-

[image: image1.png]
	oneM2M
Technical Specification

	Document Number
	oneM2M-TS-0030-V-0.1.0

	Document Name:
	Generic Interworking

	Date:
	2016-Nov-02

	Abstract:
	The present document specifies Generinc Interworking of the oneM2M System with external systems (e.g. Area Networks containing non-oneM2M devices) that can be described with ontologies that are compliant with oneM2M’s Base Ontology in TS-0012.

	Template Version: 08 September 2015 (Dot not modify)

This Specification is provided for future development work within oneM2M only. The Partners accept no liability for any use of this Specification.
The present document has not been subject to any approval process by the oneM2M Partners Type 1. Published oneM2M specifications and reports for implementation should be obtained via the oneM2M Partners' Publications Offices.
About oneM2M

The purpose and goal of oneM2M is to develop technical specifications which address the need for a common M2M Service Layer that can be readily embedded within various hardware and software, and relied upon to connect the myriad of devices in the field with M2M application servers worldwide.

More information about oneM2M may be found at: http//www.oneM2M.org

Copyright Notification

© 2015, oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSTDI, TTA, TTC).

All rights reserved.
The copyright extends to reproduction in all media.

Notice of Disclaimer & Limitation of Liability

The information provided in this document is directed solely to professionals who have the appropriate degree of experience to understand and interpret its contents in accordance with generally accepted engineering or other professional standards and applicable regulations. No recommendation as to products or vendors is made or should be implied.

NO REPRESENTATION OR WARRANTY IS MADE THAT THE INFORMATION IS TECHNICALLY ACCURATE OR SUFFICIENT OR CONFORMS TO ANY STATUTE, GOVERNMENTAL RULE OR REGULATION, AND FURTHER, NO REPRESENTATION OR WARRANTY IS MADE OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. NO oneM2M PARTNER TYPE 1 SHALL BE LIABLE, BEYOND THE AMOUNT OF ANY SUM RECEIVED IN PAYMENT BY THAT PARTNER FOR THIS DOCUMENT, WITH RESPECT TO ANY CLAIM, AND IN NO EVENT SHALL oneM2M BE LIABLE FOR LOST PROFITS OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES. oneM2M EXPRESSLY ADVISES ANY AND ALL USE OF OR RELIANCE UPON THIS INFORMATION PROVIDED IN THIS DOCUMENT IS AT THE RISK OF THE USER.

Contents

3Contents

1
Scope
6
2
References
6
2.1
Normative references
6
2.2
Informative references
6
3
Definitions, symbols and abbreviations
7
3.1
Definitions
7
3.2
Symbols
7
3.3
Abbreviations
8
3.4
Acronyms
8
4
Conventions
8
5
Introduction to Generic Interworking (non normative)
9
5.1
Basic concepts of Generic Interworking
9
5.1.1
Generic interworking vs. Specific interworking
9
5.1.2
Use of ontologies for Generic interworking with Area Networks
9
5.1.2.1
General Principle
9
5.1.2.2
 tbd
10
5.1.2.3
 tbd
10
5.2
Using Generic Interworking for Device Abstraction
10
5.3
Priciples of data flows
10
6
Functional specification of communication with the Generic interworking IPE
10
6.1
Usage of oneM2M resources for IPE communication
10
6.1.1
General design principles (informative)
10
6.1.2
Parent-child and linking resource relationships
11
6.2
Specification of the IPE for Generic interworking
13
6.2.1
General functionality of a Generic interworking IPE
13
6.2.2
Interworked Device discovery
13
6.2.3
Handling of DataPoints by the IPE
14
6.2.4
Handling of Operations by the IPE
14
6.2.5
Removing Devices.
16
6.3
Specification of the behavior of a communicating entity in message flows between IPE and the communicating entity
16
6.3.1
Preconditions on the communicating entity
16
6.3.2
Flow from the communicating entity to the IPE using InputDataPoints of a Service
16
6.3.2.1
Flow from the communicating entity to the IPE using a <container> type InputDataPoint
16
6.3.2.2
Flow from the communicating entity to the IPE using a <flexContainer> type InputDataPoint
17
6.3.3
Flow from the IPE to the communicating entity using OutputDataPoints of a Service
17
6.3.4
Flow from the communicating entity to the IPE using Operations of a Service
18
6.3.5
Flow from the IPE to the communicating entity using Operations of a Service
18
7
FlexContainer specializations for Generic interworking
18
7.1
Introduction
18
7.2
Resource Type genericInterworkingService
19
7.3
Resource Type genericInterworkingOperationInstance
21
Proforma copyright release text block
25
Annexes
26
Annex <y>: Bibliography
26
History
27

