Doc# TST-2017-0262-TS-0019-ATS-Baseline-V0_5_0

[image: image10.bmp]
	oneM2M
Technical Specification

	Document Number
	oneM2M-TS-0019-V-0.5.0

	Document Name:
	Abstract Test Suite and Implementation eXtra Information for Test

	Date:
	2017-November-08

	Abstract:
	Abstract Test Suite and Implementation eXtra Information for Test consists of :
-
Definition of the Abstract Protocol Tester (APT)

-
Definition of TTCN-3 test architecture

-
Development of TTCN-3 test suite, e.g. naming conventions, code documentation, test case structure.

-
IXIT proforma;

	Template Version:23 February 2015 (Dot not modify)

This Specification is provided for future development work within oneM2M only. The Partners accept no liability for any use of this Specification.
The present document has not been subject to any approval process by the oneM2M Partners Type 1. Published oneM2M specifications and reports for implementation should be obtained via the oneM2M Partners' Publications Offices.
About oneM2M

The purpose and goal of oneM2M is to develop technical specifications which address the need for a common M2M Service Layer that can be readily embedded within various hardware and software, and relied upon to connect the myriad of devices in the field with M2M application servers worldwide.

More information about oneM2M may be found at: http//www.oneM2M.org

Copyright Notification

© 2015, oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC).

All rights reserved.
The copyright extends to reproduction in all media.

Notice of Disclaimer & Limitation of Liability

The information provided in this document is directed solely to professionals who have the appropriate degree of experience to understand and interpret its contents in accordance with generally accepted engineering or other professional standards and applicable regulations. No recommendation as to products or vendors is made or should be implied.

NO REPRESENTATION OR WARRANTY IS MADE THAT THE INFORMATION IS TECHNICALLY ACCURATE OR SUFFICIENT OR CONFORMS TO ANY STATUTE, GOVERNMENTAL RULE OR REGULATION, AND FURTHER, NO REPRESENTATION OR WARRANTY IS MADE OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. NO oneM2M PARTNER TYPE 1 SHALL BE LIABLE, BEYOND THE AMOUNT OF ANY SUM RECEIVED IN PAYMENT BY THAT PARTNER FOR THIS DOCUMENT, WITH RESPECT TO ANY CLAIM, AND IN NO EVENT SHALL oneM2M BE LIABLE FOR LOST PROFITS OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES. oneM2M EXPRESSLY ADVISES ANY AND ALL USE OF OR RELIANCE UPON THIS INFORMATION PROVIDED IN THIS DOCUMENT IS AT THE RISK OF THE USER.

Contents

3Contents

1
Scope
4
2
References
4
2.1
Normative references
4
2.2
Informative references
4
3
Definitions, symbols and abbreviations
5
3.1
Definitions
5
3.2
Abbreviations
5
3.3
Acronyms
6
4
Conventions
6
5
Abstract Test Method (ATM)
7
5.1
Abstract protocol tester
7
5.2
Test Configuration
7
5.2.1
AE Test Configuration
7
5.3
Test architecture
8
5.4
Ports and ASPs (Abstract Services Primitives)
10
5.4.1
mcaPort and mccPort
10
5.4.2
utPort
12
5.4.2.0
Introduction
12
5.4.2.1
Usage for Automated AE Testing
12
5.4.2.2
Upper Tester Control Primitives
13
5.4.2.2.1
Introduction
13
5.4.2.2.2
UtTrigger and UtTriggerAck Primitives
13
5.4.2.2.3
Control Communication Protocol
15
5.4.2.2.4
Control Message Serialization
15
5.4.3
acPort
16
6
Untestable Test Purposes
16
7
ATS Conventions
16
7.0
Introduction
16
7.1
Testing conventions
16
7.1.1
Testing states
16
7.1.1.1
Initial state
16
7.1.1.2
Final state
16
7.2
Naming conventions
17
7.2.1
General guidelines
17
7.2.2
oneM2M specific TTCN-3 naming conventions
18
7.2.3
Usage of Log statements
18
7.2.4
Test Case (TC) identifier
19
7.3
IXIT
19
8
TTCN-3 Verifications
20
Proforma copyright release text block
21
Annexes
21
Annex <y>: Bibliography
22
History
22

1
Scope

The present document …
EXAMPLE:
The present document provides the necessary adaptions to the endorsed document.

The Scope shall not contain requirements.

2
References

The following text block applies.

References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references,only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

2.1
Normative references

Clause 2.1 only shall contain normative (essential) references which are cited in the document itself. These references have to be publicly available and in English.
The following referenced documents are necessary for the application of the present document.
 [1]
oneM2M TS-0001: “Functional architecture”

[2]

oneM2M TS-0004: “Service Layer Core Protocol”

[3]
ISO/IEC 9646-1 (1994): "Information technology - Open Systems Interconnection - Conformance testing methodology and framework - Part 1: General concepts".

[4]
ISO/IEC 9646-2 (1994): "Information technology - Open Systems Interconnection - Conformance testing methodology and framework - Part 2: Abstract Test Suite specification".

