[image: C:\Users\grayv\Desktop\oneM2M-Logo.gif]

[bookmark: GSBox]
	[bookmark: page2]ONEM2M
TECHNICAL SPECIFICATION

	Document Number
	[bookmark: _GoBack]TS-0015-V2.0.0

	Document Name:
	Testing Framework

	Date:
	2016-August-30

	Abstract:
	The testing framework proposed in the present document provides methodology for development of conformance and interoperability test strategies, test systems and the resulting test specifications for oneM2M standards.

	Template Version:23 February 2015 (Dot not modify)

This Specification is provided for future development work within oneM2M only. The Partners accept no liability for any use of this Specification.
The present document has not been subject to any approval process by the oneM2M Partners Type 1. Published oneM2M specifications and reports for implementation should be obtained via the oneM2M Partners' Publications Offices.

About oneM2M
The purpose and goal of oneM2M is to develop technical specifications which address the need for a common M2M Service Layer that can be readily embedded within various hardware and software, and relied upon to connect the myriad of devices in the field with M2M application servers worldwide.
More information about oneM2M may be found at: http//www.oneM2M.org
Copyright Notification
© 2016, oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC).
All rights reserved.
The copyright extends to reproduction in all media.

Notice of Disclaimer & Limitation of Liability
The information provided in this document is directed solely to professionals who have the appropriate degree of experience to understand and interpret its contents in accordance with generally accepted engineering or other professional standards and applicable regulations. No recommendation as to products or vendors is made or should be implied.
NO REPRESENTATION OR WARRANTY IS MADE THAT THE INFORMATION IS TECHNICALLY ACCURATE OR SUFFICIENT OR CONFORMS TO ANY STATUTE, GOVERNMENTAL RULE OR REGULATION, AND FURTHER, NO REPRESENTATION OR WARRANTY IS MADE OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. NO oneM2M PARTNER TYPE 1 SHALL BE LIABLE, BEYOND THE AMOUNT OF ANY SUM RECEIVED IN PAYMENT BY THAT PARTNER FOR THIS DOCUMENT, WITH RESPECT TO ANY CLAIM, AND IN NO EVENT SHALL oneM2M BE LIABLE FOR LOST PROFITS OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES. oneM2M EXPRESSLY ADVISES ANY AND ALL USE OF OR RELIANCE UPON THIS INFORMATION PROVIDED IN THIS DOCUMENT IS AT THE RISK OF THE USER.
[bookmark: _Toc449966264]
Contents
1	Scope	4
2	References	4
2.1	Normative references	4
2.2	Informative references	4
3	Definitions and abbreviations	4
3.1	Definitions	4
3.2	Abbreviations	5
4	Conventions	6
5	Introduction to the oneM2M testing methodology	6
6	Conformance testing	8
6.1	Introduction	8
6.2	Test architecture	9
6.2.1	Selection of Implementation Under Test	9
6.2.2	Identification of the Reference Points	10
6.3	Development of Conformance Test Specifications	10
6.3.1	Implementation Conformance Statement (ICS)	10
6.3.2	Test Suite Structure & Test Purposes (TSS&TP)	11
6.3.3	Abstract Test Suite (ATS)	16
6.3.4	Implementation eXtra Information for Testing (IXIT)	21
7	Interoperability testing	22
7.1	Introduction	22
7.2	Basic Concepts	22
7.2.1	Overview	22
7.2.2	System Under Test (SUT)	23
7.2.3	Test Environment	24
7.3	Development of Interoperability Test Specifications	24
7.3.1	Overview	24
7.3.2	Generic SUT Architecture	25
7.3.3	Test scenarios	25
7.3.4	Test bed architecture and Interfaces	25
7.3.5	Interoperable Functions Statement (IFS)	27
7.3.6	Test Descriptions (TD)	27
Annex A (informative): Example of ICS table	30
A.1	Capability Statement	30
History	31

[bookmark: _Toc449966265][bookmark: _Toc452389303]
1	Scope
The present document specifies a testing framework defining a methodology for development of conformance and interoperability test strategies, test systems and the resulting test specifications for oneM2M standards.
[bookmark: _Toc449966266][bookmark: _Toc452389304]2	References
[bookmark: _Toc449966267][bookmark: _Toc452389305]2.1	Normative references
References are either specific (identified by date of publication and/or edition number or version number) or nonspecific. For specific references, only the cited version applies. For non-specific references, the latest version of the reference document (including any amendments) applies.
The following referenced documents are necessary for the application of the present document.
[bookmark: REF_ONEM2MTS_0001][1]	oneM2M TS-0001: "Functional Architecture".
[bookmark: REF_ONEM2MTS_0004][2]	oneM2M TS-0004: "Service layer Core Protocol".
[bookmark: _Toc449966268][bookmark: _Toc452389306]2.2	Informative references
References are either specific (identified by date of publication and/or edition number or version number) or nonspecific. For specific references, only the cited version applies. For non-specific references, the latest version of the reference document (including any amendments) applies.
The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
[bookmark: REF_ONEM2MDRAFTINGRULES][i.1]	oneM2M Drafting Rules.
NOTE:	Available at http://www.onem2m.org/images/files/oneM2M-Drafting-Rules.pdf.
[bookmark: REF_ISOIEC9646][i.2]	ISO/IEC 9646 (all parts): "Information technology - Open Systems Interconnection - Conformance testing methodology and framework".
[bookmark: REF_EG202237][i.3]	ETSI EG 202 237: "Methods for Testing and Specification (MTS); Internet Protocol Testing (IPT); Generic approach to interoperability testing".
[bookmark: REF_ES201873_1][i.4]	ETSI ES 201 873-1: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core Language".
[bookmark: _Toc452389307][bookmark: _Toc449966269]3	Definitions and abbreviations
[bookmark: _Toc449966270][bookmark: _Toc452389308]3.1	Definitions
For the purposes of the present document, the following terms and definitions apply:
conformance: compliance with requirements specified in applicable standards ISO/IEC 9646 [i.2]
conformance testing: process for testing that an implementation is compliant with a protocol standard, which is realized by test systems simulating the protocol with test scripts executed against the implementation under test
Device Under Test (DUT): combination of software and/or hardware items which implement the functionality of standards and interact with other DUTs via one or more reference points
ICS proforma: document, in the form of a questionnaire, which when completed for an implementation or system becomes an ICS
Implementation Conformance Statement (ICS): statement made by the supplier of an implementation or system claimed to conform to a given specification, stating which capabilities have been implemented
Implementation eXtra Information for Testing (IXIT): checklist which contains or references all of the information (in addition to that given in the ICS) related to the IUT and its testing environment, which will enable the test laboratory to run an appropriate test suite against the IUT
Implementation Under Test (IUT): implementation of one or more Open Systems Interconnection (OSI) protocols in an adjacent user/provider relationship, being the part of a real open system which is to be studied by testing (ISO/IEC 9646-1 [i.2])
Inopportune Behaviour (BO): test group that handles invalid exchanges of messages, which are properly structured and correctly encoded
interoperability: ability of two systems to interoperate using the same communication protocol
interoperability testing: activity of proving that end-to-end functionality between (at least) two devices is as required by the base standard(s) on which those devices are based
InterWorking Function (IWF): translation of one protocol into another one so that two systems using two different communication protocols are able to interoperate
Invalid Behaviour (BI): test group that handles valid exchanges of messages, which are either not properly structured or incorrectly encoded
IXIT proforma: document, in the form of a questionnaire, which when completed for an implementation or system, becomes an IXIT
Qualified Equipment (QE): grouping of one or more devices that has been shown and certified, by rigorous and welldefined testing, to interoperate with other equipment
NOTE 1:	Once an DUT has been successfully tested against a QE, it may be considered to be a QE, itself.
NOTE 2:	Once a QE is modified, it loses its status as QE and becomes again an DUT.
test case: specification of the actions required to achieve a specific test purpose, starting in a stable testing state, ending in a stable testing state and defined in either natural language for manual operation or in a machinereadable language (such as TTCN-3) for automatic execution
testing framework: document providing guidance and examples necessary for the development and implementation of a test specification
test purpose: description of a well-defined objective of testing, focussing on a single requirement or a set of related requirements
Valid Behaviour (BV): test group that handles valid exchanges of messages, which are properly structured and correctly
[bookmark: _Toc449966271][bookmark: _Toc452389309]3.2	Abbreviations
For the purposes of the present document, the terms and definitions given in oneM2M TS-0001 [1] and the following apply:
API	Application Programming Interface
APT	Abstract Protocol Tester
ATS	Abstract Test Suite
BI	Invalid Behaviour
BO 	Inopportune Behaviour
BV	Valid Behaviour
CoAP	Constrained Application Protocol
EUT	Equipment Under Test
FQDN	Fully Qualified Domain Name
HTTP	HyperText Transfer Protocol
IFS	Interoperable Features Statement
IOP	Interoperability
IUT	Implementation Under Test
IWF	InterWorking Function
JSON	JavaScript Object Notation
MMI	Man-Machine Interface
MQTT	Message Queue Telemetry Transport
PICS	Protocol Implementation Conformance Statement
QE	Qualified Equipment
SUT	System Under Test
TC	Test Case
TCP	Transmission Control Protocol
TD	Test Description
TP	Test Purpose
TSS	Test Suite Structure
TTCN-3	Testing and Test Control Notation version 3
UDP	User Datagram Protocol
URI	Uniform Resource Identifier
XML	eXtensible Markup Language
[bookmark: _Toc449966272][bookmark: _Toc452389310]4	Conventions
The key words "Shall", "Shall not", "May", "Need not", "Should", "Should not" in the present document are to be interpreted as described in the oneM2M Drafting Rules [i.1].
[bookmark: _Toc449966273][bookmark: _Toc452389311]5	Introduction to the oneM2M testing methodology
The present document provides:
Identification of the implementations under test (IUT) for conformance testing and the device under test (DUTs) for interoperability, i.e. answering the question "what is to be tested".
Definition of the applicable test procedures, i.e. answering the question "how is it to be tested".
Definition of the procedure for development of test specifications and deliverables (for instance: TSS&TP, TP proforma, TTCN-3 test suite and documentation).
Figure 1 illustrates the oneM2M testing framework and the interactions with oneM2M base standards and test specifications. The oneM2M testing framework is based on concepts defined in ISO/IEC 9646 [i.2], TTCN-3 [i.4], ETSI EG 202 237 [i.3].
Conformance Test Specifications
oneM2M Test Methodology
IUTs
PICS
Identification of IUTs and DUTs
Development of test specifications
Abstract Test Method
TSS&TP
ATS
TTCN-3
Interoperability Test Specifications
DUTs
IFS
TDs
IOP Test Bed
Base specifications