1
Scope

The present document specifies Generinc Interworking of the oneM2M System with external systems (e.g. Area Networks containing non-oneM2M devices) that can be described with ontologies that are compliant with oneM2M’s Base Ontology, specified in TS-0012 [3].
In oneM2M Release 2 the specification for Generic Interworking had been contained in sections 8 and 9 of TS-0012-v2.0.0 [4].
2
References

The following text block applies.

References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references,only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

2.1
Normative references

 [1]
oneM2M TS-0011: "Common Terminology".

[2]
oneM2M TS-0001: "Functional Architecture".

[3]
oneM2M TS-0012: " Base Ontology".

[4]
oneM2M TS-0012-v2.0.0: " Base Ontology".

2.2
Informative references
Clause 2.2 shall only contain informative references which are cited in the document itself.

The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
· Use the EX style, add the letter "i" (for informative) before the number (which shall be in square brackets) and separate this from the title with a tab (you may use sequence fields for automatically numbering references).
 [i.1]
oneM2M Drafting Rules (http://www.onem2m.org/images/files/oneM2M-Drafting-Rules.pdf)
3
Definitions, symbols and abbreviations

Delete from the above heading the word(s) which is/are not applicable.
3.1
Definitions

generic interworking: generic interworking allows interworking with many types of non- oneM2M Area Networks and Devices that are described in the form of a oneM2M compliant ontology which is derived from the oneM2M Base Ontology

NOTE:
generic interworking supports the interworking variant "full mapping of the semantic of the non-oneM2M data model to Mca" as indicated in clause F.2 of oneM2M TS-0001 [2].

interworked device: non-oneM2M device (NoDN) for which communication with oneM2M entities can be achieved via an Interworking Proxy Application Entity (IPE)

proxied device: virtual Device (i.e. a set of oneM2M resources together with an IPE) that represents the Interworked Device in the oneM2M System
3.2
Symbols

Clause numbering depends on applicability.

For the purposes of the present document, the [following] symbols [given in ... and the following] apply:

Symbol format

<symbol>
<Explanation>

<2nd symbol>
<2nd Explanation>

<3rd symbol>
<3rd Explanation>

3.3
Abbreviations

Abbreviations should be ordered alphabetically.

Clause numbering depends on applicability.

For the purposes of the present document, the [following] abbreviations [given in ... and the following] apply:

Abbreviation format

ARIB
Association of Radio Industries and Businesses
ATIS
Alliance for Telecommunications Industry Solutions
CCSA
China Communications Standards Association
ETSI
European Telecommunications Standards Institute

TIA
Telecommunications Industry Association,
TSDSI
Telecommunications Standards Development Society

TTA
Telecommunications Technology Association
TTC
Telecommunication Technology Committee
<ABREVIATION1>
<Explanation>

<ABREVIATION2>
<Explanation>

<ABREVIATION3>
<Explanation>

3.4
Acronyms

Acronyms should be ordered alphabetically.

Clause numbering depends on applicability.