[5]
ISO/IEC 9646-6 (1994): "Information technology - Open Systems Interconnection - Conformance testing methodology and framework - Part 6: Protocol profile test specification".

[6]
ISO/IEC 9646-7 (1995): "Information technology - Open Systems Interconnection - Conformance testing methodology and framework - Part 7: Implementation Conformance Statements".
[7]
ETSI ES 201 873-1 (V4.5.1): "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core Language".
[8]
oneM2M TS-0017: “Implementation Conformance Statement”

[9]
oneM2M TS-0018: “Test Suite Structure and Test Purposes”
2.2
Informative references
Clause 2.2 shall only contain informative references which are cited in the document itself.

The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
· Use the EX style, add the letter "i" (for informative) before the number (which shall be in square brackets) and separate this from the title with a tab (you may use sequence fields for automatically numbering references).
 [i.1]
oneM2M Drafting Rules (http://member.onem2m.org/Static_pages/Others/Rules_Pages/oneM2M-Drafting-Rules-V1_0.doc)
[i.2]
oneM2M TS-0015: “Testing Framework”
3
Definitions, symbols and abbreviations

Delete from the above heading the word(s) which is/are not applicable.
3.1
Definitions

Clause numbering depends on applicability.

· A definition shall not take the form of, or contain, a requirement.

· The form of a definition shall be such that it can replace the term in context. Additional information shall be given only in the form of examples or notes (see below).

· The terms and definitions shall be presented in alphabetical order.
For the purposes of the present document, the terms and definitions given in ISO/IEC 9646‑1 [3] and in ISO/IEC 9646‑7 [6] apply.

For the purposes of the present document, the terms and definitions [given in ... and the following] apply:

Definition format

<defined term>: <definition>

If a definition is taken from an external source, use the format below where [N] identifies the external document which must be listed in Section 2 References.
<defined term>[N]: <definition>

example 1: text used to clarify abstract rules by applying them literally

NOTE:
This may contain additional information.

3.2
Abbreviations

Abbreviations should be ordered alphabetically.

Clause numbering depends on applicability.

For the purposes of the present document, the following abbreviations apply:
AE
Application entity

APT
Abstract Protocol Tester

ATM
Abstract Test Method
ATS
Abstract Test Suite

BI
Invalid behaviour

BV
Valid behaviour
CoAP
Constrained Application Protocol
CSE
Common Service Entity
HTTP
Hypertext Transfer Protocol
IP
Internet Protocol

IPv6
Internet Protocol version 6

IUT
Implementation Under Test

MQTT
Message Queuing Telemetry Transport
MTC
Main Test Component

PA
Platform Adaptor

PCTR
Protocol Conformance Test Report

PICS
Protocol Implementation Conformance Statement

PIXIT
Partial Protocol Implementation Extra Information for Testing

PTC
Parallel Test Component

PX
PiXit

SA
System Adaptor

SAP
Service Access Point

SUT
System Under Test

TC
Test Case

TP
Test Purposes

TSS
Test Suite Structure

TTCN
Tree and Tabular Combined Notation
UT
Upper Tester
Abbreviation format

<ABREVIATION1>
<Explanation>

<ABREVIATION2>
<Explanation>

<ABREVIATION3>
<Explanation>

3.3
Acronyms

Acronyms should be ordered alphabetically.

Clause numbering depends on applicability.

For the purposes of the present document, the [following] abbreviations [given in ... and the following] apply:

Acronym format

<ACRONYM1>
<Explanation>

<ACRONYM2>
<Explanation>

<ACRONYM3>
<Explanation>

4
Conventions

The key words “Shall”, ”Shall not”, “May”, ”Need not”, “Should”, ”Should not” in this document are to be interpreted as described in the oneM2M Drafting Rules [i.1]
5
Abstract Test Method (ATM)
5.1
Abstract protocol tester
An abstract protocol tester (APT) is a process that provides behaviours for testing an IUT by emulating a peer IUT at the same layer, and enabling to address a single test objective.

APTs used by the oneM2M test suite are described in figure 1. The test system will simulate valid and invalid protocol behaviour, and will analyse the reaction of the IUT.
[image: image2.png]oneM2M Test System

oneM2

M

System Under Test

messag

es

HTTP HTTP
TCP TCP
IP IP
Ethernet Ethernet
Lower Layers Lower Layers
. +

Lower Layers link

 [image: image3.png]oneM2M Test System

oneM2

M

System Under Test

messag

es

CoAP CoAP
UDP UDP
IP IP
Ethernet Ethernet
Lower Layers Lower Layers
. +

Lower Layers link

[image: image4.png]oneM2M Test System

oneM2

M

System Under Test

messag

es

MQTT MQTT
TCP TCP
IP IP
Ethernet Ethernet
Lower Layers Lower Layers
. +

Lower Layers link

Figure 5.1-1. Abstract protocol testers – oneM2M
As the figure above illustrates, the corresponding ATS needs to use lower layers to establish a proper connection to the system under test (SUT) over a physical link (Lower layers link). Three different lower layers have been specified corresponding to the binding protocols considered in oneM2M: HTTP, CoAP and MQTT

5.2
Test Configuration

5.2.1
AE Test Configuration

Test configurations are defined to test different entities such as CSE and AE etc.

