that can be mapped (e.g. by sub-classing, equivalence..) to the oneM2M Base Ontology.
Such external ontologies might describe specific types of devices (as e.g. in the SAREF ontology) or, more generally, they might describe real-world “Things” (like buildings, rooms, cars, cities..) that should be represented in a oneM2M implementation. The value for external organizations and companies to provide their ontologies to oneM2M consists in supplementing oneM2M data with information on the meaning/purpose of these data. The OWL representation of that ontology provides a common format across oneM2M.

The oneM2M Base Ontology is the minimal ontology (i.e. mandating the least number of conventions) that is required such that other ontologies can be mapped into oneM2M.

5.1.1.2.1
Syntactic interoperability

Syntactic interoperability is mainly used for interworking with non-oneM2M devices in Area Networks. In this case an ontology – represented as an OWL file – that contains the Area Network specific types of communication parameters (names of operations, input/output parameter names, their types and structures …) is used to configure an Interworking Proxy Entity (IPE).
With the help of this OWL file the IPE is able to allocate oneM2M resources (AEs, containers) that are structured along the Area Network specific parameters and procedures. This enables oneM2M entities to read/write from/into these resources such that the IPE can serialize the data and send/receive them from/to the devices in the Area Network.

The semantic meaning of these resources is implicitly given by the interworked Area Network technology.

Each ontology that describes a specific type of interworked Area Network needs to be derived from the oneM2M Base Ontology. In particular the device types of an ontology of an interworked Area Network need to be mapped (e.g. by sub-typing) into the concept “Interworked Device” of the oneM2M Base Ontology.

5.1.1.2.2
Semantic interoperability

Semantic interoperability is mainly used to describe functionality for services provided by oneM2M compliant devices (M2M Devices).
For example. different, oneM2M compliant types of washing machines may all perform a functionality like “washing-function” ,”drying-function”, “select wash temperature”…, however the oneM2M resources (containers), through which these functions can be accessed, can have different resourceNames, child-structures and type of content.
In this case an ontology – represented as an OWL file –contains the specific types of the M2M Application Service and/or Common Service of the M2M Device (e.g. CRUD operation, resourceNames, child-structures and type of content …) together with the functionality of that service (e.g. “washing-function”).

Each ontology that describe a specific type of M2M Device needs to be derived from the oneM2M Base Ontology. In particular the device type needs to be mapped (e.g. by sub-typing) into the concept “Device” of the oneM2M Base Ontology.

5.1.2
How are the Base Ontology and external ontologies used?

Editor’s Note: use of external onotologies needs to be described here
5.1.2.1
Introduction to usage of classes, properties and restrictions

An ontology consists of Properties and Classes.

Properties represent relationships, and link individuals from the specified domain (a class) to individuals from the specified range (another class). There are two main types of properties in the Base Ontology, object properties and data properties. An object property describes a relationship between two object individuals. A data properties describes a relationship between an object individuals and a concrete data value that may be typed or untyped.

Classes are interpreted as sets of individuals, and sometimes classes are also seen as a concrete representation of concepts. In the Base Ontology, a Class can be directly defined by the class name and class hierarchy or defined by the properties characteristics of the individuals in the class. The latter method is known as restriction. The classes defined by restriction can be anonymous, which contains all of the individuals that satisfy the restriction.

In the Base Ontology, the restrictions can be divided as existential restrictions, universal restrictions and cardinality restrictions.

· Existential restrictions describe classes of individuals that participate in at least one (some) relationship along a given property to individuals that are members of the class, e.g. since a Device (Class: Device) has at least one function (Object Property: hasFunction) (Class: Function) that this device accomplishes, then (Class: Device) is a subclass of the anonymous class of (Object Property: hasFunction) some (Class: Function).
· Universal restrictions describe classes of individuals that for a given property only have relationships along this property to individuals that are members of the class. For example, since a subclass “Watervalve” of (Class: Device) only has a function (Object Property: hasFunction) subclass “Open_or_Close_Valve” of (Class: Function), then (Class:Watervale) is a superclass of the anonymous class of (Object Property: hasFunction) only (Class: Open_or_Close_Valve).
· Cardinality restrictions describe classes of individuals that, for a given property, only have a specified number of relationships along this property to individuals that are members of the class. For example since every Device must have exactly one address in the Area Network and the address in the Area Network is assumed to be of built-in type string., then (Class: Device) is a subclass of the anonymous class of (Data Property: hasAddressInAreaNetwork) exactly 1(string).
5.1.2.2
Methods for jointly using the Base Ontology and external ontologies
If the Base Ontology is available and the external ontologies are compatible with the Base Ontology, the Base Ontology and the external ontologies can be jointly used in the following ways.

1) Classes and properties mapping

The names of the class and properties in different ontologies may be totally different, but the meanings of these class and properties can be relevant. Classes and proporties mapping is used to link the relevant classes and properties in different ontologies.

The descriptions for the classes and properties mapping relationship of the Base Ontology and external ontologies can be given in an ontology or a semantic rule depending on the frequency of the usage. For the frequent cases, it is better to give the mapping description in an ontology, even in the Base Ontology.

The classes and properties mapping can be based on the properties defined in OWL and RDFs, e.g. rdfs: subClassof, owl:equivalentClass, for classifying the hierarchy of the classes and properties in Base Ontology and external ontologies. The inheritance from upper properties and classes will be implied according to the mapped hierarchy. For example, when a class A in an external ontology is mapped as a subclass of the class B in the Base Ontology, it implies that the properties of class B in the Base Ontology will be inherited by the class A in the external ontology.

Table X gives an simple example for classes and properties mapping between two ontologies.

Table X an example for classes and properties mapping between two ontologies

	Properties mapping
	Classes mapping

	property I
	mapping relationship
	property II
	class I
	mapping relationship
	class II

	OntologyB: hasSwitch
	rdfs:subPropertyOf
	OntologyA: hasOperation
	OntologyB: appliance
	rdfs:subClassOf
	OntologyA:device

	OntologyA: hasPower
	owl:equivalentProperty
	OntologyB: hasPower
	OntologyB:lamp
	owl:equivalentClass
	OntologyA:light

	OntologyA: hasVendor
	owl:equivalentProperty
	OntologyB: hasManufacturer
	OntologyB:Switch
	rdfs:subClassOf
	OntologyA:Operation

2) Individual annotation across multiple ontologies

Though the names of the class and properties in different ontologies may be totally different, the semantic annotation for individuals can be done based on these different ontologies respectively and independently. In this way, the knowledge from different ontologies are used together to describe the individuals.

 Table Y gives an simple example for individual annotation across two ontologies.

Table Y an example for individual annotation across two ontologies
	Individuals
	Semantic annotation based on Ontology A
	Semantic annotation based on Ontology B

	
	properties
	classes
	properties
	Classes

	Light A
	rdf:type
	Ontology A: Light
	rdf:type
	Ontology B:ledLight

	
	OntologyA: hasOperation
	Ontology A:Open
	OntologyB: hasColor
	rdf:datatype="&xsd;string">’red’<

	
	OntologyA: hasStatus
	rdf:datatype="&xsd;boolean">true<
	OntologyB: hasSwitch
	OntologyB:Switch

NOTE:
 The above two methods can be used jointly or independentlly.

The compatibility of two ontologies depends on their class hierarchies. When the class hierarchy of one ontology can be mapping as a part or an external part of the class hierarchy of the other ontology, they are compatible. When multiple ontologies are pairwise compatible, they are compatile.

5.2
Insights into the Base Ontology
5.2.1
General design principles of the Base Ontology
5.2.1.1
General Principle

The Base Ontology has been designed with the intent to provide a minimal number of concepts, relations and restrictions that are necessary for semantic discovery of entities in the oneM2M System. To make such entities discoverable in the oneM2M System they need to be be semantically described as classes (concepts) in a – technology / vendor / other-standard specific – ontology and these classes (concepts) need to be related to some classes of the Base Ontology as sub-classes.
Additionally, the Base Ontology enables non-oneM2M technologies to build derived ontologies that describe the data model of the non-oneM2M technology for the purpose of interworking with the oneM2M System.

The Base Ontology only contains Classes and Properties but not instances because the Base Ontology and derived ontologies are used in oneM2M to only provide a semantic description of the entities they contain.
Instantiation (i.e. data of individual entities represented in the oneM2M System - e.g. devices, things…) is done via oneM2M resources
The Base Ontology is available under the IRI:
· http://www.onem2m.org/ontology/Base_Ontology
which contains the latest version of the ontology and individual versions of the ontology under the IRI:
· http://www.onem2m.org/ontology/Base_Ontology-vx_y_z ... (where x,y,z signify the version numbering for major- minor- and editorial changes of the base ontology).
e.g. http://www.onem2m.org/ontology/Base_Ontology-v0_5_0
5.2.1.2
Essential Classes and Properties of the Base Ontology

[image: image3.emf]DeviceFunctionalityServicehasServicehasFunctionalityOperationhasOperationisExposedByServiceMethod

InputTarget

hasTargetAspectrefersToMeasuring

Functionality

Controlling

Functionality

CommandhasCommandis-aconsistsOfhasMethodexposesCommand

Output

describehasInputTargethasOutputTargetOperationStatehasOperationStatehasOperationStateTargetisExposedByOperationexposesFunctionalityAreaNetworkInterworkedDevice

isPartOfisControlledBy

ThinghasThingPropertyhasThingRelationValuehasMetaDatais-ais-a

MetaData

canHaveMetaData

concerns

the oneM2M Base Ontology

hasInputhasOutputInterworkedTarget

is-a

oneM2MTarget

is-a

InterworkedMethod

is-a

CRUDNMethod

is-a

hasSubService

Figure 1
Figure1 shows the essential Classes and Properties of the Base Ontology. The nodes (bubbles) denote Classes whereas edges (arrows) denote Object Properties. Data Properties are not shown in this figure.