Figure 5-1: oneM2M testing methodology interactions
The test specifications are usually developed for a single base protocol standard or for a coherent set of standards. As such, it is possible to follow the methodology specified for conformance test development in ISO/IEC 9646-1 [i.2] without much difficulty. However, oneM2M testing requirements are, in many cases, distributed across a wide range of documents and, thus, an adaptation of the ISO/IEC 9646 [i.2] approach to test development is necessary. Also, for readability, consistency and to ease reusability of TTCN-3 code it is necessary to apply some guidelines on the use of TTCN-3.
It is this approach that is referred to as the "oneM2M testing framework".
As its name implies, the framework is oriented towards the production of Test specifications. The oneM2M testing Framework comprises:
a documentation structure:
catalogue of capabilities/features/functions (PICS or IFS);
Test Suite Structure (TSS);
Test Purposes:
Conformance;
Interoperability.
a methodology linking the individual elements of a test specification together:
style guidelines and examples;
naming conventions;
a structured notation for TP;
guidelines on the development of TTCN-3 Test Cases (TCs);
guidelines on the use of tabulated English Test Descriptions (TDs).
[bookmark: _Toc449966274][bookmark: _Toc452389312]6	Conformance testing
[bookmark: _Toc449966275][bookmark: _Toc452389313]6.1	Introduction
The clause 6 shows how to apply the oneM2M conformance testing methodology in order to properly produce oneM2M conformance test specifications.
The Conformance testing can show that a product correctly implements a particular standardized protocol, that is, it establishes whether or not the implementation under test meets the requirements specified for the protocol itself.
EXAMPLE:	It will test protocol message contents and format as well as the permitted sequences of messages. In that context, tests are performed at open standardized interfaces that are not (usually) accessible to an end user, and executed by a dedicated test system that has full control of the system under test and the ability to observe all incoming and out coming communications; the high degree of control of the test system over the sequence and contents of the protocol messages allows to test both valid and invalid behaviour.
Conformance Test System
Implementation Under Test

Figure 6.1-1: Conformance testing
Conformance test specifications should be produced following the methodology described in ISO/IEC 9646-1 [i.2]. In summary, this methodology begins with the collation and categorization of the features and options to be tested into a tabular form which is normally referred to as the " Implementation Conformance Statement" (ICS). All implemented capabilities supported by the Implementation Under Test (IUT) are listed by the implementer in the ICS, so that the tester knows which options have to be tested. This ensures that complete coverage is obtained.
The next step is to collect the requirements from the specification that is tested. For each requirement, one or more tests should be identified and classified into a number of groups which will provide a structure to the overall test suite (TSS). A brief Test Purpose (TP) should then be written for each identified test and this should make it clear what is to be tested but not how this should be done. Although not described or mandated in ISO/IEC 9646-1 [i.2], in many situations (particularly where the TPs are complex) it may be desirable to develop a Test Description (TD) for each TP. The TD describes in plain language (often tabulated) the actions required to reach a verdict on whether an implementation passes or fails the test. Finally, a detailed Test Case (TC) is written for each TP. In the interests of test automation, TCs are usually combined into an Abstract Test Suite (ATS) using a specific testing language such as TTCN-3. The TCs in the ATS are then "Verified" against a number of IUTs for correct operation according to some agreed procedures, before being released for use by the industry. An Implementation eXtra Information for Test (IXIT) proforma associated to the ATS, should be produced in supplement of the ICS document and Test Cases to help to execute Protocol conformance testing using oneM2M dedicated test equipment.
In summary, the oneM2M Conformance Testing methodology consists of:
Selection of Implementations Under Test (IUT).
Identification of reference points.
Development of test specifications, which includes:
Development of "Implementation Conformance Statements" (ICS), if not already provided as part of the base standard.
Development of "Test Suite Structure and Test Purposes" (TSS&TP).
Development of "Abstract Test Suite and Implementation eXtra Information for Test" (ATS&IXIT) including:
Definition of the Abstract Protocol Tester (APT).
Definition of TTCN-3 test architecture.
Development of TTCN-3 test suite, e.g. naming conventions, code documentation, test case structure.
Verification of ATS (TTCN-3)
IXIT proforma.
[bookmark: _Toc449966276][bookmark: _Toc452389314]6.2	Test architecture
[bookmark: _Toc449966277][bookmark: _Toc452389315]6.2.1	Selection of Implementation Under Test
[bookmark: _Toc449966278]6.2.1.1	Definition
The "Implementation Under Test" (IUT) is a protocol implementation considered as an object for testing. This means that the test process will focus on verifying the compliance of this protocol implementation (IUT) with requirements set up in the related base standard. An IUT normally is implemented in a "System Under Test" (SUT). For testing, a SUT is connected to a test system over at least a single interface. Such an interface is identified as "Reference Point" (RP) in the present document. Further details on RPs are presented in clause 6.2.2.
NOTE:	Other interfaces between the test system and the IUT may be used to control the behaviour of the IUT during the test process.
Figure 6.2.1.1-1 shows a complete view of communication layer for oneM2M domain. Further details are presented in the following clauses.