For the purposes of the present document, the [following] abbreviations [given in ... and the following] apply:

Acronym format

<ACRONYM1>
<Explanation>

<ACRONYM2>
<Explanation>

<ACRONYM3>
<Explanation>

4
Conventions

The key words “Shall”, ”Shall not”, “May”, ”Need not”, “Should”, ”Should not” in this document are to be interpreted as described in the oneM2M Drafting Rules [i.1]
5
Introduction to Generic Interworking (non normative)
5.1
Basic concepts of Generic Interworking
5.1.1
Generic interworking vs. Specific interworking

Editor’s Note: This section should explain in which cases Generic Interworking can/should/needs to be used and what the difference to specific interworking with FlexContaiers is
5.1.2
Use of ontologies for Generic interworking with Area Networks

5.1.2.1
General Principle

Interworking with Area Networks is accomplished in oneM2M through functionality provided by Interworking Proxy Entities (IPE).

[image: image2.emf]oneM2M compliant SolutionArea Network(e.g. KNX)

real Devices in Area Network“proxied” Devices in the oneM2M System technology

oneM2MAEREST-fulResource accessInterworkingProxyEntity

Figure 1: Interworking

The IPE creates "proxied" devices as oneM2M Resources (e.g. AEs) in the oneM2M Solution that can be accessed by oneM2M Applications in the usual way.

To accomplish the creation of "proxied" devices the IPE uses an ontology that describes the the type of interworked Area Network and its entities (device types, their operations, etc.).
For example, in figure 1, an ontology that describes a KNX Area Network and its entities would be needed.

To achieve the flexibility for the IPE to create "proxied" Devices for many different types of Area Networks each ontology that describes a specific type of interworked Area Network needs to be derived from the Base Ontology that is specified in the present document.
E.g. the OWL representation of an ontology that describes the entities of an Area Network of type "KNX" needs to:

a) contain an 'include' statement which includes Base Ontology;

b) the Class of "KNX Nodes" needs to be a subclass of the "Device" Class of oneM2M's Base Ontology;

c) the Class of "KNX Communication Objects" needs to be a subclass of the "Service" Class of the Base Ontology;

d) etc.

NOTE:
For the purpose of Generic interworking with Area Networks the Base Ontology is only used to describe type information and not for describing instances of these types. E.g. the Base Ontology describes the type "Device", but does not contain information about a specific Device.
The Base Ontology therefore only contains Classes and Properties but not instances.

5.1.2.2
 tbd
Editor’s Note: should go to TS-0012 ??
5.1.2.3
 tbd
Editor’s Note: should go to TS-0012 ??
5.2
Using Generic Interworking for Device Abstraction
Editor’s Note: This section should explain how Generic Interworking can be used for Device abstraction if ontologies for the interworked device and the abstract device exist

5.3
Priciples of data flows
Editor’s Note: This section should give an informative overview of data flows to/from an IPE. Maybe section 6.1.1 should be moved here and enhanced
6
Functional specification of communication with the Generic interworking IPE

6.1
Usage of oneM2M resources for IPE communication

6.1.1
General design principles (informative)

For Generic interworking the oneM2M resource types <AE>, <container>, <flexContainer>, and specializations of <flexContainer>: genericInterworkingService and genericInterworkingOperationInstance are intended to hold data that can be used for data exchange with the IPE.

For Generic interworking a convention is needed how the IPE uses these resources to communicate with other oneM2M entities. This is described in the subsequent clauses.

Resources for RESTful communication style vs. procedure call (RPC) style:

A Generic interworking IPE needs to be able to communicate with non-oneM2M systems that implement some form of RESTful communication style as well as other systems that communicate in a procedure call (RPC) style.

For RESTful systems the use of Input- or OutputDataPoints may be more appropriate.

On the other hand procedure calls can be better modelled using Operations (and their OperationInputs/-Outputs).

Also a combination of both (where Operations additionally receive input from InputDataPoints and/or write output into OutputDataPoints) is possible.

Persistent resources vs. transient resources:

· Persistent resources are genericInterworkingService, <container>s and <flexContainer>s that contain data of Services, Input- or OutputDataPoints. Services, Input- and OutputDataPoints of an Interworked Device usually exist as long as the IPE enables the communication with the Interworked Device.
· Transient resources are genericInterworkingOperationInstances, <container>s and <flexContainer>s that contain data of Operations, OperationInput or OperationOutput.
These resources are created and exist as long as the Interworked Device performs execution of an Operation and receive the output data of the Operation. Once the output data have been deliverd to subscribed communicating entities transient resources may be deleted by the IPE.