The graph in Figure 1 can be read as follows:

· A Thing in oneM2M (Class: Thing) is an entity that can be identified in the oneM2M System.
A Thing may have properties (Object Property: hasThingProperty) that can be described by Values.
A Thing can have relations to other things (Object Property: hasThingRelation)
E.g. A room that is modelled in oneM2M would be a Thing that could have a room-temperature as a Value and could have a relationship “isAdjacentTo” to another room.
· A Value (Class: Value) denotes a property of a Thing. The Value class represents all possible values for that value (data types and -ranges). A Value of a Thing can be can be retrieved or updated by an entity of the oneM2M System. A Value can e.g. be observed or influenced by devices, or it constitutes static data about a Thing.
E.g. the indoor temperature of the room could be a Value of a Thing “room”.
A Value of a thing can concern a certain Aspect, e.g. the indoor temperature concerns the Aspect “Temperature” that could be measured by a temperature sensor.
A Value of a Thing can have meta data
· MetaData (Class: MetaData) contain data (like units, precision-ranges …) about the Values of a Thing or about an Aspect.
E.g. the indoor temperature could have meta data: “Degrees Celsius”
Editor’s Note: Other term should be used
· A Device (Class: Device) is a object designed to accomplish a particular task.
A Device contains some logic and is producer and/or consumer of data that are exchanged via its Services with other entities (Devices, Things) in the network.
In the context of oneM2M a Device is always assumed to be capable of communicating electronically via a network (oneM2M or interworked non-oneM2M network).
· In order to accomplish its task, the device performs one or more functionalities (Object Property: hasFunctionality) (Class: Functionality).
These functionalities are exposed in the network as Services of the Device.
· A Device can be composed of several (sub-) Devices (Object Property: consistsOf) (Class: Device).
=> consistsOf only Device
· Each Device (including sub-Devices) needs to be individually addressable in the network.

E.g. a “lightswitch” would be a device, a combined fridge/freezer would be a device that consists of a sub-device fridge and a sub-device freezer.
· A Functionality (Class: Functionality) represents the functionality necessary to accomplish the task for which a Device is designed. A device can be designed to perform more than one functionality.
The Class: Functionality exhibits the – human understandable – meaning what the device “does”.
· A functionality refers to (e.g. observes or influences) a certain Aspect.

E.g. considering a “light switch” then a related Functionality could be “Controlling_ON_OFF”.
These functionalities would refer to an Aspect “lighting”, that is influenced by the device “light switch”.

•
Two sub-classes of class Functionality are defined in the base ontology:

· ControllingFunctionality (Class: ControllingFunctionality) is a sub-class of Functionality that only controls/influences real world Aspects that the functionality relates to
· MeasuringFunctionality (Class: MeasuringFunctionality) is a sub-class of Functionality that only measures/senses real world Aspects that the functionality relates to
An Aspect (Class: Aspect) describes the real-world aspect that a functionality or a property of a thing relates to. Aspect is also used to describe a quality or kind of an Input- or Output variable of an Opertation. The Aspect could be a (physical or non-physical) entity or it could be a quality.

· A Command (Class: Command) represents an action that can be performed to support the Functionality. An Operation exposes a Command to the network. Input and Output of the related Operation can parameterize the command.
e.g. the Functionality “Dimming-Functionality” could have a Command “setPercentage”, with a parameter that has values 0 - 100.
· A Service (Class: Service) is a representation of a Functionality to a network that makes the Functionality discoverable, registerable, remotely controllable in the network. A Service can represent one or more Functionalities. A Service is offered by a device that wants (a certain set of) its Functionalities to be discoverable, registerable, remotely controllable by other devices in the network.

· While a Functionality describes the meaning of the device’s functionality the Service (Class: Service) is used to describe how such functionality is represented in a communication network and is therefore dependent on the technology of the network.
E.g. the Functionality: “turn_light_On_or_Off” could be exposed in the network by a Service “Binary Value Actuator”.

· A Service may be composed of smaller, independent (sub)Services, e.g. re-usable servicemodules.
· An Operation (Class: Operation) is the means of a Service to communicate over the network (i.e. transmit data to/from other devices). It is a representation of a Command to a network

· An Operation can have Input (data consumed by the Device) and Output (Data produced by the Device), as well as a Method that describes how the Operation is invoked over the network.

· An Operation can have an OperationStatus that indicates how the operation has progressed in the device.

· The Operation can have a Target (via Object Property: “hasOperationTarget”) that describes a destination (e.g. a URL) where the Operation is executed using the Method (Class: Method).
· Input (Class: Input) describes the type of input of an Operation to a service of the device. The Input class represents all possible values for that input (data types and -ranges or a list of enumerated individuals). An Operation can have multiple Inputs and/or Outputs. If an instance of an Operation is executed then the input value to that Operation must be an instance of its Input classes (e.g, enumerated instances like “ON” or “OFF” for an Input class that sets the state of a switch or a real number within a certain range for a “Temperature” Input class for a thermostat.)
· The Input has a Target (via Object Property: “hasInputTarget”) that describes a destination (e.g. a URL) where the Input values are stored.

· Output (Class: Output) describes the type of output of an Operation from a service of the device. The Output class represents all possible values for that Output (data types and -ranges or a list of enumerated individuals). An Operation can have multiple Inputs and/or Outputs. If an instance of an Operation is executed then the output values of that Operation are instances of its Output classes.
· The Output has a Target (via Object Property: “hasOutputTarget”) that describes a destination (e.g. a URL) where the Output values are stored.

· OperationState (Class: OperationState) describes the current status of an Operation. The OperationState class represents all possible values for that state (enumerated individuals). The OperationState is set during the progress of the operation by the entity invoking the operation, the entity that is the target of the operation, e.g. a device (or for interworked devices by the IPE) and the CSE. It takes values like "Operation_Initiated", "Operation_Input_received", "Operation_Executing" , "Operation_Output_created" , "Operation_Ended"
· The OperationState has a Target (via Object Property: “has OperationStateTarget”) that describes a destination (e.g. a URL) where the OperationState values are stored.

· Method (Class: Method) describes a way (e.g. RESTful or RPC based, subscribed, event based, polled, pushed..) how data input/output is offered by the Device.
When a Operation is instantiated in the oneM2M System only the following instances for a Method are allowed: “CREATE” , “UPDATE”, “RETRIEVE”.

Since the method how an operation is offered by a oneM2M Device in the oneM2M Sytem will differ from the method how an operation is offered by a InterworkedDevice in an interworked technology two sub-classes of class “Method” are defined in the base ontology:
“CRUDNMethod” and “InterworkedMethod” to emphasize that while the method in oneM2M will always be one of CREATE, RETRIEVE, UPDATE, DELETE, NOTIFY the method of the data in the interworked, non-oneM2M technology may e.g. be a certain, operation specific value at a defined position in a byte string that is sent via a technology specific protocol to the interworked, non-oneM2M device

· CRUDNMethod (Class: CRUDNMethod) is the method how data input/output is offered by the AE (or proxied device) in the oneM2M Sytem (.e. one of CREATE, RETRIEVE, UPDATE, DELETE, NOTIFY)

· InterworkedMethod (Class: InterworkedMethod) is the method of the operation in the interworked, non-oneM2M technology
· Target (Class: Target) describes a destination (e.g. a URL) to which the Operation and input data of the Operation should be sent and from where Output- or State data can be obtained.
The Target class is dependent on the technology (e.g. oneM2M RESTful style or RPC style Area Network technologies) on which the Operation is applied.

Since the target of data in the oneM2M Sytem will differ from the target in an interworked technology two sub-classes of class “Target” are defined in the base ontology:
“OneM2MTarget” and “InterworkedTarget” to emphasize that while the target of data in oneM2M will always be some oneM2M resource (e.g. a contentInstance in a container) the target of the data in the interworked, non-oneM2M technology may e.g. be a certain position in a byte string that is sent via a technology specific protocol to the interworked, non-oneM2M device

· OneM2MTarget (Class: OneM2MTarget) is the target of data in the oneM2M System

· InterworkedTarget (Class: InterworkedTarget) is the target of data in the interworked, non-oneM2M technology

· Area Network (Class: AreaNetwork)

An Area Network is characterized by its technology
- physical properties (e.g. IEEE_802_15_4_2003_2_4GHz), its
- communication protocol (e.g. ZigBee_1_0) and potentially a
- profile (e.g. ZigBee_HA)..

·
The AreaNetwork can be controlled by interworked Device in that AreaNetwork.

· Interworked Device (Class: InterworkedDevice)
· is part of an AreaNetwork

NOTE: An Interworked Device is not a oneM2M Device and can be only accessed from the oneM2M System by communicating with a “proxied” (virtual) device that has been created by an Interworking Proxy Entity.
The InterworkedDevice class describes the “proxied” (virtual) device.

5.2.2
Use of ontologies for Generic Interworking with Area Networks
5.2.2.1
General Principle

Interworking with Area Networks is accomplished in oneM2M through functionality provided by Interworking Proxy Entities (IPE).

[image: image4.emf]oneM2M compliant SolutionArea Network(e.g. KNX)

real Devices in Area Network“proxied” Devices in the oneM2M System technology

oneM2MAEREST-fulResource accessInterworkingProxyEntity

Figure 3
The IPE creates “proxied” devices as oneM2M Resources (e.g. AEs) in the oneM2M Solution that can be accessed by oneM2M Applications in the usual way.

To accomplish the creation of “proxied” devices the IPE uses an ontology that describes the the type of interworked Area Network and its entities (device types, their Input/Output operations and –data, etc.).
For example, in figure 1, an ontology that describes a KNX Area Network and its entities would be needed.

The creation of oneM2M resources (e.g. AEs), attributes, links, etc. follows a scheme that will be described in TS-0001.

Editor’s Note: TBD
To achieve the flexibility for the IPE to create “proxied” Devices for many different types of Area Networks each ontology that describes a specific type of interworked Area Network needs to be derived from the Base Ontology that is specified in the present document.
E.g. the OWL representation of an ontology that describes the entities of an Area Network of type “KNX” needs to

a) contain an ‘include’ statement which includes Base Ontology

b) the Class of “KNX Nodes” needs to be a subclass of the “Device” Class of oneM2M’s Base Ontology

c) the Class of “KNX Communication Objects” needs to be a subclass of the “Service” Class of the Base Ontology

etc.

NOTE:
For the purpose of Generic Interworking with Area Networks the Base Ontology is only used to describe type information and not for describing instances of these types. E.g. the Base Ontology describes the type “Device”, but does not contain information about a specific Device.
The Base Ontology therefore only contains Classes and Properties but not instances.