Figure X shows a AE test configuration which is mapped to CF03 in section 6.3.3.3 in TS-0015[i.2] and aligns with conformance test system architecture in section 6.3.3.2 in TS-0015[i.2].

The TTCN-3 Test Component in Test System sends triggering actions or behaviour to the Upper Tester Application of SUT through upper tester transport link Ut while the IUT sends/receives oneM2M service primitives through Mca to/from CSE in Test System.

[image: image1.png]

[image: image5]

5.3
Test architecture

The approach for the implementation of an Abstract Protocol Tester selected in oneM2M follows the recommendation of the oneM2M Testing Framework[i.2] where the TTCN-3 language and its architecture are recommended.

Following this recommendation the oneM2M tester architecture comprises a non-platform dependent Test Suite, and a platform dependent part.

[image: image6.png]7CN-3)

oneM2M Conformance Tester

oneM2M Abstract Platform
Test Suite independent Design
P I
oneM2M Test Adaptor Platform %
dependent

Design

Figure 5.3-1. High level oneM2M Test Architecture

· oneM2M TTCN-3 Abstract Test Suite: the test suite is platform independent, and it is the cornerstone of the architecture. It allows a complete decoupling between the test suite and the rest of the test system. The test suite is composed of a complete set of test cases covering oneM2M requirements specified by [1] and [2].
· oneM2M System Adaptor: this is the platform dependent part that includes adaptors and codecs (out of the scope of this document). This part of the architecture definition depends on the specific platform (e.g., Windows or Linux) and test tool on which the tester is going to run.
· *However, it can be implemented in a semi-independent manner, which will minimize the dependency to those elements.
Figure 3 shows the oneM2M TTCN-3 test architecture design used for the oneM2M ATS. The Test Suite needs to interact with the System Adaptor to implement the collection of TTCN-3 test cases that are intended to be used to test the oneM2M IUTs.

The oneM2M TTCN-3 test cases implement the test algorithms specified in the TSS&TP document [9], including verdict logic that allows pass/fail diagnosis.

The test algorithms use the interfaces defined [1] and [2] (mca, mcc) in order to:

1) control the test event to be sent towards the IUT, and

2) observe the test events received from the IUT.

In TTCN-3 these two interfaces have been implemented through a logical TTCN-3 concept called port (mcaPort and mccPort respectively) which allows oneM2M message primitives exchange with the IUT.

[image: image7.png]Test Suite

oneM2M TTCN-3ATS /

g T oneM2Mm
. (MTC)

: sl 8 2 2

H o o % o

i a E S B Test Platform
i a3 3

| CODECS; aneM2M

oneM2M System Adaptor
I
External Uppertester oneM2M lower layers stack
functions transport
o d’;:)al'o'?r('gA) System adaptor (SA)

[image: image8]
The oneM2M primitive messages have been mapped into TTCN-3 structure. Through this mapping, the TTCN-3 is able to build and send these messages, as well as receive them via the mcaPort and mccPort.

Additionally, the test cases are able to control and configure the test platform through a dedicated port called acPort while port utPort enables oneM2M TTCN-3 Test Component module to trigger specific action or behaviour on IUT.

To build up a tester, the test platform must be also developed (out of scope). This test platform is composed of three adaptation layers:

· PA (Platform Adaptor) layer functionality implements the communication between the TTCN-3 modules and external elements that constitute the test tool such as timers and external functions. The External functions are a powerful resources supported by TTCN-3 language. An External function is a function declared at the TTCN-3 level but implemented at the native level.

· SA (System Adaptor) layer functionality is divided into two modules:
· oneM2M lower layers stack module implements the communication with the IUT and carries out the oneM2M primitives messages sent to or received from the IUT. This module is based on TCP or UDP depending on the binding supported by the IUT. The binding is a system adaptor parameter .
· Upper Tester Transport module implements functions that enable triggering specific actions or behaviour on the IUT.
· CODECS layer is the part of the tester to encode and decode messages between the TTCN-3 abstract internal data representation and the format required by the related base standard which the IUT understands. Several CODECS are required in oneM2M tester to cope with the bindings considered in oneM2M (HTTP, CoAP, MQTT) and the serialization methods (xml, json).
5.4
Ports and ASPs (Abstract Services Primitives)

The oneM2M ATS implements four ports:

· The mcaPort

-
The mccPort

-
The acPort
-
The utPort
5.4.1
mcaPort and mccPort

These ports are used to send and receive the following message sets;

· Request Primitives messages in accordance with oneM2M TS-0004 standard [2].

· Response Primitives messages in accordance with [2].

Two primitives are currently defined for these two ports indicated as Table 1:

1) The M2MRequestPrimitive - to send or receive oneM2M messages to/from the IUT. Depending on the IUT to be tested:

a. If the IUT is an AE, these messages are either received or sent by the tester which is associated with the CSE role through the mcaPort.

b. If the IUT is a CSE, these messages are either sent by the tester when it plays the AE role through the mcaPort or received by the tester when it plays the CSE role through the mccPort.