Figure 6.2.1.1-1: Example of IUT in the oneM2M reference architecture
[bookmark: _Toc449966279]6.2.1.2	oneM2M Service Layer Communication
Table 6.2.1.2-1 shows the IUTs for oneM2M reference architecture as defined in [1].
Table 6.2.1.2-1: IUTs for oneM2M
	IUT (node)
	Entities
	Interfaces
	Notes

	ASN
	Application Entity (AE)
	Mca
	

	
	Common Services Entity (CSE)
	Mca, Mcc, Mcn
	

	ADN
	Application Entity (AE)
	Mca
	

	MN
	Application Entity (AE)
	Mca
	

	
	Common Services Entity (CSE)
	Mca, Mcc, Mcn
	

	IN
	Application Entity (AE)
	Mca
	

	
	Common Services Entity (CSE)
	Mca, Mcc, Mcn, Mcc’, Mch
	

	ASN/MN/IN
	Network Services Entity (NSE)
	Mcn
	

Table 6.2.1.2-1 needs to be amended in the following cases:
A new node or entity is defined on the base specifications.
A new interface is defined on the base specifications between any of the existing nodes or entities.
[bookmark: _Toc449966280][bookmark: _Toc452389316]6.2.2	Identification of the Reference Points
This clause illustrates candidate reference points (RPs) where test systems can be connected in order to test conformance of oneM2M protocols (IUTs) with oneM2M base standards.
Table 6.2.2-1: RPs for oneM2M
	RP Identifier
	RP Type
	oneM2M node-entity
	oneM2M node-entity
	Network

	RP-oneM2M-1
	Mca
	ASN-AE
	ASN-CSE
	

	RP-oneM2M-2
	Mca
	MN-AE
	MN-CSE
	

	RP-oneM2M-3
	Mca
	IN-AE
	IN-CSE
	

	RP-oneM2M-4
	Mca
	ADN-AE
	IN-CSE
	

	RP-oneM2M-5
	Mca
	ADN-AE
	MN-CSE
	

	RP-oneM2M-6
	Mcc
	ASN-CSE
	IN-CSE
	

	RP-oneM2M-7
	Mcc
	ASN-CSE
	MN-CSE
	

	RP-oneM2M-8
	Mcc
	MN-CSE
	MN-CSE
	

	RP-oneM2M-9
	Mcc
	MN-CSE
	IN-CSE
	

	RP-oneM2M-10
	Mcn
	ASN-CSE
	NSE
	

	RP-oneM2M-11
	Mcn
	MN-CSE
	NSE
	

	RP-oneM2M-12
	Mcn
	IN-CSE
	NSE
	

	RP-oneM2M-13
	Mcc’
	IN-CSE
	IN-CSE’
	

	RP-oneM2M-14
	Mch
	IN-CSE
	Charging Server
	

[bookmark: _Toc449966281]
[bookmark: _Toc452389317]6.3	Development of Conformance Test Specifications
[bookmark: _Toc449966282][bookmark: _Toc452389318]6.3.1	Implementation Conformance Statement (ICS)
The purpose of an ICS is to identify those standardized functions which an IUT shall support, those which are optional and those which are conditional on the presence of other functions. It helps to provide a means for selection of the suite of tests which will subsequently be developed.
In addition, the ICS can be used as a proforma for identifying which functions an IUT will support when performing conformance testing. The purpose of this ICS proforma is to provide a mechanism whereby an oneM2M implementation supplier may provide information about the implementation in a standardized manner. The information in a ICS is usually presented in tabular form as recommended in ISO/IEC 96467 [i.2].
The ICS can be considered as a set of "switches" which specify the capability of supporting the requirement in base standards to be tested. It is possible that with different choices in a ICS proforma, several different set of TPs will be necessary.
The ICS proforma is subdivided into clauses for the following categories of information:
guidance for completing the ICS proforma;
identification of the implementation;
identification of the <reference specification type>;
global statement of conformance
Part of an example ICS table can be found in Annex A.1.
[bookmark: _Toc449966283][bookmark: _Toc452389319]6.3.2	Test Suite Structure & Test Purposes (TSS&TP)
[bookmark: _Toc449966284]6.3.2.1	Introduction
A test purpose is a prose description of a well-defined objective of testing. Applying to conformance testing, it focuses on a single conformance requirement or a set of related conformance requirements from the base standards.
Several types of presentation of the test purposes exist. These presentations are combining text with graphical presentations, mainly tables, and include sometimes message sequence charts. The present document presents a proposed table template to write test purposes with recommendations concerning the wording and the organization of the test purposes.
There are usually numerous test purposes, which need to be organized in structured groups. The organization of the test purposes in groups is named "Test Suite Structure".
The development of the test purposes follows the analysis of the conformance requirements, clearly expressed in the base standards. Furthermore, the analysis of a base standard leads to the identification of different groups of functionalities, which are used to define the first levels of the test suite structure.
[bookmark: _Toc449966285]6.3.2.2	Test Suite Structure
Defining the test suite structure consists of grouping the test purposes according to different criteria like for instance:
The functional groups and sub-groups of procedures in the base standard, from which the requirement of the test purpose is derived.
The category of test applying to the test purposes, for instance:
valid behaviour test;
invalid behaviour test;
timer test;
etc.
Usually the identification of the different functional groups of procedures leads to the definition of the top levels of the TSS. Then further levels at the bottom of the TSS is used to group test purposes belonging to the same type of test.
Table 6.3.2.2-1 shows an example of a two level TSS used in the TSS&TP for the oneM2M system.
Table 6.3.2.2-1: Example of test suite structure for oneM2M system
	TP/<root>/<gr>/<sgr>/<xx>/<nnn>

	<root> = root
	oneM2M
	oneM2M

	<gr> = group
	AE
	Application Entity

	
	CSE
	Common Services Entity

	<sgr> = sub- group
	REG
	Registration

	
	DMR
	Data Management and Repository

	
	SUB
	Subscription and Notification

	
	GMG
	Group Management

	
	DIS
	Discovery

	
	LOC
	Location

	
	DMG
	Device Management

	
	CMDH
	Communication Management and Delivery Handling

	
	SEC
	Security

	<xx> = type of testing
	BI
	Invalid Behaviour tests

	
	BO
	Inopportune Behaviour tests

	
	BV
	Valid Behaviour tests

	<nnn> = sequential number
	
	001 to 999

[bookmark: _Toc449966286]6.3.2.3	Test Purpose
6.3.2.3.1	Introduction
A test purpose is an informal description of the expected test behaviour. As such it is written in prose.
When needed to clarify the TP, it is helpful to add some graphical presentations, mainly tables, and include message sequence charts.
In order to increase the readability of the TP, the following two recommendations should be followed:
Each TP should be presented in a table, containing two main parts:
The TP header, which contains the TP identifier, the TP objective and the external references (ICS, and base standard).
The behaviour part, which contains the test behaviour description. This part can be optionally divided in the three following parts, in order to increase the readability:
the initial conditions;
the expected behaviour;
the final conditions.
The prose describing the test behaviour (including initial and final conditions) should follow some rules, as for instance the use of reserved keywords and syntax.
Table 6.3.2.3.1-1: TP pro-forma template
	TP Id
	

	Test objective
	

	Reference
	

	Config Id
	

	PICS Selection
	

	Initial conditions
	

	Expected behaviour
	Test events
	Direction

	
	when {
}
	IUT AE

	
	then {
}
	IUT AE

Table 6.3.2.3.1-2: Description of the fields of the TP pro-forma
	TP Header

	TP ID
	The TP ID is a unique identifier. It shall be specified according to the TP naming conventions defined in the above clause.

	Test objective
	Short description of test purpose objective according to the requirements from the base standard.

	Reference
	The reference indicates the clauses of the reference standard specifications in which the conformance requirement is expressed.

	ICS selection
	Reference to the ICS statement involved for selection of the TP. Contains a Boolean expression.

	TP Behaviour

	Initial conditions
	The initial conditions defines in which initial state the IUT has to be to apply the actual TP. In the corresponding Test Case, when the execution of the initial condition does not succeed, it leads to the assignment of an Inconclusive verdict.