NOTE:
While in general the present document assumes that semantic information can be made available (using the <semanticDescriptor> resource) the mechanisms described here for IPE communication do not rely on the existence of semanticDescriptors. This allows e.g. very simple devices to exchange their data in "raw" form (e.g. as byte-fields that need to be interpreted by the communicating entity).

6.1.2
Parent-child and linking resource relationships

Figure 2 provides an overview of parent-child resource relationships that are used for communication with AEs (in particular the IPE) in the context of Generic interworking.

It involves the:

· Persistent resource types:

· <AE>, <container> or <flexContainer> - for a oneM2M Device or an Interworked Device

· <container> - for an Input- or OutputDataPoint

· <flexContainer> - for an Input- or OutputDataPoint

· genericInterworkingService specialization of <flexContainer> - for a Service of a a oneM2M Device or an Interworked Device

· Transient resource types:

· <container> - for OperationInput or OperationOutput data of an Operation

· <flexContainer> - for OperationInput or OperationOutput data of an Operation

· genericInterworkingOperationInstance specialization of <flexContainer> - for an Operation of a Service

[image: image3.emf]Device <AE>, <container> or <flexContainer> (persistent resource)<semanticDescriptor>

child-resources

Input-/ OutputDataPoint<container> (persistent resource)Input-/ OutputDataPoint<flexContainer> (persistent resource)

contentInstance … …latest contentInstance[customAttribute]

child-resourceschild-resources

genericInterworkingService(persistent resource)

child-resources

and / or

genericInterworkingOperationInstance (transient resource)OperationInput/ -Output <container>(transient resource)OperationInput/ -Output <flexContainer>

contentInstance … …latest contentInstance[customAttribute]

child-resourceschild-resources

and / or

<semanticDescriptor><semanticDescriptor><semanticDescriptor>

[Input_DataPoint_Links]

DescriptorDescriptorDescriptorDescriptor

[Output_DataPoint_Links][Output-DataPoint_Links][Input -DataPoint_Links][Output_Links][Input_Links]

<semanticDescriptor>

Descriptor

<semanticDescriptor>

Descriptor

<semanticDescriptor>

Descriptor

Legend:

Persistent child resourcesTransient child resourcesLinks

Figure 2: Parent-child and Link relationships in the context of Generic interworking
Parent-child relationships:

· An <AE> resource, required for representing a Device, is created by its AE.
Alternatively, in the case of an Interworked Device, the AE that is the generic interworking IPE may create resources of type <container> or <flexContainer>, that represents the Interworked Device.

· Input- and Output DataPoints (<containers> and/or <flexContainers>) are created by the AE as child resources of its (<AE>, <containers>, <flexContainers>) resource that represents the Device.

· Services (resources of specialization type genericInterworkingService of a <flexContainer>) are created by the AE as child resources of its resource that represents the Device.

· OperationInstances (resources of specialization type genericInterworkingOperationInstance of a <flexContainer>) are created by the AE or by the communicating entity as child resources of the genericInterworkingService of the Service.

· OperationInput (<containers> and/or <flexContainers>) are created by the communicating entity as child resources of the genericInterworkingOperationInstance of the Operation instance.

· OperationOutput (<containers> and/or <flexContainers>) are are created by the AE as child resources of the genericInterworkingOperationInstance of the Operation instance.

· All of the above can contain a <semanticDescriptor> as child resource.

Link relationships:

· Services can contain links to:

· InputDataPoints (contained in the InputDataPointsLinks attribute)

· OutputDataPoints (contained in the ouputDataPointsLinks attribute)

· OperationInstances can contain links to:

· InputDataPoints (contained in the InputDataPointsLinks attribute)

· OutputDataPoints (contained in the ouputDataPointsLinks attribute)

· OperationInputs (contained in the inputLinks attribute)

· OperationOutputs (contained in the outputLinks attribute)
6.2
Specification of the IPE for Generic interworking
6.2.1
General functionality of a Generic interworking IPE

Generic interworking Interworking supports the interworking variant with full mapping of the semantic of the non-oneM2M data model to Mca as indicated in clause F.2 of oneM2M TS-0001 [2].