6
Description of Classes and Properties
6.1
Classes

6.1.1
Class: Thing

[image: image5.emf]Thing

hasThingProperty

Value

hasThingRelation

Device

is-a

Legend:… an OWL class… an Object Property… a Data Property… indicates an inheritance (sub -Class / sub-Property)

is-a

dataPropertyobjectProperty

Class

Class: Thing

Description

A Thing in oneM2M (Class: Thing) is an entity that can be identified in the oneM2M System. A Thing may have properties (Object Property: hasThingProperty) that can be described by Values. A Thing can have relations to other things (Object Property: hasThingRelation)
E.g. A room that is modelled in oneM2M would be a Thing that could have a room-temperature as a Value and could have a relationship “isAdjacentTo” to another room
Object Properties

This Class is the domain Class of Object Property:

· hasThingProperty (range Class: Value)

· hasThingRelation (range Class: Thing)

This Class is the range Class of Object Property:

· hasThingRelation (domain Class: Thing)

Data Properties

- none

Superclass-subclass Relationships

This Class is subclass of:

-none
This Class is superclass of:

· Device

Restrictions

This Class is anonymous sub-class of:

· hasThingRelation only Thing
(Universal restriction: a Thing can only have a relationship “hasThingRelation” to other Things)

6.1.2
Class: Value

[image: image6.emf]Value

hasMetaData

MetaData

hasThingProperty

Legend:… an OWL class

… an Object Property

… a Data Property… indicates an inheritance (sub -Class / sub-Property)

is-a

dataPropertyobjectProperty

Class

Class: Value

Thing

concerns

Aspect

Data Type/ RangehasDataTypeAndRange

Description

A Value (Class: Value) denotes a property of a Thing. A Value can e.g. be observed or influenced by devices, or it constitutes static data about a Thing.
E.g. the indoor temperature of the room could be a Value of a Thing “room”.
A Value of a thing can concern a certain Aspect, e.g. the indoor temperature concerns the Aspect “Temperature” that could be measured by a temperature sensor.
A Value of a Thing can have meta data
Object Properties

This Class is the domain Class of Object Property:

· concerns (range Class: Aspect)

· hasMetaData (range Class: MetaData)

This Class is the range Class of Object Property:

· hasThingProperty (domain Class: Thing)

Data Properties

This Class is part of the domain Class of Data Property:

· hasDataTypeAndRange

Superclass-subclass Relationships

This Class is sub-class of:

-none
This Class is super-class of:

- none

Restrictions

This Class is anonymous sub-class of:

· Data Property:hasDataTypeAndRange exactly 1 rdfs:Literal

Note: This restriction specifies that a Value needs to have a type and range, but a concrete type and range can be specified for sub-classes of class Value.
(e.g. to specify that Value has to be of type integer: “hasDataTypeAndRange only xsd:integer”)
6.1.3
Class: Aspect

[image: image7.emf]Aspect

canHaveMetaData

MetaDataLegend:… an OWL class… an Object Property… a Data Property… indicates an inheritance (sub -Class / sub-Property)

is-a

dataPropertyobjectProperty

Class

Class: Aspect

Value

concerns

FunctionalityInputOutput

refersTodescribe

Description

An Aspect (Class: Aspect) describes the real-world aspect that a functionality or a property of a thing relates to. Aspect is also used to describe the quality or kind an Input- or Output variable of an Opertation refers to.
The Aspect could be a (physical or non-physical) entity or it could be a quality.
Object Properties

This Class is the domain Class of Object Property:

· canHaveMetaData (range Class: MetaData)

This Class is the range Class of Object Property:

· refersTo (domain Class: Functionality)

· concerns (domain Class: Value)

· describe (domain Class: Input OR Output)

Data Properties

- none

Superclass-subclass Relationships

This Class is sub-class of:

-none
This Class is super-class of:

- none

Restrictions

- none

6.1.4
Class: MetaData

[image: image8.emf]MetaDataLegend:… an OWL class… an Object Property… a Data Property… indicates an inheritance (sub -Class / sub-Property)

is-a

dataPropertyobjectProperty

Class

Class: MetaData

ValueAspect

canHaveMetaDatahasMetaData

Description

MetaData (Class: MetaData) contain data (like units, precision-ranges …) about the Values of a Thing or about an Aspect.
E.g. the indoor temperature could have meta data: “Degrees Celsius”.
Object Properties

This Class is the domain Class of Object Property:

- none

This Class is the range Class of Object Property:

· hasMetaData (domain Class: Value)

· canHaveMetaData (domain Class: Aspect)

Data Properties

- none

Superclass-subclass Relationships

This Class is sub-class of:

-none
This Class is super-class of:

- none

Restrictions

- none

6.1.5
Class: Device

[image: image9.emf]Device

hasService

Service

consistsOf

Thing

is-a

Legend:… an OWL class… an Object Property… a Data Property… indicates an inheritance (sub -Class / sub-Property)

is-a

dataPropertyobjectProperty

Class

Class: Device

hasFunctionality

FunctionalityInterworkedDevice

is-a

Description

· A Device (Class: Device) is a object designed to accomplish a particular task. A Device contains some logic and is producer and/or consumer of data that are exchanged via its Services with other oneM2M entities (Devices, Things) in the network. A Device may be a physical or non-physical entity.
In the context of oneM2M a Device is always assumed to be capable of communicating electronically via a network.

· In order to accomplish its task, the device performs one or more functionalities

· These functionalities are exposed in the network as Services of the Device.

· A Device can be composed of several (sub-) Devices

· Each Device (including sub-Devices) needs to be individually addressable in the network.

Object Properties

This Class is the domain Class of Object Property:

· consistsOf (range Class: Device)

· hasService (range Class: Service)

· hasFunctionality (range Class: Functionality)

This Class is the range Class of Object Property:

· consistsOf (domain Class: Device)

Data Properties

- none

Superclass-subclass Relationships

This Class is sub-class of:

· Thing

This Class is super-class of:

· InterworkedDevice

Restrictions

This Class is anonymous sub-class of:

· consistsOf only Device

6.1.6
Class: InterworkedDevice

[image: image10.emf]InterworkedDeviceAreaNetworkDevice

is-a

Legend:… an OWL class… an Object Property… a Data Property… indicates an inheritance (sub -Class / sub-Property)

is-a

dataPropertyobjectProperty

Class

Class: InterworkedDevice

isControlledByisPartOf

Description

· An InterworkedDevice (Class: InterworkedDevice) is a Device – e.g. in an Area Network – that does not support oneM2M interfaces and can only be accessed from the oneM2M System by communicating with a “proxied” (virtual) device that has been created by an Interworking Proxy Entity.

Object Properties

This Class is the domain Class of Object Property:

· isPartOf (range Class: AreaNetwork)

This Class is the range Class of Object Property:

· isControlledBy (domain Class: AreaNetwork)

Data Properties

- none

Superclass-subclass Relationships

This Class is sub-class of:

· Device

This Class is super-class of:

-none
Restrictions

-none

6.1.7
Class: AreaNetwork

[image: image11.emf]Area

Network

isPartOfrdf:PlainLiteral

Interworked

Device

isControlledBy

Legend:… an OWL class

… an Object Property

… a Data Property… indicates an inheritance (sub -Class / sub-Property)

is-a

dataPropertyobjectProperty

Class

Class: AreaNetwork

rdf:PlainLiteralrdf:PlainLiteral

netTechnologyPhysicalStandardnetTechnologyCommunicationProtocolnetTechnologyProfile

Description

· An AreaNetwork (Class: AreaNetwork) is a Network that provides data transport services between an Interworked Device and the oneM2M System. Different area Networks can use heterogeneous network technologies that may or may not support IP access.

Object Properties

This Class is the domain Class of Object Property:

· isControlledBy (range Class: InterworkedDevice)

This Class is the range Class of Object Property:

· isPartOf (domain Class: InterworkedDevice)

Data Properties

· netTechnologyPhysicalStandard (range datatype: rdf:PlainLiteral) which serves for Identification of the physical properties of a Area Network technology (e.g. IEEE_802_15_4_2003_2_4GHz)
· netTechnologyCommunicationProtocol (range datatype: rdf:PlainLiteral) which serves for Identification of a communication protocol (e.g. ZigBee_1_0)
· netTechnologyProfile (range datatype: rdf:PlainLiteral) which serves for Identification of a profile (e.g. ZigBee_HA) of a Area Network technology.
Superclass-subclass Relationships

This Class is sub-class of:

-none
This Class is super-class of:

- none

Restrictions

-none

6.1.8
Class: Service

[image: image12.emf]Service

exposesFunctionality

FunctionalityLegend:… an OWL class… an Object Property… a Data Property… indicates an inheritance (sub -Class / sub-Property)

is-a

dataPropertyobjectProperty

Class

Class: Service

isExposedByService

Operation

hasOperation

Device

hasServicehasSubService

Description

· A Service (Class: Service) is a representation of a Functionality in a network. The Service exposes the Functionality to the network and makes it discoverable, registerable and remotely controllable in the network.
A Service is offered by a device that wants (a certain set of) its Functionalities to be discoverable, registerable, remotely controllable by other devices in the network.
A Service can expose one or more Functionalities and a Functionality can be exposed by one or more Services.
NOTE: While a Functionality describes the – human understandable – meaning of a functionality of the device the Service is used to describe how such functionality is represented in a communication network and can be accessed by electronic means. The Service and its Operations is therefore dependent on the technology of the network, hard- and software of the device.

E.g. the Functionality: “turn_light_On_or_Off” could be exposed in the network by a Service “UPDATE Binary Value”.

· Object Property “hasSubService” is expresses the fact that Services can be composed of independent (sub)Services.
E.g. a Service could thus be composed out of multiple (reusable) service modules. A Dimmer could contain a module “binaryActuator” to turn on/off and additionally “setInteger0-255Actuator” to set the dimming level
Object Properties

This Class is the domain Class of Object Property:

· exposesFunctionality (range Class: Service)

· hasOperation (range Class: Operation)
· hasSubService (range Class: Service)

This Class is the range Class of Object Property:

· hasService (domain Class: Device)
· isExposedByService (domain Class: Functionality)
· hasSubService (domain Class: Service)

Data Properties

- none

Superclass-subclass Relationships

This Class is sub-class of:

-none
This Class is super -class of:
-none
Restrictions

-none

6.1.9
Class: Functionality

[image: image13.emf]MeasuringFunctionalityService

exposesFunctionality

FunctionalityLegend:… an OWL class… an Object Property… a Data Property… indicates an inheritance (sub -Class / sub-Property)

is-a

dataPropertyobjectProperty

Class

Classes: Functionality,

Controlling-, Measuring-

isExposedByService

Command

hasCommand

ControllingFunctionality

is-a

Device

hasFunctioanality

Aspect

refersTo

Description

· A Functionality (Class: Functionality) represents the functionality necessary to accomplish the task for which a Device is designed. A device can be designed to perform more than one functionality.
The functionality exhibits the – human understandable – meaning what the device “does”.
A Functionality refers to (e.g. observes or influences) some real-world aspect(s), that can be modelled as a Class: Aspect.