	Expected behaviour
(TP body)
	Definition of the events, which are parts of the TP objective, and the IUT are expected to perform in order to conform to the base specification. In the corresponding Test Case, Pass or Fail verdicts can be assigned there.

	Final conditions
	Definition of the events that the IUT is expected to perform or shall not perform, according to the base standard and following the correct execution of the actions in the expected behaviour above. In the corresponding Test Case, the execution of the final conditions is evaluated for the assignment of the final verdict.

Defining the initial and final conditions, separately from the expected behaviour, makes the reading of the TP easier and avoid misinterpretations.
The "expected behaviour", which matches the events corresponding to the TP objective, can also be named "TP body", which is similar to the "test case body" in an abstract test suite (ATS).
[bookmark: _Toc449966287]6.3.2.3.2	TP identifier
The TP identifier identifies uniquely the test purposes. In order to ensure the uniqueness of the TP identifier, it follows a naming convention.
The more useful and straightforward naming convention consists of using the test suite structure, to form the first part of the TP identifier. Then the final part consists of a number to identify the TP order within a TP group.
Table 6.3.2.3.2-1 shows an example of TP naming convention applying to the TSS described in 6.3.2.2-1.
The TP identifier is formed by the abbreviation "TP", followed by abbreviation representing the group of the following TSS levels, ending with a number representing the TP order. Each field of the TP identifier is separated by a "/".
Table 6.3.2.3.2-1: Example of TP naming convention for oneM2M
	TP/<root>/<gr>/<sgr>/<xx>/<nnn>

	<root> = root
	oneM2M
	oneM2M

	<gr> = group
	AE
	Application Entity

	
	CSE
	Common Services Entity

	<sgr> = sub- group
	REG
	Registration

	
	DMR
	Data Management and Repository

	
	SUB
	Subscription and Notification

	
	GMG
	Group Management

	
	DIS
	Discovery

	
	LOC
	Location

	
	DMG
	Device Management

	
	CMDH
	Communication Management and Delivery Handling

	
	SEC
	Security

	<xx> = type of testing
	BI
	Invalid Behaviour tests

	
	BO
	Inopportune Behaviour tests

	
	BV
	Valid Behaviour tests

	<nnn> = sequential number
	
	001 to 999

A TP identifier, following the TP naming convention of the table could be for instance TP/oneM2M/CSE/DMR/BV/001.
The TP numbering uses two digits for presentation, and starts with 01 rather than with 00. Exceeding 99 TPs per group is not recommended. In such a case, it is rather recommended to create sub-groups, in order to keep clarity in the Test Suite Structure.
[bookmark: _Toc449966288]6.3.2.3.3	Test objective
The test objective clearly indicates which requirement is intended to be tested in the test purpose. This part eases the understanding of the TP behaviour. This also eases the identification of the requirements, which were used as a basis for the test purpose.
It is recommended to limit the length of the test objective to one sentence.
See also the example in table 6.3.2.3.6-2.
[bookmark: _Toc449966289]6.3.2.3.4	Reference
In the reference row, the TP writer indicates, in which clauses of the protocol standards, the requirement are expressed. This information is critical, because it justifies the existence and the behaviour of the TP.
The reference row may refer to several clauses. When the clause containing the requirement is big (for instance, more than ½ page), it is recommended to indicate the paragraph of the clause where the requirement was identified.
The reference to the base standard actually is precise enough to enable the TP reader to identify quickly and precisely the requirement.
See also the example in table 6.3.2.3.6-2.
[bookmark: _Toc449966290]6.3.2.3.5	ICS selection
The ICS selection row contains a Boolean expression, made of ICS parameters. It is recommended to use ICS acronym, which clearly identify the role of the ICS.
A mapping table is included in the TP document to link the ICS acronym with its corresponding reference in the ICS document.
Table 6.3.2.3.5-1: Example of pre-defined keywords for ICS
	Mnemonic
	ICS item

	PICS_REGISTRATION
	A.5.2. 1/1 [ICS document]

	PICS_DATA_MGMT
	A.5.2. 2/2 [ICS document]

	
	

	PICS_AE
	A.2/1 [ICS document]

	PICS_CSE
	A.2/2 [ICS document]

	PICS_ASN
	A.1/1 [ICS document]

	PICS_ADN
	A.1/2 [ICS document]

	PICS_IN
	A.1/3 [ICS document]

[bookmark: _Toc449966291]6.3.2.3.6	TP behaviour
First of all, the following global rules apply, when writing the behaviour description:
The behaviour description is written in an explicit, exhaustive and unambiguous manner.
The behaviour description only refers to externally observable test events (send/receive PDUs, timer, counters, etc.) or to events or states, which can be directly or indirectly observed externally.
All test events used in the behaviour description are part of the procedures specified in the standards.
The wording of the test events in the behaviour description is explicit, so that the ATS writers do not have to interpret the behaviour description.
All test events in the behaviour description should result as far as possible in one ATS statement (for instance a TTCN statement).
The test behaviour is described in prose. This enables to use different ways to express similar behaviour. But using different expressions to define identical behaviours can lead to some misinterpretation of the test purposes. Also the meaning and the expected order of the test event have a clear and unique meaning for different readers.
Thus, the present document recommends to use pre-defined keywords in order to express clearly and uniquely the test behaviour.
Table 6.3.2.3.6-1 shows some recommended pre-defined keywords and their context of usage. The pre-defined keywords are also likely to be used in combination with the "{" "}"delimiters, in order to clearly delimitate their action in the test behaviour description.
Table 6.3.2.3.6-1 does not present an exhaustive list, so that additional keywords might be defined as necessary. The definition of additional keywords is included in the corresponding TSS&TP document.
Table 6.3.2.3.6-1: List of pre-defined keywords for the behaviour description
	Behavioural keywords

	with
	with, together with "{" "}" delimiters is used to express the initial conditions, which consist of a set of events, to be executed before starting with the test behaviour corresponding to the test objective.
EXAMPLE:
With { the IUT having sent a container create request message and ... }

	ensure that
	ensure that, together with "{" "}" delimiters is used to define the place of the expected behaviour (TP body) or the final conditions.
EXAMPLE:
ensure that {
when { the IUT receives a valid container create request message... }

	when/then
	when combined with then enables to define the test behaviour involving a combination of stimuli and response events. The when/then combination is used when the occurrence of an event is triggered by the realization of a previous event.
EXAMPLE:
ensure that {
when {
a XXX signal is activated }
then {
the IUT sends a message containing YYY Value indicating "True"} }

	Event keywords

	the IUT
	Event in the TP is expressed from the point of view of the IUT. This avoid any misinterpretation.

	receives
	states for an event corresponding to the receipt of a message by the IUT.

	having received
	states for a condition where the IUT has received a message.

	sends
	states for an event corresponding to the sending of a message by the IUT.

	having sent
	states for a condition where the IUT has sent a message.

	from/to
	Indicates the destination or the origin of a message as necessary (interface, ...)
EXAMPLE:
ensure that {
when { the IUT receives a valid XXX message from the YYY port.. }

	on expiry of
	Indicate the expiry of a timer, being a stimulus for forthcoming event.
EXAMPLE:
ensure that { on expiry of the Timer T1, the IUT sends a valid XXX message...

	after expiry of
	Used to indicate that an event is expected to occur after the expiry of a timer.
EXAMPLE:
ensure that { the IUT sends a valid XXX message after expiry of the minimum timer interval }

	before expiry of
	Used to indicate that an event is expected to occur before the expiry of a timer.
EXAMPLE:
ensure that { the IUT sends a valid XXX message before expiry of the maximum timer interval }

	Event attribute keywords

	valid
	Indicates that the event sent or received is a valid message according to the protocol standard, thus:
containing all mandatory parameters, with valid field values;
containing required optional fields according to the protocol context, with valid field values.