The non-oneM2M data model is described in the form of a oneM2M compliant ontology which is derived (as sub-classes and sub-properties) from the oneM2M Base Ontology and may be available in a formal description language (e.g. OWL).

A oneM2M compliant ontology can describe an external technology (e.g. ZigBee) for which a standardized interworking with oneM2M is required or it could describe a model of consensus that is shared by large industry sector (like SAREF, referenced in [Error! Reference source not found.]) that facilitates the matching of existing assets (standards/protocols/datamodels/etc.). An IPE that provides Generic interworking with a M2M Area Network shall instantiate the classes, object- and data properties of the ontology describing the non-oneM2M data model of the M2M Area Network as oneM2M resources, according to the instantiation rules of clause 7.1.

· Depending on the capabilities of the IPE and when the ontology describing the non-oneM2M data model is made available as a formal description the IPE may access and parse the OWL file of the ontology to support creation of the required oneM2M resources.

6.2.2
Interworked Device discovery

The IPE shall discover the devices in the non-oneM2M solution or, alternatively, they may be manually configured in the IPE.

1. For each discovered Interworked Device in the non-oneM2M solution the IPE shall:

either:

· create a <container> or <flexContainer> child resource of the IPE's <AE> resource for a Proxied Device that represents the non-oneM2M Interworked Device in the oneM2M System; or

· in the case the IPE provides interworking with a single Interworked Device, the IPE may use it's own <AE> resource for the Proxied Device that represents the non-oneM2M Interworked Device in the oneM2M System.

2. For each discovered device in the non-oneM2M solution the IPE shall create the Input- and OutputDataPoints (resource types <container> and/or <flexContainer>) and Services (resource type <flexContainer> specialization: <genericInterworkingService>) as child resources of the resource of the Proxied Device.

3. The IPE shall create <semanticDescriptor>s as child resources of the Input- and OutputDataPoints and Services.

4. The IPE shall subscribe to all created resources.

NOTE:
Whether <AE>, <container> or <flexContainer> resource types are used to represent InterworkedDevices and whether <container> or <flexContainer> resource types are used for input- and OutputDataPoints and operationInputs/-Outputs is not specified and depends on configuration.

6.2.3
Handling of DataPoints by the IPE
· When the IPE receives a request by the interworked non-oneM2M device via the non-oneM2M reference point to write an OutputDataPoint belonging to a Service of the device the IPE shall
· de-serialize the received data and, depending on the resource type of the OutputDataPoint (<flexContainer> or <container>) shall
· UPDATE/(CREATE contentInstance) the OutputDataPoint resources of the related genericInterworkingService with the output data.

· When the IPE receives a request by the interworked non-oneM2M device via the non-oneM2M reference point to read an InputDataPoint belonging to a Service of the device the IPE shall
· RETRIEVE data from the InputDataPoint resource of the related genericInterworkingService,
· serialize the data and
· return them to the non-oneM2M device.
· When the IPE is notified by the CSE that a <flexContainer> or <container> child-resource of the Proxied Device has been changed the IPE shall

· check to which Service the <flexContainer> or <container> resource belongs by checking if one of the inputDataPointLinks references the resource as InputDataPoint.

· read the data of the changed resource and

· invoke the Service, parameterized with data of the InputDataPoint, via the non-oneM2M reference point in the interworked non-oneM2M device.
6.2.4
Handling of Operations by the IPE
When the IPE receives notification from the CSE about creation of an OperationInstance resource (resource type genericInterworkingOperation) as child resource of a genericInterworkingService resource the IPE shall perform the following actions:

1. The IPE shall RETRIEVE the input data of the operation (contained in the resources to which the attributes inputLinks and InputDataPoint Links of genericInterworkingOperation provide links).

2. the IPE shall UPDATE the operationState attribute of the OperationInstance with the value "data received by application".
3. the IPE shall invoke the related operation together with their input data in the non-oneM2M device via the non-oneM2M reference point.