E.g. considering a “light switch” then a related Functionality could be “Controlling_ON_OFF” or “Controlling Brightness”. These functionalities would refer to an Aspect “light-control”.

A Functionality of a Device can be influenced / observed by a human user through the Commands that this Functionality has and that are offered to the user.

Object Properties

This Class is the domain Class of Object Property:

· hasCommand (range Class: Command)
· isExposedByService (range Class: Service)
· refersTo (range Class: Aspect)

This Class is the range Class of Object Property:

· exposesFunctionality (domain Class: Service)

· hasFunctionality (domain Class: Device)
Data Properties

- none

Superclass-subclass Relationships

This Class is sub-class of:

-none
This Class is super-class of:

· ControllingFunctionality

· MeasuringFunctionality
Restrictions

-none

6.1.9.1
Class: ControllingFunctionality
Description

· A ControllingFunctionality (Class: ControllingFunctionality) represents a functionality that has impacts on the real world, but does not gather data. In general a ControllingFunctionality has Commands (and/or Operations of its related Services) that receives Input data

E.g. a thermostat would have “temperature-adjustment” as a ControllingFunctionality.

Object Properties

This Class is the domain Class of Object Property:

- none

This Class is the range Class of Object Property:

- none

Data Properties

- none

Superclass-subclass Relationships

This Class is sub-class of:

· Functionality
This Class is super-class of:

- none

Restrictions

-none

6.1.9.2
Class: MeasuringFunctionality
Description

· A MeasuringFunctionality (Class: MeasuringFunctionality) represents a functionality that has no impacts on the real world, but only gathers data. In general a MeasuringFunctionality has Commands (and/or Operations of its related Services) that generate Output data

E.g. a temperature sensor would have “temperature-sensing” as a MeasuringFunctionality.

Object Properties

This Class is the domain Class of Object Property:

- none

This Class is the range Class of Object Property:

- none

Data Properties

- none

Superclass-subclass Relationships

This Class is sub-class of:

· Functionality
This Class is super-class of:

- none

Restrictions

-none

6.1.10
Class: Operation

[image: image14.emf]Operation

exposesCommand

CommandLegend:… an OWL class… an Object Property… a Data Property… indicates an inheritance (sub -Class / sub-Property)

is-a

dataPropertyobjectProperty

Class

Class: Operation

isExposedByOperation

OutputService

hasOperation

InputOperationStateTargetMethod

hasOperationStatehasOutputhasInputhasTargethasMethod

Description

· An Operation (Class: Operation) is the means of a Service to communicate over the network (i.e. transmit data to/from other devices). It is the –machine interpretable- exposure of a –human understandable- Command to a network.
· A oneM2M entity (e.g. an AE) can invoke an Operation of the Device (oneM2M Device or InterworkedDevice) and that invocation can trigger some action in the Device.

· An invoked Operation may have Input data.

· If the invoked Operation produces Output data then that Output correlates to the Input of that Operation

· A Device can instantaneously (e.g. by reacting to external conditions/triggers, human interaction …) create an Operation that produces Output data.

Note 1: an instantaneous Operation is sometimes also referred to as “event”.
· An Operation, whether invoked or instantaneous, may have an OperationState that allows a oneM2M entity to get informed on the progress of that operation.

Note 2: The OperationState – which provides information of an ongoing or finished operation - should not be confused with state information about the Device or Service, which potentially could be obtained as output data of some operation.
Object Properties

This Class is the domain Class of Object Property:

· exposesCommand (range Class: Command)

· hasInput (range Class: Input)

· hasOutput (range Class: Output)

· hasOperationState (range Class: OperationState)

· hasMethod (range Class: Method)

· hasTarget (range Class: Target)

This Class is the range Class of Object Property:

· hasOperation (range Class: Service)

· isExposedByOperation (domain Class: Command)

Data Properties

- none

Superclass-subclass Relationships

This Class is sub-class of:

-none
This Class is super-class of:

- none

Restrictions

-none

6.1.11
Class: Command

[image: image15.emf]Operation

exposesCommand

CommandLegend:… an OWL class… an Object Property… a Data Property… indicates an inheritance (sub -Class / sub-Property)

is-a

dataPropertyobjectProperty

Class

Class: Command

isExposedByOperation

OutputFunctionality

hasCommand

Input

hasOutputhasInput

Description

· A Command (Class: Command) represents an action that can be performed to support the Functionality. A Command is the –human understandable- action that is invoked in a device or is reported by the device. A Command is exposed by an Operation to the network. Input and Output of the related Operation can parameterize the command.
e.g. the Functionality “dimming-functionality” of a light switch that remotely controls a light could have a Command “setLightIntensity”, with a parameter that has values 0 – 100 %.
Object Properties

This Class is the domain Class of Object Property:

· isExposedByOperation (range Class: Operation)

· hasInput (range Class: Input)

· hasOutput (range Class: Output)

This Class is the range Class of Object Property:

· hasCommand (domain Class: Functionality)

· exposesCommand (domain Class: Operation)

Data Properties

- none

Superclass-subclass Relationships

This Class is sub-class of:

-none
This Class is super-class of:

- none

Restrictions

-none

6.1.12
Class: Input

[image: image16.emf]Input

describerdfs:Literal

AspectLegend:… an OWL class… an Object Property… a Data Property… indicates an inheritance (sub -Class / sub-Property)

is-a

dataPropertyobjectProperty

Class

Class: Input

hasDataTypeAndRange

OperationCommand

hasInput

Target

hasInputTarget

Description

· Input (Class: Input) describes the type of input of an Operation of a Service of the Device. Input also describes the type of input of an Command of a Functionality of the Device.
NOTE: The Input of a Command may differ from the Input to its exposed Operation.
E.g. while the Input to a “setLightIntensity” Command may take values 0 – 100 % the corresponding Input values for the related Operation may be restricted to integers 0 – 63.
An application (e.g. AE) that implements a human-machine interface for invoking the Operation needs to take care of such differences.
· The Input class shall represent all possible values for that input (data types and -ranges).
· An Operation/Command may have multiple Inputs and/or Outputs. If an instance of an Operation is invoked then the input value to that Operation shall be an instance of its Input class
(e.g, instances “ON” or “OFF” for an Input class consisting of the enumeration {“ON”,“OFF”} that sets the state of a switch or a real number within a certain range for a “Temperature” Input class for a thermostat.)

· The Input has a Target (via Object Property: “hasInputTarget”) that describes a destination (e.g. a URL) where the Input values are to be stored.
· The Input describes an Aspect (e.g. a desired state like “ON” or “OFF” or a temperature to be set).
Object Properties

This Class is the domain Class of Object Property:

· hasInputTarget (range Class: Target)
· describe (range Class: Aspect)

This Class is the range Class of Object Property:

· hasInput (domain Class: Operation)
· hasInput (domain Class: Command)

Data Properties
This Class is part of the domain Class of Data Property:
· hasDataTypeAndRange (range datatype: rdfs:Literal)

Note 1: The datatype rdfs:Literal is a datatype that is superset of all other datatypes.
see also Note 2 below
Superclass-subclass Relationships

This Class is sub-class of:

-none
This Class is super-class of:

- none

Restrictions

· hasDataTypeAndRange exactly 1 rdfs:Literal
Note 2: If a (technology specific) ontology is derived from the Base Ontology then the data type and –range that is required for the derived Input class needs to be specified in that ontology. E.g. for a derived Input class that expects integer input the ontology should specify: “Data Propety: hasDataTypeRange only xsd:integer”)
6.1.13
Class: Output

[image: image17.emf]Output

describerdfs:Literal

AspectLegend:… an OWL class… an Object Property… a Data Property… indicates an inheritance (sub -Class / sub-Property)

is-a

dataPropertyobjectProperty

Class

Class: Output

hasDataTypeAndRange

OperationCommand

hasOutput

Target

hasOutputTarget

Description

· Output (Class: Output) describes the type of output of an Operation of a Service of the Device. Output also describes the type of output of an Command of a Functionality of the Device.
NOTE: The Output of a Command may differ from the Output to its exposed Operation.
E.g. while the Output of a “currentLightIntensity” Command may take values 0 – 100 % the corresponding Output values for the related Operation may be restricted to integers 0 – 63.
An application (e.g. AE) that implements a human-machine interface for presenting the Output of the Operation to the human user needs to take care of such differences.
· The Output class shall represent all possible values for that output (data types and -ranges).
· An Operation/Command may have multiple Outputs and/or Outputs. The the output value of an instance of an Operation shall be an instance of the Operation’s Output class
(e.g, instances “ON” or “OFF” for an Output class consisting of the enumeration {“ON”,“OFF”} that shows the state of a switch or a real number within a certain range for a “Temperature” Output class for a temperature sensor.)

· The Output has a Target (via Object Property: “hasOutputTarget”) that describes a destination (e.g. a URL) where the Output values are to be stored.
· The Output describes an Aspect (e.g. the state of a light switch like “ON” or “OFF” or a measured temperature).
Object Properties

This Class is the domain Class of Object Property:

· hasOutputTarget (range Class: Target)
· describe (range Class: Aspect)

This Class is the range Class of Object Property:

· hasOutput (domain Class: Operation)
· hasOutput (domain Class: Command)

Data Properties
This Class is part of the domain Class of Data Property:
· hasDataTypeAndRange (range datatype: rdfs:Literal)

Note 1: The datatype rdfs:Literal is a datatype that is superset of all other datatypes.
see also Note 2 below
Superclass-subclass Relationships

This Class is sub-class of:

-none
This Class is super-class of:

- none

Restrictions

· hasDataTypeAndRange exactly 1 rdfs:Literal
Note 2: If a (technology specific) ontology is derived from the Base Ontology then the data type and –range that is required for the derived Output needs to be specified in that ontology. E.g. for a derived Input class that expects integer output the ontology should specify: “Data Propety: hasDataTypeRange only xsd:integer”)
6.1.14
Class: OperationState