	invalid
	Indicates that the event sent or received is a invalid message according to the protocol standard. Further details describing the invalid fields of the message is added.
EXAMPLE:
With { the IUT having sent an invalid XXX message containing no mandatory YYY parameter... }

	containing
	Enables to describe the content of a sent or received message

	indicating
	Enables to specify the interpretation of the value allocated to a message parameter.
EXAMPLE:
With { the IUT having sent a valid XXX message containing a mandatory YYY parameter indicating "ZZZ supported"... }

	Logical keywords

	and
	Used to combine statements of the behaviour description.

	or
	

	not
	

Table 6.3.2.3.6-2: TP example for oneM2M
	TP Id
	TP/oneM2M/CSE/DMR/RET/BO/002

	Test objective
	Check that the IUT responds with an error when the AE tries to retrieve the resource TARGET_RESOURCE_ADDRESS which does not exist

	Reference
	TS-0001 10.1.2 - item 13)

	Config Id
	CF01

	PICS Selection
	PICS_CSE

	Initial conditions
	with {
	the IUT being in the "initial state"
	and the IUT having registered the AE
	and the IUT not having created a resource TARGET_RESOURCE_ADDRESS
}

	Expected behaviour
	Test events
	Direction

	
	when {
	the IUT receives a valid RETRIEVE request from AE containing
		To set to TARGET_RESOURCE_ADDRESS and
		From set to AE_ID and
		no Content attribute
}
	IUT AE

	
	then {
	the IUT sends a Response message containing
		Response Status Code set to 4004 (NOT_FOUND)
 }
	IUT AE

[bookmark: _Toc449966292][bookmark: _Toc452389320]6.3.3	Abstract Test Suite (ATS)
[bookmark: TOC258845775][bookmark: TOC258845777][bookmark: TOC258845778][bookmark: _Toc449966293]6.3.3.1	Abstract protocol tester
An abstract protocol tester presented in figure 6.3.3.1-1 is a process providing the test behaviour for testing an IUT. Thus it will emulate a peer IUT of the same layer/the same entity. This type of test architecture provides a situation of communication which is equivalent to real operation between real oneM2M systems. The oneM2M test system will simulate valid and invalid protocol behaviour, and will analyse the reaction of the IUT. Then the test verdict, e.g. pass or fail, will depend on the result of this analysis. Thus this type of test architecture enables to focus the test objective on the IUT behaviour only.
In order to access an IUT, the corresponding abstract protocol tester needs to use lower layers to establish a proper connection to the system under test (SUT) over a physical link (Lower layers link).
[image:]
Figure 6.3.3.1-1: Generic abstract protocol tester
The "Protocol Data Units" (PDUs) are the messages exchanged between the IUT and the abstract protocol tester as specified in the base standard of the IUT. These PDUs are used to trigger the IUT and to analyse the reaction from the IUT on a trigger. Comparison of the result of the analysis with the requirements specified in the base standard allows to assign the test verdict.
Further control actions on the IUT may be necessary from inside the SUT, for instance to simulate a primitive from the upper layer or the management/security entity. Further details on such control actions are provided by means of an upper tester presented in clause 6.3.2.
The above "Abstract Test Method" (ATM) is defined in ISO/IEC 9646-1 [i.2] and supports a wide range of approaches for testing including the TTCN-3 abstract test language [i.4].
For instance, to test the oneM2M IUT, the abstract protocol tester will emulate the oneM2M primitives. use e.g HTTP, CoAP or MQTT in the OSI Application Layer, TCP/UDP and IPV4/IPV6 protocol in the transport and networking layer and Ethernet/WiFi technology in the access layer.

Test System
ATS
Lower Layers LLayers
HTTP/CoAP/MQTT
TCP/UDP
IP
System Under Test
IUT
Lower Layers
HTTP/CoAP/MQTT
TCP/UDP
IP
Lower Layers link

Figure 6.3.3.1-2: Abstract protocol tester for oneM2M
A current snap-shot of protocols to be tested (IUT) is shown in table 6.3.3.1-1. Table 6.3.3.1-1 indicates which lower layer protocols (may) belong to which IUT in order to build the proper M2M test system.
Table 6.3.3.1-1: Mapping between protocols (IUTs) and lower layer protocols for Reference Point
	Protocol to be tested (IUT)
	Protocols of lower layers
	IUT base standards

	oneM2M
	IP, UDP, CoAP
	TS-0008

	
	IP, TCP, HTTP
	TS-0009

	
	IP, TCP, MQTT
	TS-0010

[bookmark: _Toc449966294]6.3.3.2	TTCN-3 test architecture
This clause illustrates how to implement the abstract test architecture presented in clause 6.3.3.1 in a functional test environment. There are many possibilities to implement this abstract test architecture using different types of programming languages and test devices. This oneM2M testing framework uses TTCN-3 being a standardized testing methodology including a standardized testing language [i.4], which is fully compliant with the ISO/IEC 9646 [i.2] abstract test methodology.
[image:]
Figure 6.3.3.2-1: Conformance test system architecture
The "System Under Test" (SUT) contains:
The "Implementation Under Test" (IUT), i.e. the object of the test.
The "Upper tester application" enables to simulate sending or receiving service primitives from protocol layers above the IUT or from the management/security entity.
The lower layers enable to establish a proper connection to the system under test (SUT) over a physical link (Lower layers link). The lower layers link is located at a "Reference Point" (RP), see clause 6.2.
The "Upper tester transport" is a functionality, which enables the test system to communicate with the upper tester application. Then the upper tester can be controlled by a TTCN-3 test component as part of the test process.
The "test system" contains:
The "TTCN-3 test components" are processes providing the test behaviour. The test behaviour may be provided as one single process or may require several independent processes.
The "Codec" is a functional part of the test system to encode and decode messages between the TTCN-3 internal data representation and the format required by the related base standard.
The "Test Control" enables the management of the TTCN-3 test execution (parameter input, logs, test selection, etc.).
The "Test adapter" (TA) realizes the interface between the TTCN-3 ports using TTCN-3 messages, and the physical interfaces provided by the IUT.
[bookmark: _Toc449966295]6.3.3.3	Test configurations
The test suite uses test configurations in order to cover the different test scenarios.
In following 2 examples, the IUT is tested by the test system simulating an AE in CF01 (no hop configuration) or an AE and a CSE in a CF02 (single hop configuration).
EXAMPLE 1:	Test configuration 1 (CF01):
IUT
TEST SYSTEM
AE
CSE
Mca

EXAMPLE 2:	Test configuration 2 (CF02):
Mcc
IUT
TEST SYSTEM
AE
CSE
Mca
CSE

[bookmark: _Toc449966296]
6.3.3.4	ATS conventions
[bookmark: _Toc449966297]6.3.3.4.1	Importing XSD definition
The oneM2M set of standards uses XSD for the definition of the message types. The process for using XSD data types and values in TTCN-3 modules consists of importing the existing XSD productions. For this purpose, the TTCN3 "import from" statement should be used, in association with the "language" statement.
[bookmark: _Toc449966298]6.3.3.4.2	The TTCN-3 naming conventions
TTCN-3 core language contains several types of elements with different rules of usage. Applying naming conventions aims to enable the identification of the type when using specific identifiers according to the type of element.
For instance, a variable declared in a component has different scoping rules than a local variable declared in a test case. Then identifiers of component variables are different from identifiers of local variables, in order to recognize which type of variable the identifier belongs to.
Furthermore, applying naming conventions maintains the consistency of the TTCN-3 code across the test suites, and thus increase the readability for multiple users and ease the maintenance.
Table 6.3.3.4.2-1
	Language element
	Naming convention
	Prefix
	Example identifier

	Module
	Use upper-case initial letter
	none
	OneM2M_Templates

	Group within a module
	Use lower-case initial letter
	none
	messageGroup

	Data type
	Use upper-case initial letter
	none
	SetupContents

	Message template
	Use lower-case initial letter
	m_
	m_setupInit

	Message template with wildcard or matching expression
	Use lower-case initial letters
	mw_
	mw_anyUserReply