2) The M2MResponsePrimitive - to send or receive oneM2M messages to/from the IUT. Depending on the IUT to be tested:

a. If the IUT is an AE, these messages are either sent or received by the tester which is associated with the CSE role through the mcaPort.

b. If the IUT is a CSE, these messages are either sent by the tester when it plays the CSE role through the mccPort or received by the tester when it plays the AE role through the mcaPort.

Both primitives contain another parameters that permits to dynamically configure the test adaptor for every single sending. These parameters are:
· Host: IP address of the IUT

· XML Namespace

· Protocol binding

· Serialization

Table 5.4.1-1. Mapping of TTCN-3 Primitives to oneM2M Service Primitives
	TTCN-3 Primitive
	oneM2M Message
	Direction
	IUT

	M2MRequestPrimitive
	Request Primitive
	(
(
	AE

	
	Request Primitive
	(
(
	CSE

	M2MResponsePrimitive
	Response Primitive
	(
(
	AE

	
	Response Primitive
	(
(
	CSE

5.4.2
utPort

5.4.2.0
Introduction
The utPort has been included in the oneM2M ATS in order to be able to stimulate the IUT and receive extra information from IUT upper layers. The utPort can be applied to automated AE testing shown as section 5.4.2.1.

Editor’s Note: The utPort can also be provided for future extension.

5.4.2.1
Usage for Automated AE Testing

The utPort is in charge of the communication between TTCN-3 Test Component module in Test Sytem and the Upper Tester Application in SUT.

Functionalities that TTCN-3 Test Component module and the Upper Tester Application are required to implement are listed as follows:

· TTCN-3 Test Component is able to configure the Test System and send standardized triggering commands to the SUT (Upper Tester Application).

· Upper Tester Application can process the triggering command messages received from Test System (TTCN-3 Test Component) and stimulates IUT to act following the corresponding triggering command (i.e. sending oneM2M service primitives to Test System through Mca port).

oneM2M service Primitive defined for utPort is listed as follows:

· The UtTrigger primitive is used to trigger upper layer events in IUT (i.e. sending oneM2M service primitives to Test System through Mca port).
· The UtTriggerAck primitive is used by IUT to send acknowledgement back to the Test System.
The Upper Tester Application in SUT can be implemented as an embedded source code. An example for implementation of automated AE test for Registration is shown as Figure Y

5.4.2.2
Upper Tester Control Primitives

5.4.2.2.1
Introduction
The upper tester triggering message is used to transport control commands between Test System and the Upper Tester Application. The control command will contain essential parameters that are required for certain testcase.

The upper tester triggering message type maps to particular message formats for exchanging data and those message formats are defined by TTCN-3 primitive as shown at table 5.4.2.2.1-1, UtTrigger and UtTriggerAck primitive.
Table 5.4.2.2.1-1 Mapping of TTCN-3 Primitives to oneM2M Service Primitives
	Upper TesterControl Message Type
	TTCN-3 Primitives
	Direction

	
	
	TS
	UT

	Trigger
	UtTrigger Primitive
	(

	Trigger Acknowledgement
	UtTriggerAck Primitive
	(

5.4.2.2.2
UtTrigger and UtTriggerAck Primitives

The UtTrigger primitive is initialized by the Test System to send triggering message to the target IUT as depicted in Figure 5.4.2.2.2-1. The IUT will send acknowledgement message back to the Test System using UtTriggerAck primitive if trigger message is successfully transported to the IUT. Then IUT starts interaction with Test System through oneM2M request and response primitives.

[image: image9.emf]UT UT TS TS

UtTrigger

primitive

UtTriggerAck

primitive

UT TS

UtTrigger

primitive

UtTriggerAck

primitive

Figure 5.4.2.2.2-1 Trigger message flow
Table 5.4.2.2.2-2 defines UtTrigger and UtTriggerAck primitives including oneM2M data types to which are mapped as well as examples to show how to implmenet UtTrigger and UtTriggerAck primitives.

Table 5.4.2.2.2-2 UtTrigger and UtTriggerAck Primitive

	Ut Control Primitive
	Mapping to oneM2M data types
	Description
	Reference
	Triggering Message
	HTTP message

	UtTrigger Primitive
	request

Primtive
	ONLY essential parameters included for certain testcase*

NOTE: Additional rules defined in Table 5.4.2.2.2-3 are also applied.
	TS-0004 []
	Example-A:

If the test objective is to test “Test System triggers IUT to execute a testcase for creation of <AE> with labels attribute under a CSEBase resource”, then the triggering message would be serialized as following:

	
	
	
	
	Request
{

"rqp" :{

 "op": 1, //indicate CREATE operation
 "ty": 2, //indicate AE resource type
 "to": {TEST_SYSTEM_ADDRESS},

 "pc": {

"ae": {

"lbl":"UNINITIALIZED" //indicate that attribute labels needs to be included

}

 }
}
}

	Request
POST /{SUT_UT_APPLICATION_URL} HTTP/1.1

Host: {SUT_IP_ADDRESS:PORT}

Content-Length: {PAYLOAD_LENGTH}

Content-Type: application/json
{

"rqp" :{

 "op": 1, //indicate CREATE operation
 "ty": 2, //indicate AE resource type
 "to": {TEST_SYSTEM_ADDRESS},