[image: image18.emf]OperationState

rdfs:Literal

Legend:… an OWL class… an Object Property… a Data Property… indicates an inheritance (sub -Class / sub-Property)

is-a

dataPropertyobjectProperty

Class

Class: OperationState

hasDataTypeAndRange

Operation

hasOperationState

Target

hasOperationStateTarget

Description

· OperationState (Class: OperationState) describes the current state of an Operation. The OperationState class represents all possible values for that state (enumerated individuals). The OperationState is set during the progress of the operation by the CSE and, optionally, the entity that is the target of the operation, e.g. a device (or for interworked devices by the IPE).
Editors Note: Standardized operation states are FFS: States could e.g describe "Operation_Initiated" (initiating entity has UPDATEd <operation> input data), "Operation_Input_transmitted" (CSE has transmitted input data to AE), "Operation_Executing"(IPE has transmitted input data to InterworkedDevice), "Operation_Output_created" (CSE has received output data from AE), "Operation_Ended" (provided by CSE if no output is expected or upon a time-out of the operation or provided by AE, e.g. after sending last output)
· The OperationState has a Target (via Object Property: “has OperationStateTarget”) that describes a destination (e.g. a URL) where the OperationState values are stored.
Object Properties

This Class is the domain Class of Object Property:

· hasOperationStateTarget (range Class: Target)

This Class is the range Class of Object Property:

· hasOperationState (domain Class: Operation)

Data Properties
This Class is part of the domain Class of Data Property:
· hasDataTypeAndRange (range datatype: rdfs:Literal)

Note 1: The datatype rdfs:Literal is a datatype that is superset of all other datatypes.
see also Note 2 below
Superclass-subclass Relationships

This Class is sub-class of:

-none
This Class is super-class of:

- none

Restrictions

Editors Note: Restrictions that allow for a set of standardized operation states and additionally technology specific ones are FFS.
6.1.15
Class: Method

[image: image19.emf]MethodLegend:… an OWL class… an Object Property… a Data Property… indicates an inheritance (sub -Class / sub-Property)

is-a

dataPropertyobjectProperty

Class

Classes: Method,CRUDNMethod,InterworkedMethod

Operation

hasMethod

InterworkedMethod

is-a

CRUDNMethod

is-a

Description

· A Method (Class: Method) describes the way (e.g. RESTful or RPC based, subscribed, event based, polled, pushed..) how data input/output is offered by an Operation of the Device and/or InterworkedDevice.

Since the method how an operation is offered by a oneM2M Device (or a proxied device in the oneM2M Sytem) will differ from the method how an operation is offered by a InterworkedDevice in an interworked technology two sub-classes of class “Method” are defined in the base ontology:
“CRUDNMethod” and “InterworkedMethod” to emphasize that while the method in oneM2M will always be one of CREATE, RETRIEVE, UPDATE, DELETE, NOTIFY the method of the data in the interworked, non-oneM2M technology may e.g. be a certain, operation specific value at a defined position in a byte string that is sent via a technology specific protocol to the interworked, non-oneM2M device
· CRUDNMethod (Class: CRUDNMethod) is the method how data input/output is offered by the AE (or proxied device) in the oneM2M Sytem (.e. one of CREATE, RETRIEVE, UPDATE, DELETE, NOTIFY)

· InterworkedMethod (Class: InterworkedMethod) is the method of the offered by a InterworkedDevice in an interworked, non-oneM2M technology

Object Properties

This Class is the domain Class of Object Property:

-none
This Class is the range Class of Object Property:

· hasMethod (domain Class: Operation)

Data Properties

- none

Superclass-subclass Relationships

This Class is sub-class of:

-none
This Class is super-class of:

- none

Restrictions

· CRUDNMethod

· InterworkedMethod
6.1.15.1
Class: CRUDNMethod
Description

· CRUDNMethod (Class: CRUDNMethod) is the method how data input/output is offered by the AE (or proxied device) in the oneM2M Sytem (i.e. one of CREATE, RETRIEVE, UPDATE, DELETE, NOTIFY)
Object Properties

This Class is the domain Class of Object Property:

-none
This Class is the range Class of Object Property:

-none
Data Properties

- none

Superclass-subclass Relationships

This Class is sub-class of:

-none
This Class is super-class of:

- none

Restrictions

- none

6.1.15.2
Class: InterworkedMethod
Description

· InterworkedMethod (Class: InterworkedMethod) is the method of the offered by a InterworkedDevice in an interworked, non-oneM2M technology

Object Properties

This Class is the domain Class of Object Property:

-none
This Class is the range Class of Object Property:

-none
Data Properties

- none

Superclass-subclass Relationships

This Class is sub-class of:

-none
This Class is super-class of:

- none

Restrictions

- none

6.1.16
Class: Target

[image: image20.emf]TargetLegend:… an OWL class… an Object Property… a Data Property… indicates an inheritance (sub -Class / sub-Property)

is-a

dataPropertyobjectProperty

Class

Class: Target

OutputInputOperationStateOperation

hasTargethasInputTargethasOutputTargethasOperationStateTarget

InterworkedTargetOneM2MTarget

is-a

Description

· Target (Class: Target) describes a destination (e.g. a URL) to which the Operation and input data of the Operation should be sent and from where Output- or State data can be obtained.
The Target class is dependent on the technology (e.g. oneM2M RESTful style or RPC style Area Network technologies) on which the Operation is applied.
Since the target of data in the oneM2M Sytem will differ from the target in an interworked technology two sub-classes of class “Target” are defined in the base ontology:
“OneM2MTarget” and “InterworkedTarget” to emphasize that while the target of data in oneM2M will always be some oneM2M resource (e.g. a contentInstance in a container) the target of the data in the interworked, non-oneM2M technology may e.g. be a certain position in a byte string that is sent via a technology specific protocol to the interworked, non-oneM2M device

· OneM2MTarget (Class: OneM2MTarget) is the target of data in the oneM2M System

· InterworkedTarget (Class: InterworkedTarget) is the target of data in the interworked, non-oneM2M technology
Object Properties

This Class is the domain Class of Object Property:

- none

This Class is the range Class of Object Property:

· hasTarget (domain Class: Operation)

· hasInputTarget (domain Class: Input)

· hasOutputTarget (domain Class: Output)

· hasOperationStateTarget (domain Class: OperationState)

Data Properties

- none

Superclass-subclass Relationships

This Class is sub-class of:

-none
This Class is super-class of:

· OneM2MTarget

· InterworkedTarget
Restrictions

-none

6.1.16.1
Class: oneM2MTarget
Description

· OneM2MTarget (Class: OneM2MTarget) is the target of data (i.e. a oneM2M Resource) in the oneM2M System
Object Properties

This Class is the domain Class of Object Property:

- none

This Class is the range Class of Object Property:

- none

Data Properties

- none

Superclass-subclass Relationships

This Class is sub-class of:

· Target

This Class is super-class of:

-none
Restrictions

-none

6.1.16.2
Class: InterworkedTarget
Description

· InterworkedTarget (Class: InterworkedTarget) is the target of data in the interworked, non-oneM2M technology
Object Properties

This Class is the domain Class of Object Property:

- none

This Class is the range Class of Object Property:

- none

Data Properties

- none

Superclass-subclass Relationships

This Class is sub-class of:

· Target

This Class is super-class of:

-none
Restrictions

-none

6.2
Object Properties

6.2.1
Object Property: canHaveMetaData
Description

· An Aspect of a Thing-Value or Input/Output of an Operation can have MetaData (like units, precision-ranges …).

Domain Class

· Aspect

Range Class

· MetaData
6.2.2
Object Property: concerns

Description

· A Value of a Thing can concern a certain Aspect (a quality or kind).
e.g. an indoor temperature concerns the Aspect “Temperature” that could be measured by a temperature sensor
Domain Class

· Value

Range Class

· Aspect
6.2.3
Object Property: consistsOf

Description

· A Device can consist of (i.e. be composed) of several (sub-) Devices
Domain Class

· Device

Range Class

· Device
6.2.4
Object Property: describe

Description

· An Input- or Output variable of an Opertation describe an Aspect (a quality or kind)
Domain Class

· Input

· Output

Range Class

· Aspect
6.2.5
Object Property: exposesCommand

Description

· A –machine interpretable- Operation exposes a –human understandable- Command to a network.
Domain Class

· Operation

Range Class

· Command
6.2.6
Object Property: exposesFunctionality

Description

· A Service exposes a Functionality to the network and makes it discoverable, registerable and remotely controllable in the network.
Domain Class

· Service

Range Class

· Functionality
6.2.7
Object Property: hasCommand

Description

· A Functionality of a Device can be influenced / observed by a human user through the Commands that this Functionality has and that are offered to the user
Domain Class

· Functionality

Range Class

· Command
6.2.8
Object Property: hasFunctionality

Description

· In order to accomplish its task, a Device performs one or more Functionalities
Domain Class

· Device

Range Class

· Functionality
6.2.9
Object Property: hasInput

Description

· An Operation of a Service of the Device or a Command of a Functionality of the Device can have Input data.
Domain Class

· Operation

· Command

Range Class

· Input
6.2.10
Object Property: hasInputTarget

Description

· The Input of an Operation has a Target that describes a destination (e.g. a URL) where the Input values are to be stored
Domain Class

· Input

Range Class

· Target
6.2.11
Object Property: hasMetaData

Description

· A Value of a Thing can have MetaData (like units, precision-ranges …).

Domain Class

· Value

Range Class

· MetaData
6.2.12
Object Property: hasMethod

Description

· Each Operation needs to have a Method that describes the way (e.g. RESTful or RPC based, subscribed, event based, polled, pushed..) how data input/output is offered by that Operation of the Device and/or InterworkedDevice
Domain Class

· Operation

Range Class

· Method
6.2.13
Object Property: hasOperation

Description

· A Service communicates by means of Operations over the network to transmit data to/from other devices
Domain Class

· Service

Range Class

· Operation
6.2.14
Object Property: hasOperationState

Description

· An Operation may have an OperationState that is exposed.