4. the IPE shall handle the result of the operation, received from the Interworked Device via the non-oneM2M reference point:

· If the the non-oneM2M device is capable of processing the operation (i.e. no error is reported over the non-oneM2M reference point) then:

a) The IPE shall UPDATE the operationState attribute of the OperationInstance with the value "data transmitted to interworked device".

b) The IPE shall UPDATE the expirationTime attribute to an appropriate value that allows the Interworked Device to execute the operation and allows the subscribed communicating entities to get notified and potentially retrieve the results.
c) When the IPE receives output data from the operation in the non-oneM2M device via the non-oneM2M reference point the IPE shall de-serialize these data and update, depending on the operation specification, the operationOutput resources and/or the OutputDataPoint resources with the output data:

-
When the received output data from the operation contain a state indication (according to the OperationState class of the ontology) then the IPE may UPDATE the operationState attribute with the value received in the state indication.

-
When the received output data from the operation contains no state indication (according to the OperationState class of the ontology) then the IPE shall UPDATE the operationState attribute with the value "operation ended".

-
In case the operation contains no output data and the non-oneM2M reference point does not contain a state indication then the IPE shall UPDATE the operationState attribute of the OperationInstance with the value "operation ended".

When an error occurs during communication over the non-oneM2M reference point then the IPE shall UPDATE the operationState attribute with the value "operation failed".

· If the non-oneM2M device is not capable of processing the operation (i.e. an error is reported over the non-oneM2M reference point) then the IPE shall DELETE the OperationInstance resource.

When the IPE receives unsolicited data through an operation in the non-oneM2M device via the non-oneM2M reference point (e.g. when the device reacts on some external event and publishes related output data) the IPE shall de-serialize these data and perform the following actions.
1) Creation of OperationOutputs and OutputDataPoints of the Operation by the IPE:

· For all Operation parameters that are (transient) OperationOutputs the IPE shall CREATE <container>s and/or <flexContainer>s that contain the data for the OperationOutputs of the Operation.
· For all Operation parameters that are (persistent) OutputDataPoints the IPE shall CREATE <contentInstance>s of <container>s and/or UPDATE <flexContainer>s that contain data for the OutputDataPoints of the Operation. outputDataPointLinks
2) The IPE shall CREATE a genericInterworkingOperationInstance resource as child-resource of the genericInterworkingService resource that represents the Service of the Operation.
The IPE shall:

a) make the <container>s and/or <flexContainer>s that contain the data for the OperationOutput child-resources of the genericInterworkingOperationInstance resource;

b) set the outputDataPointLinks attribute (with the OutputDataPoint names, links to <container>s and/or <flexContainer>s for the OutputDataPoints and, if needed, attributeNames);

c) set the outputLinks attribute attribute (with the OperationOutput names, links to <container>s and/or <flexContainer>s for the OperationOutput, and if needed attributeNames).

3) The IPE shall CREATE <semanticDescriptor> resources to all created resources and fill the descriptor attribute with RDF data.

4) The IPE shall set the expirationTime attribute of the genericInterworkingOperationInstance to an appropriate value that allows communicating entities (that had subscribed to the genericInterworkingService resource and were notified about the creation of the genericInterworkingOperationInstance resource) to retrieve the genericInterworkingOperationInstance and its OperationOutput child-resources.
5) The IPE shall set the operationState attribute of the genericInterworkingOperationInstance resource

· When the received output data from the non-oneM2M device operation contains a state indication (according to the OperationState class of the ontology) then the IPE may UPDATE the operationState attribute with the value received in the state indication.

· When the received output data from the non-oneM2M device operation contain no state indication (according to the OperationState class of the ontology) then the IPE shall UPDATE the operationState attribute with the value "operation ended".

At periodic, implementation specific, times the IPE shall check the expirationTime attribute of all Operation resources of all Proxied Devices and DELETE expired Operations and their OperationInputs and -Outputs.