 "pc": {

"ae": {

"lbl":"UNINITIALIZED" //indicate that attribute labels needs to be included

}

 }
}
}

	
	
	
	
	Example-B: If the test objective is to test “Test System triggers IUT to execute a testcase for delete of a <AE> resource.”, then the triggering message would be serialized as following:

	
	
	
	
	Request
{

"rqp" :{

 "op": 4, //indicate DELETE operation
 "to": {TARGET_AE_RESOURCE_ADDRESS} //indicate Target AE resouce address
}
}

	Request
POST /{SUT_UT_APPLICATION_URL} HTTP/1.1

Host: {SUT_IP_ADDRESS:PORT}

Content-Length: {PAYLOAD_LENGTH}

Content-Type: application/json
{

"rqp" :{

 "op": 4, //indicate DELETE operation
 "to": {TARGET_AE_RESOURCE_ADDRESS} //indicate Target AE resouce address
}
}

	UtTriggerAck Primitive
	responsePrimitive
	ONLY responseStatusCode attribute included
Note: Attribute response status code is defined at Table 5.4.2.2.2-3.
	TS-0004 []
	Response

{

"rsp": {

"rsc": 2000

}
}

For any triggering response, it only contains a response status code, and the response status code for the triggering operation can only be set to either 2000 (OK) or 4000 (BAD_REQUEST) according to the rules for triggering operations.

	Response

HTTP/1.1 200 OK

X-M2M-RSC: 2000

Table 5.4.2.2.2-3 Rules for defining UtTrigger and UtTriggerAck primitives
	1 UtTrigger primitive is represented in requestPrimitive serialized in JSON format.
2 Parameters within UtTrigger are listed as following:

· operation: (mandatory)operation type that IUT is triggered to perform.

· resourceType: (optional)resource type of a target resource against which IUT is triggered to perform certain operation
· to: (mandatory)target resource against which IUT is triggered to perform certain operation.
· primitiveContent:(optional)represents the resource attributes that shall be included in the requestPrimitive.

Table 5.4.2.2.2-3 Definition of ResponseStatusCode for UtTriggerAck primitive
	Response Status Code Description
	Response Status Code Value
	Interpretation

	OK
	2000
	The SUT receives successfully the triggering message from Test System

	BAD_REQUEST
	4000
	The SUT does not interpret correctly the UtTrigger primitive

	Note: Only above two response status codes are allowed to use in UtTriggerAck primitive.

5.4.2.2.3
Control Communication Protocol

Protocol used for proceeding communications between TS and Upper Tester Application is designated to the Hypertext Transfer Protocol (HTTP) protocol owning it is an application protocol that is widely supported by most all IoT devices and various intrinsic features such as persistent connection, ease of programming, flexibility etc.

5.4.2.2.4
Control Message Serialization

Control commands that are wrapped within a request body of HTTP message shall be serialized into JavaScript Object Notation (JSON) because it is very lightweight and easy to parse and generate for machines.

5.4.3
acPort

The acPort has been included in the oneM2M ATS in order to be able to control and configure the test adaptor for specific cases.

The acPort is not used in the current implementation and is provided for future extension.

6
Untestable Test Purposes
7
ATS Conventions
7.0
Introduction
The ATS conventions are intended to give a better understanding of the ATS but they also describe the conventions made for the development of the ATS. These conventions shall be considered during any later maintenance or further development of the ATS.

The ATS conventions contain two clauses, the naming conventions and the implementation conventions. The naming conventions describe the structure of the naming of all ATS elements. The implementation conventions describe the functional structure of the ATS.

To define the ATS, the guidelines of the document [i.2] were considered.

7.1
Testing conventions

7.1.1
Testing states

7.1.1.1
Initial state

All test cases start with the function f_preamble_XYZ. This function brings the IUT in an "initialized" state by performing some actions such as registration of AE, creation of auxiliary access control policy resource, creation of additional needed resources.

7.1.1.2
Final state

All test cases end with the function f_postamble_XYZ. This function brings the IUT back in an "idle" state which means deletion of all created resources being used by the test case so that next test case execution is not disturbed.

As necessary, further actions may be included in the f_postamble functions.

7.2
Naming conventions

7.2.1
General guidelines

This test suite follows the naming convention guidelines provided in the [i.2].

The naming convention is based on the following underlying principles:

· in most cases, identifiers should be prefixed with a short alphabetic string (specified in table 3) indicating the type of TTCN‑3 element it represents;

· suffixes should not be used except in those specific cases identified in table 2;

· prefixes and suffixes should be separated from the body of the identifier with an underscore ("_");

EXAMPLE 1:
c_sixteen, t_wait.
· only module names, data type names and module parameters should begin with an upper‑case letter. All other names (i.e. the part of the identifier following the prefix) should begin with a lower‑case letter;

· the start of second and subsequent words in an identifier should be indicated by capitalizing the first character. Underscores should not be used for this purpose.

EXAMPLE 2:
f_initialState.