Domain Class

· Operation

Range Class

· OperationState
6.2.15
Object Property: hasOperationStateTarget

Description

· The OperationState of an Operation has a Target that describes a destination (e.g. a URL) where the OperationState values are to be stored
Domain Class

· OperationState
Range Class

· OperationStateTarget
6.2.16
Object Property: hasOutput

· An Operation of a Service of the Device or a Command of a Functionality of the Device can have Output data.
Domain Class

· Operation

· Command

Range Class

· Output
6.2.17
Object Property: hasOutputTarget

Description

· The Output of an Operation has a Target that describes a destination (e.g. a URL) where the Output values are to be stored
Domain Class

· Output

Range Class

· Target
6.2.18
Object Property: hasService

Description

· The Functionalities of a Device are exposed in the network as Services of the Device
Domain Class

· Device

Range Class

· Service
6.2.19
Object Property: hasTarget

Description

· The Operation has a Target that describes a destination (e.g. a URL) where the data of the Operation are to be stored
Domain Class

· Operation

Range Class

· Target
6.2.20
Object Property: hasThingProperty

Description

· A Thing may have properties that can be described by Values.
Domain Class

· Thing

Range Class

· Value
6.2.21
Object Property: hasThingRelation

Description

· A Thing may have relations to itself or to other Things
Domain Class

· Thing

Range Class

· Thing

6.2.22
Object Property: isControlledBy

Description

· An AreaNetwork can be controlled by an Interworked Device though the IPE.
Domain Class

· AreaNetwork

Range Class

· InterworkedDevice
6.2.23
Object Property: isExposedByOperation

Description

· A –human understandable- Command is exposed by an Operation to the network
Domain Class

· Command

Range Class

· Operation
6.2.24
Object Property: isExposedByService

Description

· A –human understandable- Functionality of a Device is exposed by a Service to the network
Domain Class

· Functionality
Range Class

· Device
6.2.25
Object Property: isPartOf

Description

· An InterworkedDevice consist a part of an AreaNetwork

Domain Class

· InterworkedDevice

Range Class

· AreaNetwork
6.2.26
Object Property: refersTo

Description

· A Functionality of a Device can refer to a certain Aspect (a quality or kind) that is measured or controlled by that Functionality.
e.g. a temperature sensor would refer to the Aspect “Temperature” that it measures
Domain Class

· Functionality
Range Class

· Aspect
6.3
Data Properties

6.3.1
Data Property: hasDataTypeAndRange
Description

· This Data Property specifies the data type and –range for Input, Output, Value and OperationState
Domain Class

· Input, Output, Value and OperationState

Range Datatype
· rdfs:Literal
Note: The datatype rdfs:Literal is a datatype that is superset of all other datatypes.
If a (technology specific) ontology is derived from the Base Ontology then the data type and –range that is required for the derived Input class needs to be specified in that ontology. E.g. for a derived Input class that expects integer input the ontology should specify: “Data Propety: hasDataTypeRange only xsd:integer”)
6.3.2
Data Property: netTechnologyCommunicationProtocol

netTechnologyCommunicationProtocolDescription

· Identifies a communication protocol (e.g. ZigBee_1_0)

Domain Class

· AreaNetwork
Range Datatype
· netTechnologyCommunicationProtocol rdf:PlainLiteral
6.3.3
Data Property: netTechnologyPhysicalStandard

Description

· netTechnologyPhysicalStandardIdentification of the physical properties of a Area Network technology (e.g. IEEE_802_15_4_2003_2_4GHz).
Domain Class

· AreaNetwork
Range Datatype
· rdf:PlainLiteral
netTechnologyPhysicalStandard

6.3.4
Data Property: netTechnologyProfile

Description

· netTechnologyProfileIdentification of a profile (e.g. ZigBee_HA) of a Area Network technology.
Domain Class

· AreaNetwork
Range Datatype
· rdf:PlainLiteral

·
·

·

·

·

·
·

·

·

·

·

·
·
·

·
·

·
·
·
·
·

·
·
·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

7
Instantiation of the Base Ontology and external ontologies to the oneM2M System
7.1
Instantiation rules for the Base Ontology
7.1.1
Instantiation of classes of the oneM2M Base Ontology and derived external ontologies in the oneM2M System:

7.1.1.1
General on instantiating classes of the Base Ontology in the oneM2M System
If a class of the Base Ontology (or a sub-class thereof) is instantiated in a oneM2M resource (i.e. <AE> or <Container> or <ContentInstance>) then this oneM2M resource shall have a child resource of type <SemanticDescriptor>.
That <SemanticDescriptor> resource shall

a) Contain an instantiation of the class in the data of its descriptor attribute.

b) Contain an Ontology-Ref attribute that identifies the class in the referenced ontology.
Editor’s Note: it is unclear if a Ontology-Ref is required.

c) Contain instantiations of Object- and Data Properties for which the class is a domain class.

7.1.1.2
Instantiation of individual classes of the Base Ontology
· The Device class of the oneM2M Base Ontology (or a sub-class thereof) shall be instantiated in resources of type <AE> in the oneM2M System. The descriptor attribute of the related <SemanticDescriptor> shall contain the RDF description of the Device instance:

Editor’s Note: need to provide RDF description of here,

Editor’s Note: need to be able to have a <Node> resource mapped to a Device

NOTE:
Also the InterworkedDevice class of the oneM2M Base Ontology (or a sub-class) is instantiated as resources of type <AE>. However in this case the <AE> represents a “proxied” device, the application logic (APP-ID) is provided through the Interworking Proxy Entity (IPE).
· The AreaNetwork class (or a sub-class) shall be instantiated in the data of the descriptor attribute of the <SemanticDescriptor> child resource of the <AE> of the InterworkedDevice class instance

·
The Data Properties “anTechnologyCommunicationProtocol”, “anTechnologyPhysicalStandard” and “anTechnologyProfile” are instantiated in the descriptor attribute of the <SemanticDescriptor> child resource of the <AE> of the InterworkedDevice class instance

· The Service class (or a sub-class) shall be instantiated in the data of the descriptor attribute of the <SemanticDescriptor> child resource of the <AE> of the Device class instance

· The Functionality class (or sub-class) shall be instantiated in the data of the descriptor attribute of the <SemanticDescriptor> child resource of the <AE> of the Device instance

· The Command class (or sub-class) shall be instantiated in the data of the descriptor attribute of the <SemanticDescriptor> child resource of the <AE> of the Device instance
· The instantiation of an Object Property “isExposedByOperation” shall contain a reference to the resource of type <container/ Operation> that instantiates the Operation
· The Operation class (or sub-classes) shall be instantiated in a resource of type <container/ Operation> that is a child-resource of the <AE> that instantiates the Service. The descriptor attribute of the <SemanticDescriptor> child resource of the <container/Operation> shall contain the RDF description of the Operation instance
· The instantiation of an Object Property “exposesCommand” shall contain a reference to the resource of type <AE> that instantiates the Command

· The Input and Output class (or sub-class) shall be instantiated in the data of the descriptor attribute of the <SemanticDescriptor> child resource of the <container/Operation> of the Operation instance that is related via the “hasInput” / “hasOutput” Object Property
· The related Data Property “hasDataTypeAndRange” (that indicates the permissible data type and range of the content of the “Input” or “Output” instance) shall be instantiated in the the <SemanticDescriptor> child resource of the <container/Operation> of the Operation instance that is related via the “hasInput” / “hasOutput” Object Property.
· The OperationState class (or sub-class) shall be instantiated in the data of the descriptor attribute of the <SemanticDescriptor> child resource of the <container/Operation> of the Operation instance that is related via the “hasOperationState” Object Property
· The related Data Property “hasDataTypeAndRange” (that indicates the permissible data type and range of the content of the “OperationState” instance) shall be instantiated in the the <SemanticDescriptor> child resource of the <container/Operation> of the Operation instance that is related via the “hasOperationState” Object Property.
· The Method class (or sub-classes) shall be instantiated in the data of the descriptor attribute of the <SemanticDescriptor> child resource of the <container/Operation> of the Operation instance.

NOTE:
In the oneM2M System only the following instances of the Method class exist: CREATE, UPDATE, RETRIEVE

· The Target class (or sub-classes) shall be instantiated in the data of the descriptor attribute of the <SemanticDescriptor> child resource of the <container/Operation> of the Operation instance.

The instance of the Target class related to the Operation class via the “hasTarget” Object Property shall contain a URI that is constructed as follows:

· {Resource identifier of the < container/Operation> of the of the Operation instance}

The instance of the Target class related to the Input- Output- or OperationState class via the “hasInputTarget” / “hasOutputTarget” / “hasOperationStateTarget” Object Property shall contain a URI that is constructed as follows:

· {Resource identifier of an attribute / child-resource of the <container/Operation> of the Operation instance, specific to the Input- Output- or OperationState class}
Editor’s Note: all instantiations related to Operation, Input/Output/State require agreement on modelling Opertations in ARC and are FFS.

· The Aspect class (or sub-classes) shall be instantiated either
· in the data of the descriptor attribute of the <SemanticDescriptor> child resource of the <AE> of the Device instance that contains the Functionality that refers to this Aspect.
or

· in the data of the descriptor attribute of the <SemanticDescriptor> child resource of the <container> of the Thing instance that contains the Value that concerns this Aspect
· The Thing class (or sub-classes) shall be instantiated in resources of type <container>.
The descriptor attribute of the related <SemanticDescriptor> shall contain the RDF description of the Thing instance
· An instantiation of an Object Property “hasThingRelation” shall contain a reference to the resource (of type <container> in case of a Thing, of type <AE> in case of a Device) that instantiates the range class of the Object Property.

NOTE: this reference could refer to a resource of type <container> in case of relating to a Thing, or of type <AE> in case of a Device (as a sub-class of Thing)

· The Value class (or sub-classes) shall be instantiated in resources of type <container> as a child-resource of the resource to which it relates via the “hasThingProperty” Object Property.
NOTE: this resource could be a resource of type <container> in case of relating to a Thing, or of type <AE> in case of a Device (as a sub-class of Thing)

The descriptor attribute of the <SemanticDescriptor> child resource of the Value <container> shall contain the RDF description of the Value instance.
· The related Data Property “hasDataTypeAndRange” (that indicates the permissible data type and range of the content of the “Value” instance) shall be instantiated in the the <SemanticDescriptor> child resource of the Value <container>.

· The related Object Property “hasThingProperty” shall be instantiated in the descriptor attribute of the <SemanticDescriptor> of the <container> of the related “Thing” instance.
NOTE: the data of the Value instance can be accessed by the usual CRUDN operations
· The MetaData class (or sub-classes) shall be instantiated in the descriptor attribute of the <SemanticDescriptor>

· of the Value instance related via the “hasMetaData” Object Property

or

· of the Aspect instance related via the “canHaveMetaData” Object Property
7.1.2
Instantiation of Object Properties:

Object properties relate an instance of domain class to an instance of the range class.
They shall be instantiated in the data of the descriptor attribute of the <SemanticDescriptor> resource that instantiates the domain class of the object property.

If the range class of an Object Property is instantiated in a different resource than the instantiation of the domain class then the Object Property shall contain a reference to that resource.
7.1.3
Instantiation of Data Properties:

Data properties shall be instantiated in the data of the descriptor attribute of the <SemanticDescriptor> resource that instantiates the domain class of the data property.