	Signature template
	Use lower-case initial letter
	s_
	s_callSignature

	Port instance
	Use lower-case initial letter
	none
	signallingPort

	Test component instance
	Use lower-case initial letter
	none
	userTerminal

	Constant
	Use lower-case initial letter
	c_
	c_maxRetransmission

	Constant (defined within component type)
	Use lower-case initial letter
	cc_
	cc_minDuration

	External constant
	Use lower-case initial letter
	cx_
	cx_macId

	Function
	Use lower-case initial letter
	f_
	f_authentication()

	External function
	Use lower-case initial letter
	fx_
	fx_calculateLength()

	Altstep (incl. Default)
	Use lower-case initial letter
	a_
	a_receiveSetup()

	Test case
	Use a naming convention
	TC_
	TC_COR_0009_47_ND

	Variable (local)
	Use lower-case initial letter
	v_
	v_macId

	Variable (defined within a component type)
	Use lower-case initial letters
	vc_
	vc_systemName

	Timer (local)
	Use lower-case initial letter
	t_
	t_wait

	Timer (defined within a component)
	Use lower-case initial letters
	tc_
	tc_authMin

	Module parameters for PICS
	Use all upper case letters
	PICS_
	PICS_DOOROPEN

	Module parameters for other parameters
	Use all upper case letters
	PX_
	PX_TESTER_STATION_ID

	Formal Parameters
	Use lower-case initial letter
	p_
	p_macId

	Enumerated Values
	Use lower-case initial letter
	e_
	e_syncOk

[bookmark: _Toc104180934][bookmark: _Toc104181001][bookmark: _Toc138124755][bookmark: _Ref435089428][bookmark: _Ref437333324][bookmark: _Toc437334911]
6.3.3.5	Verification of TTCN-3
Before release for use by industry and external organisations (for example Certification Bodies) the TTCN-3 should be Verified for correct operation against a number of IUTs.
A list of all TTCN-3 test cases and their Verification status is maintained in the associated ATS. An example table to be used to record this status is given in Table 6.3.3.5-1.
Table 6.3.3.5-1: Example table for TTCN-3 Test Case Verification Status
	TTCN-3 Test Case
	Verification Status
	TTCN-3 version used for Verification
	Binding(s) used duringVerification (for information only)

	TP/oneM2M/CSE/DMR/CRE/BV/004
	
	
	

	TP/oneM2M/CSE/DMR/CRE/BV/002
	Verified
	V1.3.4
	HTTP, CoAP

	TP/oneM2M/CSE/DMR/CRE/BV/003
	
	
	

	
	
	
	

[bookmark: _Toc449966299][bookmark: _Toc452389321]6.3.4	Implementation eXtra Information for Testing (IXIT)
The ICS contains base specification dependent information. To derive executable tests this is insufficient; also information about the IUT and its environment shall be supplied. Such information is called Implementation eXtra Information for Testing (IXIT).
An IXIT proforma identifies which ICS items are to be tested and which parameters to be instantiated for the TSS&TP being developed. The production of a IXIT Proforma is specified in ISO/IEC 9646-6 [i.2]. A supplier, providing an IUT for conformance testing, is required to complete a IXIT proforma, which contains additional questions that need to be answered in order to turn on/off the "switches" and identify Means of Testing for a particular Implementation Under Test (IUT).
The IXIT may contain address information of the IUT, or parameter and timer values which are necessary for the execution of the test suite. The IXIT information , is supplied by the supplier of the IUT to the testing laboratory. To guide production of the IXIT the testing laboratory provides an IXIT proforma.
The selected and implemented test cases with parameter values according to the IXIT form the executable test suite, which are executed on a test system. The testing laboratory uses the IXIT values stated in the IXIT proforma for executing test cases according to the capabilities of the Implementation Under Test. Supported values are given as a single value or a range depending on the nature of the parameter.
[bookmark: _Toc449966300][bookmark: _Toc452389322]7	Interoperability testing
[bookmark: _Toc449966301][bookmark: _Toc452389323]7.1	Introduction
Interoperability testing can demonstrate that a product will work with other like products: it proves that end-to-end functionality between (at least) two devices is as required by the standard(s) on which those devices are based. In that context, the system under test is made of the combination of different devices under test coming from different suppliers.
The important factors which characterize interoperability testing are:
interoperability tests are performed at interfaces that offer only normal control and observation (i.e. not at specialized interfaces introduced solely for testing purposes);
interoperability tests are based on functionality as experienced by a user (i.e. they are not specified at the protocol level). In this context a user may be human or a software application;
the tests are performed and observed at functional interfaces such as Man-Machine Interfaces (MMIs), protocol service interfaces and Application Programming Interfaces (APIs).
The fact that interoperability tests are performed at the end points and at functional interfaces means that interoperability test cases can only specify functional behaviour. They cannot explicitly cause or test protocol error behaviour.
The present clause provides users with guidelines on the main steps associated with interoperability testing. The intention is that the guidelines should be simple and pragmatic so that the document can be used as a "cook-book" rather than a rigid prescription of how to perform interoperability testing.
The main components of these guidelines are as follows:
basic concepts definition;
development of interoperability test specifications, including:
definition of a generic SUT architecture;
definition of Test bed architecture;
specification of Test scenarios and configurations;
identification of interoperable functions;
development of interoperability test descriptions;
interoperability testing process.
[bookmark: _Toc449966302][bookmark: _Toc452389324]7.2	Basic Concepts
[bookmark: _Toc449966303][bookmark: _Toc452389325]7.2.1	Overview
Interoperability testing consists simply in inter-operating different vendor implementations, which are supposed to be inter-operable according to the expected conformance with the base standards. Even if this process looks easy, it requires specifying a complete environment enabling to operate vendors implementation as in real conditions. The complete set of all vendors implementation involved in interoperability tests, together with the set of equipment required to enable vendors implementations to execute the test process is named the "Test Bed".
There are a number of different terms and concepts that can be used when describing a test methodology. The following sections describe the most important concepts used by these guidelines, which can been categorized either as part of the System Under Test (SUT) or as part of the Test Environment.
Figure 7.2.1-1 presents the main concepts used in the context of interoperability testing and described in the following sections