Table 3 specifies the naming guidelines for each element of the TTCN‑3 language indicating the recommended prefix, suffixes (if any) and capitalization.

Table7.2.1-1. TTCN-3 generic naming conventions

	Language element
	Naming convention
	Prefix
	Example identifier

	Module
	Use upper-case initial letter
	none
	OneM2M_Templates

	Group within a module
	Use lower-case initial letter
	none
	messageGroup

	Data type
	Use upper-case initial letter
	none
	SetupContents

	Message template
	Use lower-case initial letter
	m_
	m_setupInit

	Message template with wildcard or matching expression
	Use lower-case initial letters
	mw_
	mw_anyUserReply

	Signature template
	Use lower-case initial letter
	s_
	s_callSignature

	Port instance
	Use lower-case initial letter
	none
	signallingPort

	Test component instance
	Use lower-case initial letter
	none
	userTerminal

	Constant
	Use lower-case initial letter
	c_
	c_maxRetransmission

	Constant (defined within component type)
	Use lower-case initial letter
	cc_
	cc_minDuration

	External constant
	Use lower-case initial letter
	cx_
	cx_macId

	Function
	Use lower-case initial letter
	f_
	f_authentication()

	External function
	Use lower-case initial letter
	fx_
	fx_calculateLength()

	Altstep (incl. Default)
	Use lower-case initial letter
	a_
	a_receiveSetup()

	Test case
	Use ETSI numbering
	TC_
	TC_COR_0009_47_ND

	Variable (local)
	Use lower-case initial letter
	v_
	v_macId

	Variable (defined within a component type)
	Use lower-case initial letters
	vc_
	vc_systemName

	Timer (local)
	Use lower-case initial letter
	t_
	t_wait

	Timer (defined within a component)
	Use lower-case initial letters
	tc_
	tc_authMin

	Module parameters for PICS
	Use all upper case letters
	PICS_
	PICS_DOOROPEN

	Module parameters for other parameters
	Use all upper case letters
	PX_
	PX_TESTER_STATION_ID

	Formal Parameters
	Use lower-case initial letter
	p_
	p_macId

	Enumerated Values
	Use lower-case initial letter
	e_
	e_syncOk

7.2.2
oneM2M specific TTCN-3 naming conventions

Next to such general naming conventions, table 4 shows specific naming conventions that apply to the oneM2M TTCN-3 ATS.

Table 7.2.2-1. oneM2M specific TTCN-3 naming conventions

	Language element
	Naming convention
	Prefix
	Example identifier

	oneM2M Module
	Use upper-case initial letter
	OneM2M_
	OneM2M_Testcases_

	Module containing oneM2M types
	Use upper-case initial letter
	OneM2M_Types
	OneM2M_Types

	Module containing types and values
	Use upper-case initial letter
	OneM2M_TypesAndValues
	OneM2M_TypesAndValues

	Module containing Templates
	Use upper-case initial letter
	OneM2M_Templates
	OneM2M_Templates

	Module containing test cases
	Use upper-case initial letter
	OneM2M_Testcases
	OneM2M_Testcases

	Module containing functions
	Use upper-case initial letter
	OneM2M_Functions
	OneM2M_Functions

	Module containing external functions
	Use upper-case initial letter
	OneM2M_ExternalFunctions
	OneM2M_ExternalFunctions

	Module containing components, ports and message definitions
	Use upper-case initial letter
	OneM2M_TestSystem
	OneM2M_TestSystem

	Module containing module parameters
	Use upper-case initial letter
	OneM2M_Pixits
	OneM2M_Pixits

7.2.3
Usage of Log statements

All TTCN-3 log statements use the following format using the same order:

· The TTCN-3 test case or function identifier in which the log statement is defined.

· One of the categories of log: INFO, WARNING, ERROR, TIMEOUT, NONE.

· Free text.

EXAMPLE 1:
log("f_utInitializeIut: INFO: IUT initialized");
Furthermore, the following rules are applied too:

· All TTCN-3 setverdict statements are combined (as defined in TTCN-3 - ES 201 873-1 [7]) with a log statement following the same above rules (see example 2).

EXAMPLE 2:
setverdict(pass, "TC_ONEM2M_CSE_DMR_CRE_BV_001: Received correct message");
7.2.4
Test Case (TC) identifier

Table 7.2.4-1. TC naming convention

	Identifier:
	TC_<root>_<gr>_<sgr>_<x>_<nn>
	
	

	
	<root> = root
	ONEM2M
	IPv6 over GeoNetworking

	
	<gr> = group
	CSE
	Message Generation

	
	
	AE
	Message Reception

	
	<sgr> = subgroup
	REG
	Registration

	
	
	DMR
	Data Management and Repository

	
	
	SUB
	Subscription and Notification

	
	
	GMG
	Group Management

	
	
	DIS
	Discovery

	
	
	LOC
	Location

	
	
	DMG
	Device Management

	
	
	CMDH
	Communication Management and Delivery Handling

	
	
	SEC
	Security

	
	<x> = type of testing
	BV
	Valid Behaviour tests

	
	
	BI
	Invalid Behaviour tests

	
	<nn> = sequential number
	
	001 to 999

EXAMPLE:
TP identifier:
TP/oneM2M/CSE/DMR/CRE/BV/001
TC identifier:
TC_ONEM2M_CSE_DMR_CRE_BV_001
7.3
IXIT

8
TTCN-3 Verifications
The principles for Verifying the TTCN-3 test code are given in TS-0015 [i.2].

The following Table 8-1 lists the TTCN-3 Test Cases and details their Verification status.