7.2
Common mapping principles between the Base Ontology and external ontologies
The base ontology can be mapped to other external ontologies (e.g., SAREF, SSN, etc.). The following priciples are applied for the mapping between ontologies:

· Principle 1 – Classes Mapping (owl:equivalentClass) :
· Making the statement X owl:equivalentClass Y essentially means that two named classes are synonymous, i.e. that all instances of class X are instances of class Y and vice versa.
· Using this principle, two classes specified in different ontologies are declared to be equivalent.
· Principle 2 – Properties Mapping (owl:equivalentProperty):
· The owl:equivalentProperty construct can be used to state that two properties have the same property extension. Syntactically, owl:equivalentProperty is a built-in OWL property with rdf:Property as both its domain and range.
· Using this principle, if two properties are declared to be equivalent, two properties have the same semantics or meaning.
· Principle 3 – Class Instances Mapping (owl:sameAs):

· The property owl:sameAs is used to state that two individuals (i.e. class instances) are the same.
· Using this principle, two class instances specified in different ontologies are declared to be equivalent.
· Principle 4 – SubClass Mapping (rdfs:subClassOf):

· The property rdfs:subClassOf is used to state that the class extension of a class description is a subset of the class extension of another class description.

· Making the statement X rdfs:subClassOf Y essentially means that all instances of class X are instances of class Y.

The following text is to be used when appropriate:

Proforma copyright release text block

This text box shall immediately follow after the heading of an element (i.e. clause or annex) containing a proforma or template which is intended to be copied by the user. Such an element shall always start on a new page.

Notwithstanding the provisions of the copyright clause related to the text of the present document, oneM2M grants that users of the present document may freely reproduce the <proformatype> proforma in this {clause|annex} so that it can be used for its intended purposes and may further publish the completed <proformatype>.

<PAGE BREAK>

Annexes

Each annex shall start on a new page (insert a page break between annexes A and B, annexes B and C, etc.).

Use the Heading 9 style for the title and the Normal style for the text.
Annex A (Normative): OWL representation of Base Ontology
The OWL representation of Base Ontology is provided in a separatedocument.
The Base Ontology is available under the IRI:

•
http://www.onem2m.org/ontology/Base_Ontology

which contains the latest version of the ontology and individual versions of the ontology under the IRI:

•
http://www.onem2m.org/ontology/Base_Ontology-vx_y_z ... (where x,y,z signify the version numbering for major- minor- and editorial changes of the base ontology).

e.g. http://www.onem2m.org/ontology/Base_Ontology-v0_5_0
Annex B (Informative): Mappings of selected external ontologies to the Base Ontology
B.1
Mapping of SAREF
B.1.1
Introduction to SAREF
The following description of the SAREF ontology is copied from the following site: https://sites.google.com/site/smartappliancesproject/ontologies/reference-ontology

It provides an introduction to the scope and objectives of SAREF ontology:

“The Smart Appliances REFerence (SAREF) ontology is a shared model of consensus that facilitates the matching of existing assets (standards/protocols/datamodels/etc.) in the smart appliances domain. The SAREF ontology provides building blocks that allow separation and recombination of different parts of the ontology depending on specific needs.

The starting point of SAREF is the concept of Device (e.g., a switch). Devices are tangible objects designed to accomplish one or more functions in households, common public buildings or offices. The SAREF ontology offers a lists of basic functions that can be eventually combined in order to have more complex functions in a single device. For example, a switch offers an actuating function of type “switching on/off”. Each function has some associated commands, which can also be picked up as building blocks from a list. For example, the “switching on/off” is associated with the commands “switch on”, “switch off” and “toggle”. Depending on the function(s) it accomplishes, a device can be found in some corresponding states that are also listed as building blocks.

A Device offers a Service, which is a representation of a Function to a network that makes the function discoverable, registerable and remotely controllable by other devices in the network. A Service can represent one or more functions. A Service is offered by a device that wants (a certain set of) its function(s) to be discoverable, registerable, remotely controllable by other devices in the network. A Service must specify the device that is offering the service, the function(s) to be represented, and the (input and output) parameters necessary to operate the service.

A Device in the SAREF ontology is also characterized by an (Energy/Power) Profile that can be used to optimize the energy efficiency in a home or office that are part of a building.”

A formal description of the ontology is provided via this link: http://ontology.tno.nl/saref/
The following table provides a list of SAREF concepts – source http://www.etsi.org/images/files/Events/2015/201502_SMARTAPP/D-S4%20-%20SMART%202013-0077%20-%20Smart%20Appliances%20-%20Final%20Study%20Report_v1.0.pdf
	Concept
	Definition

	Building Object
	A Building Object is an object in the building that can be controlled by devices, such as a door or a window that can be automatically opened or closed by an actuator

	Building Space
	According to FEIMSER, a Building Space in SAREF defines the physical spaces of the building. A building space contains devices or building objects.

	Command
	A Command is a directive that a device must support to perform a certain function. A command may act upon a state, but does not necessarily act upon a state. For example, the ON command acts upon the ON/OFF state, but the GET command does not act upon any state, since it gives a directive to retrieve a certain value with no consequences on states.

	Commodity
	A Commodity is a marketable item for which there is demand, but which is supplied without qualitative differentiation across a market. SAREF refers to energy commodities such as electricity, gas, coal and oil.

	Device
	A Device in the context of the Smart Appliances study is a tangible object designed to accomplish a particular task in households, common public buildings or offices. In order to accomplish this task, the device performs one or more functions. For example, a washing machine is designed to wash (task) and to accomplish this task it performs the start and stop function.

	Device Category
	A Device Category provides a way to classify devices according to a certain point of view, for example, the point of view of the user of the device vs. the device's manufacturer, or the domain in which the device is used (e.g., smart appliances vs. building domain vs. smart grid domain), etc.

	Function
	A Function represents the particular use for which a Device is designed. A device can be designed to perform more than one function.

	Function Category
	A Function Category provides a way to classify functions according to a certain point of view, for example, considering the specific application area for which a function can be used (e.g., light, temperature, motion, heat, power, etc.), or the capability that a function can support (e.g., receive, reply, notify, etc.), and so forth.

	Profile
	A Profile caracterizes a device for the purpose to optimize the energy efficiency in the home or office in which the device is located. The saref:Profile class allows to describe the energy (or power) production and consumption of a certain device using the saref: hasProduction and saref:hasConsumption properties. This production and consumption can be calculated over a time span (the saref:hasTime property) and, eventually, associated to some costs (the saref:hasPrice property).

	Property
	A Property is anything that can be sensed, measured or controlled in households, common public buildings or offices.

	Service
	A Service is a representation of a function to a network that makes the function discoverable, registerable, remotely controllable by other devices in the network. A service can represent one or more functions. A Service is offered by a device that wants (a certain set of) its function(s) to be discoverable, registerable, remotely controllable by other devices in the network. A Service must specify the device that is offering the service, the function(s) to be represented, and the (input and output) parameters 144 necessary to operate the service.

	State
	A State represents the state in which a device can be found, e.g, ON/OFF/STANDBY, or ONLINE/OFFLINE, etc.

	Task
	A Task represents the goal for which a device is designed (from a user perspective). For example, a washing machine is designed for the task of cleaning

	Unit of Measure
	The Unit of Measure is a standard for measurement of a quantity, such as a Property. For example, Power is a property and Watt is a unit of power that represents a definite predetermined power: when we say 10 Watt, we actually mean 10 times the definite predetermined power called "watt". Our definition is based on the definition of unit of measure in the Ontology of units of Measure (OM). We propose here a list of some units of measure that are relevant for the purpose of the Smart Appliances ontology, but this list can be extended.

B.1.2
Sub-class relationship of SAREF with the Base Ontology

[image: image27.png]
Figure B-1 (Device)
Figure B-1
[image: image28.png]
Figure B-2 (Thing)
Figure B-2
[image: image29.png]
Figure B-3 (Aspect)
Figure B-3
[image: image30.png]
Figure B-4 (Function)
Figure B-4
[image: image31.png]
Figure B-5 (Service)
Figure B-5
B.1.3
Mapping SAREF to oneM2M resource structure

B.1.3.1
Introduction

This clause proposes a recommended way to map SAREF to oneM2M: such a mapping is provided through a list of mapping rules. Mapping an ontology to oneM2M describes how such an ontology can be used to describe an instance of that ontology represented under oneM2M resource structure.

B.1.3.2
Mapping rules

Editor’s note: Mapping rule are similar to the mapping rules of the base ontology. This section will only list additional mapping rules if applicable.

B.1.3.3
Example showing the ues of the semanticDescriptor resource

This clause gives an example of how semantic annotations based on the Smart Appliance REFerence Ontology (SAREF) [i.2] can be used to describe a container representing a smart appliance.

[image: image32.emf]WashingMachine

ontologyRef

startStopContainer

stateContainer

semanticDescriptor

Figure B-6: Resource structure of smart washing machine container

Figure xxx shows the resource structure of a container representing a smart washing machine. It consists of an ontologyRef attribute, which contains the URI of the ontology concept of the smart washing machine, e.g. "http://www.tno.com/saref#WashingMachine". The startStopContainer and the stateContainer represent the functional interface aspects of the washing machine, i.e. it can be started and stopped and the current state can be requested.

The following RDF shows the semantic annotation stored in the semanticDescriptor resource. The information provides the link between the operations of the washing machines and the containers of the smart washing machine container and describes the REST methods that can be executed on the containers. The washing operation can be started by executing a Create request on the startStopContainer whose URI is provided, the same for the state operation, where a Retrieve request on the latest contentInstance of the stateContainer will provide the current state of the washing machine.