Figure 7.2.1-1: Illustration of basic concepts
[bookmark: _Toc449966304][bookmark: _Toc452389326]7.2.2	System Under Test (SUT)
[bookmark: _Toc449966305]7.2.2.0	Introduction
In the context of interoperability testing, the System Under Test (SUT) is made of a number of Devices Under Test (DUTs) coming from different suppliers.
Depending on the complexity of the end-to-end system, the overall amount of DUTs under study, and the interactions among them, it might be advisable to define different SUT configuration addressing specific functional areas or groups of tests.
The first steps towards defining an Interoperability Tests Specification are identifying the Devices Under Test and describing a generic architecture where all the required SUT configurations will fit in.
[bookmark: _Toc449966306]7.2.2.1	Devices Under Test (DUT)
In the context of oneM2M, a Device Under Test is a combination of software and/or hardware items which implement the functionality of oneM2M and interact with other DUTs via one or more reference points.
Note: When using Interoperability Test Specifications in a certification scheme, the notion of Qualified Equipment (QE) or Qualified Device (QD) applies. A QD is a DUT that has successfully been tested with other QDs. The usage of interoperability Test Specifications in a certification scheme is out of the scope of this document. Further details on this topic can be found at [i.3].
[bookmark: _Toc449966307]7.2.2.2	Test interfaces
The interfaces that are made available by the SUT to enable the testing are usually known as the test interfaces. These interfaces are accessed by the test drivers to trigger and verify the test behaviour, Other interfaces offered by the SUT can be used for monitoring, log analysis, etc.
In the simplest case, the test interfaces will be the normal user interfaces offered by some of the DUTs (command line, GUI, web interface, etc.). In other cases, DUTs may offer APIs over which interoperability testing can be performed either manually using a dedicated application, or automatically using a programmable test device. In some cases, observing and verifying the functional behaviour or responses of one DUT may require to analyse its logs or records.
Additionally, while in the context of interoperability testing interfaces between the DUTs are not considered to be test interfaces, combining interoperability testing with conformance checks may require to monitor those interfaces to assess the conformance of the exchanged information or messages.
[bookmark: _Toc449966308][bookmark: _Toc452389327]7.2.3	Test Environment
[bookmark: _Toc449966309]7.2.3.0	Introduction
Interoperability testing involves control and observation at the functional (rather than protocol) level. The Test Environment is the combination of equipment and procedures enabling testing the interoperability of the DUTs. Entities in the test environment access the different Devices Under Test via the Test Interfaces offered by the SUT. These entities ensure the selection, interpretation and execution of the test descriptions, coordination and synchronization of the actions on the test interfaces, and provide mechanisms for logging, reporting, monitoring and observing the interactions among the DUTs, etc.
The main entities in the test environment are described in the following sections.
[bookmark: _Toc449966310]7.2.3.1	Test Descriptions
A test description provides the detailed set of instructions (or steps) that need to be followed in order to perform a test. Most often, interoperability tests are described in terms of actions that can be performed by the user(s) of the endpoint device(s).
In the case where the test is executed by a human operator, test will be described in natural language. In the case where the tests are automated, a programming or test language will be used to implement the test descriptions.
The steps in the test description can be of different nature, depending on the kind of action required: trigger a behaviour on one DUT, verify the functional response on another DUT, configure the SUT (add/remove a DUT), check a log, etc.. Each step should clearly identify the DUT and/or interface targeted by the action.
[bookmark: _Toc449966311]7.2.3.2	Test drivers
The test driver realizes the steps specified in a test description at one specific test interface. Testing efficiency and consistency can be improved by implementing the role of the test driver via an automatic device programmed to carry out the specified test steps. This approach may require standardized test interfaces in the DUTs.
In any given instance of testing, there may be more than one test interface over which the tests will be executed. In that case, coordination among the different test drivers and synchronization of the actions performed by them will be required. This test coordination role can be played by one of the test drivers, or by and additional entity in the test environment.
[bookmark: _Toc449966312][bookmark: _Toc452389328]7.3	Development of Interoperability Test Specifications
[bookmark: _Toc449966313][bookmark: _Toc452389329]7.3.1	Overview
The main steps involved in the process of developing an interoperability test specification are as follows:
describing a generic architecture for the System Under Test;
defining test scenarios;
identifying the test bed architecture;
collecting requirements in the Interoperable Features Statement (IFS);
defining a structure for the Test Specification;
writing a Test Descriptions (TDs) for each item in the IFS.

Figure 7.3.1-1: Interoperability Test Specification Development process
[bookmark: _Toc449966314][bookmark: _Toc452389330]7.3.2	Generic SUT Architecture
A generic SUT architecture provides an abstract framework within which any specific SUT configuration should fit in. The starting point for defining a generic SUT architecture is most often the functional architecture described in the base standards, in combination with pragmatic input on how the industry and open source projects are actually implementing these functional blocks (grouping, bundling, etc.).
As described in the previous sections, in a complex system, it may be required to define several SUT configurations to cover all the specified groups of tests. Defining the generic architecture and identifying the SUT configurations at an early stage helps to provide a structure for the test descriptions later. The generic test architecture is usually specified as a diagram and should clearly identify:
the Devices Under Test, and the functional blocks implemented by them;
the communications paths between the DUTs;
if required, the protocols, APIs and/or data models to be used for communication between the DUTs.
[bookmark: _Toc449966315][bookmark: _Toc452389331]7.3.3	Test scenarios
In oneM2M, a large number of use cases is identified. In order to perform interoperability tests, EUTs supporting the same use cases are required. This classification of interoperability tests is given by test scenarios. A test scenario thus selects a set of use cases and is restricted to a sub-set of the full functionality of such a set.
In other words, EUTs considered for defining the test scenarios are implementations of oneM2M entities with various roles, but sharing a common functionality.
In order to cover the test scenarios, different test configurations are defined.
[bookmark: _Toc449966316][bookmark: _Toc452389332]7.3.4	Test bed architecture and Interfaces
A test bed architecture is an abstract description of logical entities as well as their interfaces and communication links involved in a test. It describes all implementation (DUTs) involved in the interoperability tests, together with the set of equipment and procedures required to enable implementations to execute the tests.
This test architecture is mainly composed of several functional entities:
SUT: It is composed of a set of DUTs (oneM2M nodes). It is supposed that the DUTs are equipped with all the devices (sensors, etc.) needed to perform the tests.
Test bed control module: This entity manages the whole test bed. It is considered to be the core of the test bed. This module synchronizes, configures, controls and runs the other entities and even the SUT. In addition, this entity gathers all the information generated by each entity in term of traces with the aim of having a global overview of the execution of the tests. Depending of the implementation of the test bed, this module might also assign the test verdicts.
Test stimulation environment: This entity is in charge of stimulating the SUT for a specific test conditions.
Monitor: This entity checks and gathers messages on relevant communication links.
oneM2M architecture element: It provides oneM2M applications for some use cases.
Networks: the test bed identifies two types of network depending on the type of information which is going to be carried out. One of the networks is used for carrying out data, and the other one is used for control.
NOTE:	The definition of the test bed architecture should be done simultaneously with the test description specification.
The test bed classifies the interfaces in three groups:
Data: this group contains the interfaces where data is exchanged. Depending on the type of data being exchanged, the interfaces are classified into three categories:
Stimulating: this interface carries information generated by the test bed in order to stimulate the DUTs for a specific behaviour.
Monitoring: this interface carries the protocol message exchanged between the DUTs during the execution of the tests.
Tracing: this interface carries information about the status of the execution of the DUTs and the test bed entities in order to be able to analyze as much as possible the execution of a test.
Control: this group is used to configure and control the various entities in the test bed, and even the DUTs, by passing necessary parameters.
Test Operator: this group provides the capability of controlling the test bed control module. Through this interface, a test operator would be able to select the test to be executed, to configure the different entities involved in the tests and to analyse the results obtained during the test execution.
Figure 7.3.4-1 illustrates interfaces involved in the test bed.
SUT
oneM2M Architecture Element
Test bed control module
Test stimulation environment
Protocol analyser
Test operator
Configuration / control interface
Stimulating interface
Monitoring interface
Tracing interface
Test Operator interface

Figure 7.3.4-1: Interfaces of a test bed architecture
[bookmark: _Toc449966317][bookmark: _Toc452389333]7.3.5	Interoperable Functions Statement (IFS)
An "Interoperable Functions Statement" (IFS) identifies standardized functions that an DUT shall support. These functions are either mandatory, optional or conditional (depending on other functions).
In addition, the IFS can be used as a proforma by a manufacturer to identify the functions an DUT will support when interoperating with corresponding equipment from other manufacturers.
The ideal starting point in the development of an IFS is the "Implementation Conformance Statement" (ICS) which should clearly identify the tested protocol's options and conditions. Like the ICS, the IFS should be considered part of the base protocol specification and not a testing document.
The guidance to produce IFS proforma is provided in ETSI EG 202 237 [i.3] and no extra guidance is required for the context of oneM2M.
[bookmark: _Toc449966318][bookmark: _Toc452389334]7.3.6	Test Descriptions (TD)
A "Test Description" (TD) is a well detailed description of a process that pretends to test one or more functionalities of an implementation. Applying to interoperability testing, these testing objectives address the interoperable functionalities between two or more vendor implementations.
In order to ensure the correct execution of an interoperability test, the following information should be provided by the test description:
The proper configuration of the vendor implementations.
The availability of additional equipment (protocol monitors, functional equipment, etc.) requires to achieve the correct behaviour of the vendor implementations.
The correct initial conditions.
The correct sequence of the test events and test results.
TDs are based on the test scenarios. The test descriptions use test configurations in order to cover the different test scenarios.
In order to facilitate the specification of test cases an interoperability test description should include as a minimum the items of the table 7.3.6-1.
Table 7.3.6-1: Interoperability test description
	Identifier
	a unique test description ID