6.2.5
Removing Devices.

When a Interworked Device in the non-oneM2M solution becomes unavailable the IPE shall delete the resource for its Proxied Device and all its related DataPoint, Service and Operation resources.
6.3
Specification of the behavior of a communicating entity in message flows between IPE and the communicating entity

6.3.1
Preconditions on the communicating entity
1) Any communicating entity, that wants to communicate with:

a. an interworked non-oneM2M device via the IPE needs to be subscribed to the <AE> resource of the IPE to get notified about resources for Proxied Device that are created by the IPE to represent interworked non-oneM2M devices that were discovered by the IPE.

b. a specific interworked non-oneM2M device via the IPE needs to be subscribed to the <container> or <flexContainer> or <AE> resource that had been created by the IPE as a related Proxied Device to represent the interworked non-oneM2M device.

2) The communicating entity needs also be subscribed to

a. the genericInterworkingService resources that have been created by the IPE as child resourses of the resource of the Proxied Device.

b. <container> or <flexContainer> resources that have been created by the IPE as child resourses of the Proxied Device to represent (persistent) Input- or OutpuDataPoints of the genericInterworkingService resources.
6.3.2
Flow from the communicating entity to the IPE using InputDataPoints of a Service
6.3.2.1
Flow from the communicating entity to the IPE using a <container> type InputDataPoint

1) When the communicating entity wants to invoke a Service in the interworked non-oneM2M device it shall determine the genericInterworkingService resource that is related to the Service by checking the serviceName attribute, which contains the class name of the Service in the related compliant ontology.

2) The communicating entity determines the <container> or <flexContainer> that is related to the InputDataPoint from the InputDataPoint Links attribute of the genericInterworkingService resource, which contains references to the InputDataPoints of the Service as a list of triples.
The first field of the triple identifies the InputDataPoint in the related compliant ontology, the second field contains the URI of the resource (container or flexContainer) that holds the data of the InputDataPoint.
The third field indicates whether the InputDataPoint contains simple data or the InputDataPoint contains complex data:

· If the InputDataPoint is of type <container> and contains simple data the third field contains the text string "latest".

· If the InputDataPoint is of type <container> and contains complex data the third field is empty.

3) The communicating entity shall update the InputDataPoint:

· If the InputDataPoint contains simple data then the communicating entity CREATEs a new <contentInstance> of the InputDataPoint.

· If the InputDataPoint contains complex data, (contained in child-resources: <container> or <flexContainer>) then the communicating entity UPDATEs the child-<flexContainer>s and/or CREATEs new <contentInstance>s of child-<container>s as needed.
· If the InputDataPoint contains complex data the communicating entity may also CREATE or DELETE child-resources of the InputDataPoint <container> as needed. In this case the communicating entity shall create <subscription>s to all created resources that notify the IPE.
When a new child resource of the InputDataPoint resource is created then the communicating entity may optionally also create a <semanticDescriptor> child resource of the newly created resource:

a) The descriptor attribute of the <semanticDescriptor> shall be updated with the RDF description of the created instance of class:Variable

b) The descriptor attribute of the parent <semanticDescriptor> shall be updated with an instance of the "hasSubStructure" object property

c) The descriptor attribute of the parent <semanticDescriptor> shall be updated with an instance of the resourceDescriptorLink annotation property with the URI of the new <semanticDescriptor> resource.

· If only child-resources of an InputDataPoint have changed the communicating entity shall issue a null UPDATE (i.e. containing no attributes) on the InputDataPoint on order to make sure the IPE gets notified by the CSE that the InputDataPoint or its child-resources have been changed.

6.3.2.2
Flow from the communicating entity to the IPE using a <flexContainer> type InputDataPoint

1) The communicating entity determines the genericInterworkingService resource as in clause 6.3.1.1.

2) The communicating entity determines the <container> or <flexContainer> that is related to the InputDataPoint as in clause 6.3.1.1.
In the case of a <flexContainer> type InputDataPoint the third field indicates whether the InputDataPoint contains simple data - in this case the third field contains a text string with the name of the name of the [customAttribute] (which is identical to the name of the InputDataPoint) - or the InputDataPoint contains complex data - in this case the third field is empty.