Table 8-1. TTCN-3 Test Case Verification Status
	TTCN-3 Test Case
	Verification Status
	TTCN-3 version used for Verification
	Binding(s) used for Verification (for information only)

	TP/oneM2M/CSE/DMR/CRE/001_CNT_CB
	Verified
	TST-2017-0146
	HTTP

	TP/oneM2M/CSE/DMR/CRE/001_CNT_AE

	Verified
	TST-2017-0146
	HTTP

	TP/oneM2M/CSE/DMR/CRE/001_CNT_CNT
	Verified
	TST-2017-0146
	HTTP

	TP/oneM2M/CSE/DMR/CRE/002_CNT
	Verified
	TST-2017-0146
	HTTP

	TP/oneM2M/CSE/DMR/CRE/003_CNT
	Verified
	TST-2017-0146
	HTTP

	TP/oneM2M/CSE/DMR/CRE/004_CNT
	Verified
	TST-2017-0146
	HTTP

	TP/oneM2M/CSE/DMR/CRE/006_0X
	Verified
	TST-2017-0146
	HTTP

	TP/oneM2M/CSE/DMR/CRE/009
	Verified
	TST-2017-0146
	HTTP

	TP/oneM2M/CSE/DMR/CRE/012_CNT
	Verified
	TST-2017-0146
	HTTP

	TP/oneM2M/CSE/DMR/CRE/013_CNT
	Verified
	TST-2017-0146
	HTTP

	TP/oneM2M/CSE/DMR/CRE/014_CNT
	Verified
	TST-2017-0146
	HTTP

	TP/oneM2M/CSE/DMR/CRE/015_CNT_*
	Verified
	TST-2017-0146
	HTTP

	TP/oneM2M/CSE/DMR/RET/001_CNT
	Verified
	TST-2017-0146
	HTTP

	TP/oneM2M/CSE/DMR/RET/002
	Verified
	TST-2017-0146
	HTTP

	TP/oneM2M/CSE/DMR/RET/003_CNT
	Verified
	TST-2017-0146
	HTTP

	TP/oneM2M/CSE/DMR/RET/004_CNT
	Verified
	TST-2017-0146
	HTTP

	TP/oneM2M/CSE/DMR/RET/005_CNT
	Verified
	TST-2017-0146
	HTTP

	TP/oneM2M/CSE/DMR/RET/006_CNT
	Verified
	TST-2017-0146
	HTTP

	TP/oneM2M/CSE/DMR/RET/007_CNT
	Verified
	TST-2017-0146
	HTTP

	TP/oneM2M/CSE/DMR/RET/008_CNT
	Verified
	TST-2017-0146
	HTTP

	TP/oneM2M/CSE/DMR/RET/013_CNT
	Verified
	TST-2017-0146
	HTTP

	TP/oneM2M/CSE/DMR/RET/014_CNT
	Verified
	TST-2017-0146
	HTTP

	TP/oneM2M/CSE/DMR/UPD/005_CNT
	Verified
	TST-2017-0146
	HTTP

	TP/oneM2M/CSE/DMR/UPD/006_CNT
	Verified
	TST-2017-0146
	HTTP

	TP/oneM2M/CSE/DMR/UPD/007_CNT
	Verified
	TST-2017-0146
	HTTP

	TP/oneM2M/CSE/DMR/UPD/008_CNT
	Verified
	TST-2017-0146
	HTTP

	TP/oneM2M/CSE/DMR/UPD/010
	Verified
	TST-2017-0146
	HTTP

	TP/oneM2M/CSE/DMR/DEL/001_CNT
	Verified
	TST-2017-0146
	HTTP

	TP/oneM2M/CSE/DMR/DEL/002_CNT
	Verified
	TST-2017-0146
	HTTP

	TP/oneM2M/CSE/DMR/DEL/003
	Verified
	TST-2017-0146
	HTTP

	TP/oneM2M/CSE/DMR/DEL/004_CNT
	Verified
	TST-2017-0146
	HTTP

	TP/oneM2M/CSE/DMR/DEL/005
	Verified
	TST-2017-0146
	HTTP

	TP/oneM2M/CSE/DMR/DEL/006
	Verified
	TST-2017-0146
	HTTP

	TP/oneM2M/CSE/DMR/CRE/007
	Verified
	TST-2017-0146
	HTTP

	TP/oneM2M/CSE/DMR/CRE/008
	Verified
	TST-2017-0146
	HTTP

	TP/oneM2M/CSE/DMR/CRE/010
	Verified
	TST-2017-0146
	HTTP

	TP/oneM2M/CSE/DMR/CRE/011
	Verified
	TST-2017-0146
	HTTP

	TP/oneM2M/CSE/DMR/CRE/015_CIN_*
	Verified
	TST-2017-0146
	HTTP

	TP/oneM2M/CSE/DMR/UPD/011
	Verified
	TST-2017-0146
	HTTP

	TP/oneM2M/CSE/DMR/UPD/012
	Verified
	TST-2017-0146
	HTTP

	TP/oneM2M/CSE/DMR/UPD/013
	Verified
	TST-2017-0146
	HTTP

	TP/oneM2M/CSE/DMR/RET/012
	Verified
	TST-2017-0146
	HTTP

	TP/oneM2M/CSE/DMR/RET/009
	Verified
	TST-2017-0146
	HTTP

	TP/oneM2M/CSE/DMR/DEL/007
	Verified
	TST-2017-0146
	HTTP

	TP/oneM2M/CSE/DMR/DEL/008
	Verified
	TST-2017-0146
	HTTP

	TP/oneM2M/CSE/DMR/RET/010
	Verified
	TST-2017-0146
	HTTP

	TP/oneM2M/CSE/DMR/RET/011
	Verified
	TST-2017-0146
	HTTP

	TP/oneM2M/CSE/DMR/DEL/009
	Verified
	TST-2017-0146
	HTTP

	TP/oneM2M/CSE/DMR/DEL/010
	Verified
	TST-2017-0146
	HTTP

Proforma copyright release text block