	Objective
	a concise summary of the test which should reflect the purpose of the test and enable readers to easily distinguish this test from any other test in the document

	References
	a list of references to the base specification section(s), use case(s), requirement(s), TP(s) which are either used in the test or define the functionality being tested

	Applicability
	a list of features and capabilities which are required to be supported by the SUT in order to execute this test (e.g. if this list contains an optional feature to be supported, then the test is optional)

	Configuration or Architecture
	a list of all required equipment for testing and possibly also including a (reference to) an illustration of a test architecture or test configuration

	Pre-Test Conditions
	a list of test specific pre-conditions that need to be met by the SUT including information about equipment configuration, i.e. precise description of the initial state of the SUT required to start executing the test sequence

	Test Sequence
	an ordered list of equipment operation and observations. In case of a conformance test description the test sequence contains also the conformance checks as part of the observations

The TDs play a similar role as TPs for conformance testing.
Table 7.3.6-2: Example of Test Description
	Interoperability Test Description

	Identifier:
	TD_M2M_NH_06

	Objective:
	AE registers to its registrar CSE via an AE Create Request

	Configuration:
	M2M_CFG_01

	References:
	oneM2M TS-0001 [1], clause 10.2.1.1
oneM2M TS-0004 [2], clause 7.3.5.2.1

	

	Pre-test conditions:
	CSEBase resource has been created in CSE with name {CSEBaseName}
AE does not have an AE-ID, i.e. it registers from scratch

	Test Sequence

	Step
	RP
	Type
	Description

	1
	
	Stimulus
	AE is requested to send a AE Create request to register to the Registrar CSE

	2
	Mca
	PRO Check Primitive
	op = 1 (Create)
to = {CSEBaseName}
fr = AE-ID
rqi = (token-string)
ty = 2 (AE)
pc = Serialized representation of <AE> resource

	
	
	PRO Check HTTP

	Sent request contains
Request method = POST
Request-Target:{CSEBaseName}
Host: IP address or the FQDN of Registrar CSE
X-M2M-RI: (token-string)
X-M2M-Origin: AE-ID
Content-Type: application/vnd.onem2m-res+xml; ty=2 or application/vnd.onem2m-res+json; ty=2
Message-body: Serialized representation of <AE> resource

	
	
	PRO Check CoAP
	Sent request contains
Method: 0.02 (POST)
Uri-Host: IP address or the FQDN of Registrar CSE
Uri-Path: {CSEBaseName}
Content-type: application/vnd.onem2m-res+xml or application/vnd.onem2m-res+json
oneM2M-TY: 2
oneM2M-FR: AE-ID
oneM2M-RQI: (token-string)
Payload: Serialized representation of <AE> resource

	
	
	PRO Check MQTT
	Sent MQTT PUBLISH message:
Topic: "/oneM2M/req/<AE-ID>/<Registrar CSE-ID>"
Payload:
op = 1 (Create)
to = {CSEBaseName}
fr = AE-ID
rqi = (token-string)
ty = 2 (AE)
pc = Serialized representation of <AE> resource

	3
	
	IOP Check
	Check if possible that the <AE> resource is created in registrar CSE.

	4
	Mca
	PRO Check Primitive
	rsc = 2001 (CREATED)
rqi = (token-string) same as received in request message
pc = Serialized representation of <AE> resource

	
	
	PRO Check HTTP

	Registrar CSE sends response containing:
Status Code = 201 (OK)
X-M2M-RSC: 2001
X-M2M-RI: (token-string) same as received in request message
Content-Location: URI of the created AE resource.
Content-Type: application/vnd.onem2m-res+xml or application/vnd.onem2m-res+json
Message-body: Serialized representation of <AE> resource

	
	
	PRO Check CoAP
	Registrar sends response containing:
Response Code = 2.01
oneM2M-RSC: 2001
oneM2M-RQI: (token-string) same as received in request message
Location-Path: URI of the created AE resource
Payload: Serialized representation of <AE> resource

	
	
	PRO Check MQTT
	Sent MQTT PUBLISH message:
Topic: "/oneM2M/resp/<AE-ID>/<Registrar CSE-ID>"
Payload:
to = AE-ID
fr = Registrar CSE-ID
rsc = 2001 (CREATED)
rqi = (token-string) same as received in request message
pc = Serialized representation of <AE> resource

	5
	
	IOP Check
	AE indicates successful operation

Types of events:
A stimulus corresponds to an event that enforces an DUT to proceed with a specific protocol action, like sending a message for instance.
A configure corresponds to an action to modify the DUT configuration.
An IOP check consists of observing that one DUT behaves as described in the standard: i.e. resource creation, update, deletion, etc… For each IOP check in the Test Sequence, a result can be recorded. The overall IOP Verdict will be considered OK if all the IOP checks in the sequence are OK.
In the context of Interoperability Testing with Conformance Checks, an additional step type, PRO checks can be used to verify the appropriate sequence and contents of protocol messages, helpful for debugging purpose. PRO Verdict will be PASS if all the PRO checks are PASS.
[bookmark: _Toc449966319]

[bookmark: _Toc452389335]Annex A (informative):
Example of ICS table
[bookmark: _Toc452389336]A.1	Capability Statement
A list of capabilities defined in the oneM2M TS-0001 [1] are presented in table A.1-1. The capability list can be used to check whether the IUT supports part or whole of the capabilities listed as below.
Table A.1-1: Capabilities for oneM2M Conformance Testing
	Item
	Capability
	Mnemonic
	Reference
	Status
	Support

	1
	Registration
	
	[1] 10.2.1
	C.1
	O Yes O No

	2
	Data Management
	
	[1] 10.2.4,
[1] 10.2.19
	C.1
	O Yes O No

	3
	Subscription and Notification
	
	[1] 10.2.11
	C.2
	O Yes O No

	4
	Group Management
	
	[1] 10.2.7
	C.2
	O Yes O No

	5
	Discovery
	
	[1] 10.2.6
	C.2
	O Yes O No

	6
	Location Management
	
	[1] 10.2.10
	C.2
	O Yes O No

	7
	Device Management
	
	[1]10.2.8
	C.2
	O Yes O No

	8
	Communication Management and Delivery Handling
	
	[1] 10.2.5,
[1] 10.2.20
	C.2
	O Yes O No

	C.1:	Mandatory IF the IUT is declaimed to be developed conforming to oneM2M TS-0001 [1].
C.2:	Optional IF the IUT is declaimed to be developed conforming to oneM2M TS-0001 [1].

[bookmark: _Toc449966320]

[bookmark: _Toc452389337]History
	Publication history

	V2.0.0
	30 Aug 2016>
	Release 2 - Publication

	
	
	

	
	
	

	
	
	

	
	
	

	© oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC)	Page 21 of 31
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.
image2.emf
ManagementoneM2MoneM2MHTTP/CoAP/MQTTWiFi/6LoWPAN/Ethernet, Zigbee,...SecurityService LayerNetwork & TransportAccessoneM2M ManagementoneM2M SecurityIUT

Microsoft_Visio_Drawing11.vsdx
Management
oneM2M
oneM2M
HTTP/CoAP/MQTT
WiFi/6LoWPAN/Ethernet, Zigbee,...
Security
Service Layer
Network & Transport
Access
oneM2M Management
oneM2M Security
IUT

image3.png

image4.png

image5.emf
 DUT n DUT 2 DUT 1 System Under Test Test Environment Test Drivers Test Descriptions ….. Test selection, coordination logging, monitoring, reporting… Test Interfaces

image6.emf
 Base Standards Industry practise Test Specifications SUT Configurations Test Suite Structure Test Descriptions IFS Collect IOP Requirements Define SUT Architecture Generic SUT Architecture

image1.png