<rdf:RDF
 <rdf:Description rdf:about="http://www.tno.com/saref#WASH_LG_123">
 <rdf:type rdf:resource="http://www.tno.com/saref#WashingMachine"/>
 <saref:hasManufacturer>LG</saref:hasManufacturer>
 <saref:hasDescription>Very cool Washing Machine</saref:hasDescription>
 <saref:hasLocation rdf:resource="http://www.tno.com/saref#Bathroom"/>
 <msm:hasService rdf:resource="http://www.tno.com/saref#WashingService_123"/>
 <msm:hasService rdf:resource="http://www.tno.com/saref#StateService_123"/>
 </rdf:Description>

 <rdf:Description rdf:about="http://www.tno.com/saref#WashingService_123">

 <rdf:type rdf:resource="http://www.tno.com/saref#WashingService"/>
 <msm:hasOperation rdf:resource="http://www.tno.com/saref#WashingOperation_123"/>
 </rdf:Description>

 <rdf:Description rdf:about="http://www.tno.com/saref#WashingOperation_123">

 <rdf:type rdf:resource="http://www.tno.com/saref#WashingOperation"/>
 <hr:hasMethod>Create</hr:hasMethod>
 <hr:hasURITemplate>/CSE1/WASH_LG_123/startStopContainer </hr:hasURITemplate>
 <msm:hasInput rdf:resource="http://www.tno.com/saref#Action"/>
 </rdf:Description>

 <rdf:Description rdf:about="http://www.tno.com/saref#StateService123">

 <rdf:type rdf:resource="http://www.tno.com/saref#StateService"/>
 <msm:hasOperation rdf:resource="http://www.tno.com/saref#StateOperation123"/>
 </rdf:Description>

 <rdf:Description rdf:about="http://www.tno.com/saref#StateOperation123">

 <rdf:type rdf:resource="http://www.tno.com/saref#StateOperation"/>
 <hr:hasMethod>Retrieve</hr:hasMethod>
 <hr:hasURITemplate>/CSE1/WASH_LG_123/state/stateContainer/latest</hr:hasURITemplate>
 <msm:hasOutput rdf:resource="http://www.tno.com/saref#State"/>
 </rdf:Description>
</rdf:RDF>
<PAGE BREAK>
The following text is to be used when appropriate:

Annex <y>:
Bibliography

The annex entitled "Bibliography" is optional.

It shall contain a list of standards, books, articles, or other sources on a particular subject which are not mentioned in the document itself
It shall not include references mentioned in the document.

Use the Heading 9 style for the title and B1+ or Normal for the text.

· <Publication>: "<Title>".

OR

<Publication>: "<Title>".

<PAGE BREAK>

History

This clause shall be the last one in the document and list the main phases (all additional information will be removed at the publication stage).
	Publication history

	V1.1.1
	<dd-Mmm-yyyy>
	<Milestone>

	
	
	

	
	
	

	
	
	

	
	
	

	Draft history (to be removed on publication)

	V.0.0.0
	16.Mar.2015
	MAS#16.0 TS Skeleton

	V.0.1.0
	27.Mar.2015
	MAS#16.0 including contribution:
 - MAS-2015-0539R01-Generic_Interworking_Ontology

	V.0.2.0
	01.June.2015
	MAS#17.0 including contribution:

 - MAS-2015-0560R04-components_of_the_base_ontology
 - MAS-2015-0561R01-methods_for_jointly_using_ontologies
 - MAS-2015-0563R04-Update_on_TS-0012_on_general_principles_and_generic_interworking
 - MAS-2015-0566R03-Mapping_SAREF_to_oneM2M

	V.0.3.0
	07.July.2015
	MAS#17.3 including contribution:
 - MAS-2015-0585R02-Introducing_ontologies_and_why_they_are_used_in_oneM2M
Editorial corrections

	V.0.4.0
	07. August 2015
	MAS#18 including contribution:
 - MAS-2015-0596R03 - Proposed modification for Section 7 on mapping of the base ontoloy and external ontologies
 - MAS-2015-0595R07- TS-0012 Update on Base Ontology and Mapping to oneM2M Resources

	V.0.4.1
	11. Aug. 2015
	After MAS#18.1 confcall:

Correcting editor’s mistake: changes to section 5.2.2.2 from MAS-2015-0595R07 were missing.

	V.0.5.0
	25. Sept. 2015
	MAS#19 including contributions:
 - MAS-2015-0615R01-CR_to_TS-0012_-_5_2_1_2_Essential_Classes_and_Properties
 - MAS-2015-0616R02-CR_to_TS-0012_-_6_Description_of_Classes_and_Properties
 - MAS-2015-0617R01-CR_to_TS-0012_-_7_1_1_Instantiation_of_classes_of_the_oneM2M_Base_Ontology
 - MAS-2015-0627R02-CR_to_TS-0012_common_mapping_principles
Editorial updates (Thanks to Karen ()

	V.0.6.0
	11. Nov. 2015
	MAS#20 including contributions:

 - MAS-2015-0664R02-Small_enhancements_to_the_Base_Ontology
 - MAS-2015-0665R02-CR_to_TS-0012_-_6_Description_of_Classes_and_Properties_-_II
 - MAS-2015-0675R02-Revisions_for_common_mapping_principles_between_the_Base_Ontology_and external ontologies

© oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC)
Page 4 of 58
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

_1508467064.ppt

Measuring

Functionality

Service

exposes

Functionality

Functionality

Classes: Functionality,

Controlling-, Measuring-

isExposed

ByService

Command

hasCommand

Controlling

Functionality

is-a

Device

hasFunctioanality

Aspect

refersTo

is-a

dataProperty

objectProperty

Legend:			… an OWL class

			… an Object Property

			… a Data Property

			… indicates an inheritance (sub-Class / sub-Property)

Class

*

_1508474236.ppt

Operation

State

rdfs:Literal

Class:

OperationState

hasDataType

AndRange

Operation

hasOperationState

Target

hasOperationStateTarget

is-a

dataProperty

objectProperty

Legend:			… an OWL class

			… an Object Property

			… a Data Property

			… indicates an inheritance (sub-Class / sub-Property)

Class

*

_1508818238.ppt

Area

Network

isPartOf

rdf:

PlainLiteral

Interworked

Device

isControlledBy

Class: AreaNetwork

rdf:

PlainLiteral

rdf:

PlainLiteral

netTechnology

PhysicalStandard

netTechnology

Communication

Protocol

netTechnology

Profile

is-a

dataProperty

objectProperty

Legend:			… an OWL class

			… an Object Property

			… a Data Property

			… indicates an inheritance (sub-Class / sub-Property)

Class

*

_1509280105.ppt

Device

Functionality

Service

hasService

hasFunctionality

Operation

hasOperation

isExposed

ByService

Method

Input

Target

hasTarget

Aspect

refersTo

Measuring

Functionality

Controlling

Functionality

Command

hasCommand

is-a

consistsOf

hasMethod

exposesCommand

Output

describe

hasInput

Target

hasOutput

Target

Operation

State

hasOperation

State

hasOperation

StateTarget

isExposedByOperation

exposes

Functionality

Area

Network

Interworked

Device

isPartOf

isControl

ledBy

Thing

hasThingProperty

hasThingRelation

Value

hasMeta

Data

is-a

is-a

Meta

Data

canHave

MetaData

concerns

the oneM2M Base Ontology

hasInput

hasOutput

Interworked

Target

is-a

oneM2M

Target

is-a

InterworkedMethod

is-a

CRUDN

Method

is-a

hasSubService

*

_1508476893.ppt

Target

Class: Target

Output

Input

Operation

State

Operation

hasTarget

hasInput

Target

hasOutput

Target

hasOperation

StateTarget

Interworked

Target

OneM2M

Target

is-a

is-a

dataProperty

objectProperty

Legend:			… an OWL class

			… an Object Property

			… a Data Property

			… indicates an inheritance (sub-Class / sub-Property)

Class

*

_1508733468.ppt

Service

exposes

Functionality

Functionality

Class: Service

isExposed

ByService

Operation

hasOperation

Device

hasService

hasSubService

is-a

dataProperty

objectProperty

Legend:			… an OWL class

			… an Object Property

			… a Data Property

			… indicates an inheritance (sub-Class / sub-Property)

Class

*

_1508474793.ppt

Method

Classes: Method,

CRUDNMethod,

InterworkedMethod

Operation

hasMethod

Interworked

Method

is-a

CRUDN

Method

is-a

is-a

dataProperty

objectProperty

Legend:			… an OWL class

			… an Object Property

			… a Data Property

			… indicates an inheritance (sub-Class / sub-Property)

Class

*

_1508470683.ppt

Input

describe

rdfs:Literal

Aspect

Class: Input

hasDataType

AndRange

Operation

Command

hasInput

Target

hasInputTarget

is-a

dataProperty

objectProperty

Legend:			… an OWL class

			… an Object Property

			… a Data Property

			… indicates an inheritance (sub-Class / sub-Property)

Class

*

_1508472106.ppt

Output

describe

rdfs:Literal

Aspect

Class: Output

hasDataType

AndRange

Operation

Command

hasOutput

Target

hasOutputTarget

is-a

dataProperty

objectProperty

Legend:			… an OWL class

			… an Object Property

			… a Data Property

			… indicates an inheritance (sub-Class / sub-Property)

Class

*

_1508467980.ppt

Operation

exposes

Command

Command

Class: Command

isExposed

ByOperation

Output

Functionality

hasCommand

Input

hasOutput

hasInput

is-a

dataProperty

objectProperty

Legend:			… an OWL class

			… an Object Property

			… a Data Property

			… indicates an inheritance (sub-Class / sub-Property)

Class

*

_1504705528.ppt

Device

Functionality

Service

hasService

hasFunctionality

Operation

hasOperation

isExposed

ByService

Method

Input

hasInput

Target

hasTarget

Aspect

refersTo

Measuring

Functionality

Controlling

Functionality

Command

hasCommand

is-a

consistsOf

hasMethod

exposesCommand

Output

describe

hasInput

Target

hasOutput

Target

hasOutput

Operation

State

hasOperation

State

hasOperation

StateTarget

isExposedByOperation

exposes

Functionality

Area

Network

Interworked

Device

isPartOf

isControl

ledBy

Thing

hasThingProperty

hasThingRelation

Value

hasMeta

Data

is-a

is-a

Meta

Data

canHave

MetaData

concerns

the oneM2M Base Ontology

*

_1508407340.ppt

Interworked

Device

Area

Network

Device

is-a

Class: InterworkedDevice

isControlledBy

isPartOf

is-a

dataProperty

objectProperty

Legend:			… an OWL class

			… an Object Property

			… a Data Property

			… indicates an inheritance (sub-Class / sub-Property)

Class

*

_1508463920.ppt

Operation

exposes

Command

Command

Class: Operation

isExposed

ByOperation

Output

Service

hasOperation

Input

Operation

State

Target

Method

hasOperation

State

hasOutput

hasInput

hasTarget

hasMethod

is-a

dataProperty

objectProperty

Legend:			… an OWL class

			… an Object Property

			… a Data Property

			… indicates an inheritance (sub-Class / sub-Property)

Class

*

_1493763052.ppt

oneM2M compliant Solution

Area Network

(e.g. KNX)

real Devices in Area Network

“proxied” Devices in the oneM2M System technology

oneM2M

AE

REST-ful Resource access

Inter

working

Proxy

Entity