This text box shall immediately follow after the heading of an element (i.e. clause or annex) containing a proforma or template which is intended to be copied by the user. Such an element shall always start on a new page.

Notwithstanding the provisions of the copyright clause related to the text of the present document, oneM2M grants that users of the present document may freely reproduce the <proformatype> proforma in this {clause|annex} so that it can be used for its intended purposes and may further publish the completed <proformatype>.

<PAGE BREAK>

Annexes

Each annex shall start on a new page (insert a page break between annexes A and B, annexes B and C, etc.).

Use the Heading 9 style for the title and the Normal style for the text.
Annex A (Normative): TTCN-3 library modules
Editor notes: the TTCN-3 and other related modules are contained in the repository http://git.onem2m.org:8080/TST/ATS.git
A.1
Electronic annex, zip file with TTCN-3 code
<PAGE BREAK>

Annex B (Normative): IXIT proforma
<Text>

B.1
First clause of the annex

<Text>

B.1.1
First subdivided clause of the annex (style H2)
<Text>

<PAGE BREAK>
The following text is to be used when appropriate:

Annex <y>:
Bibliography

The annex entitled "Bibliography" is optional.

It shall contain a list of standards, books, articles, or other sources on a particular subject which are not mentioned in the document itself
It shall not include references mentioned in the document.

Use the Heading 9 style for the title and B1+ or Normal for the text.

· <Publication>: "<Title>".

OR

<Publication>: "<Title>".

<PAGE BREAK>

History

This clause shall be the last one in the document and list the main phases (all additional information will be removed at the publication stage).
	Publication history

	V1.1.1
	<dd-Mmm-yyyy>
	<Milestone>

	V0.1.0
	
	

	V0.2.0
	
	

	V0.3.0
	
	

	V0.4.0
	15-09-2017
	TST-2017-0222

	Draft history (to be removed on publication)

	V.1.1.1
	<dd mm yyyy>
	<CR ID> applied – <Summary of changes>

	V.0.0.1
	07-07-2015
	Initial draft

	V.0.1.0
	08-04-2016
	Inplemented contributions:
TST-2016-0055R03-TS-0019_ATS_document

	V.0.2.0
	07-12-2016
	Implemented contributions:
TST-2016-0089R01-CR_TS-0019-TTCN_Verification

TST-2016-0198R02-TS-0019_Abstract_Test_Method_AE_automated_Testing
TST-2016-0252-CR_TS-0019_uTPort_ASPs_update

	V0.3.0
	06-07-2017
	Implemented contributions:
TST-2017-0093-CR-TS-0019_Update_Control_Message_Primitives
TST-2017-0094R01-TS-0019-Define_Upper_Tester_Trigger_Control_Message
TST-2017-0167-TS-0019_Verified_test_cases

	V0.4.0
	15-09-2017
	Implemented contributions:

TST-2017-0222-TS-0019_TP_names_alignment

	V0.5.0
	08-11-2017
	Implemented contributions:

TST-2017-0224R01-CR-TS-0019_update_UtTrigger_primitive

Mca

SUT

TEST SYSTEM

TTCN-3 Test Component

IUT (AE)

CSE

Ut

Upper Tester Application

Figure 5.2.1-1. AE test configuration

Figure X. AE testing configuration

Figure 5.3-2. oneM2M Test Architecture

SUT

TEST SYSTEM

TTCN-3 Test Component

CSE

Upper Tester Application

IUT (AE)

Stimulate Registration

Stimulate Container Create

Registration

Container Create

Trigger Registration

Function call

utPort

utPort

mcaPort

mcaPort

Ut

Mca

© 2017 oneM2M Partners

Page 17 (of 7)

UT
TS

UtTrigger
primitive
UtTriggerAck
primitive