3) The communicating entity updating the InputDataPoint:

a)
If the InputDataPoint contains simple data then the communicating entity UPDATEs the InputDataPoint with a new value for the [customAttribute].

b)
If the InputDataPoint contains complex data then the communicating entity shall behave as in clause 6.3.2.1 step 3).

6.3.3
Flow from the IPE to the communicating entity using OutputDataPoints of a Service
When the communicating entity is notified by the CSE that a child-resource of the Proxied Device has been changed the IPE shall

c. Identify the Service to which the <flexContainer> or <container> resource belongs by checking which one of the genericInterworkingService resources contains an outputDataPointLinks attribute that references the resource as OutputDataPoint.

d. read the data of the <flexContainer> or <container> resource (and possibly its child-resources) and use them in the context of the service to which they belong.

6.3.4
Flow from the communicating entity to the IPE using Operations of a Service
1) If the Operation is parameterized by input parameter that are (transient) OperationInputs the communicating entity shall CREATE <container>s and/or <flexContainer>s that contain the data for the OperationInputs of the Operation.

2) If the Operation is parameterized by input parameter that are (persistent) InputDataPoints the communicating entity may CREATE <contentInstance>s of <container>s and/or UPDATE <flexContainer>s that contain data for the InputDataPoints of the Operation.

3) The communicating entity shall CREATE a genericInterworkingOperationInstance resource as child-resource of the genericInterworkingService resource that represents the Service of the Operation.
The communicating entity shall:

· make the <container>s and/or <flexContainer>s that contain the data for the OperationInput child-resources of the genericInterworkingOperationInstance resource;

· set the inputDataPointLinks attribute (with the InputDataPoint names, links to <container>s and/or <flexContainer>s for the InputDataPoints, and if needed Attributenames);

· set the inputLinks attribute attribute (with the OperationInput names, links to <container>s and/or <flexContainer>s for the OperationInput, and if needed Attributenames).

4) The communicating entity may CREATE <semanticDescriptor> resources to all created resources and fill the descriptor attribute with RDF data.

5) The communicating entity shall CREATE a subscription to the genericInterworkingOperationInstance resource in order to get notified about changes of the OperationState and potential creation of OperationOutput <container> and/or <flexContainer> child resources of the genericInterworkingOperationInstance.

6) Since the IPE has subscribed to the genericInterworkingService resource it gets notified about the creation of a genericInterworkingOperationInstance child-resource and retrieves the resource and its OperationInputs and InputDataPoints.

6.3.5
Flow from the IPE to the communicating entity using Operations of a Service
Since the communicating entity is subscribed to the genericInterworkingService resources of the Proxied Device it gets notified by the CSE when the IPE creates a genericInterworkingOperationInstance as child-resource of the genericInterworkingService.

1) The communicating entity needs to retrieve the genericInterworkingOperationInstance
2) As the genericInterworkingOperationInstance contains outputDataPointLinks and outputLinks attributes the communicating entity receives information about output data of the operation and can retrieve the referenced <container> and/or <flexContainer> resources
7
FlexContainer specializations for Generic interworking
7.1
Introduction

For Ontology based Interworking two specialization types of <flexContainer> are needed: genericInterworkingService and genericInterworkingOperationInstance.
7.2
Resource Type genericInterworkingService
Resource type genericInterworkingService is used for grouping Input- and/or Output Datapoints and/or OperationInstances of a Service. For Ontology based Interworking Input- and/or Output Datapoints and/or OperationInstances can be grouped as a Service with respect to their usage within a single Device.
A resource of type genericInterworkingService contains references to the <container> or <flexContainer> resources that represent Input- and/or Output Datapoints of the Service in the inputDataPointLinks and outputDataPointLinks attributes.
A resource of type genericInterworkingService is also the parent resource of genericInterworkingOperationInstances for that Service.

A resource of type genericInterworkingService can be a child-resource of:

a) AE, container, flexContainer since Ontology based Interworking allows these three resource types to represent Devices and InterworkeDevices.

b) genericInterworkingService since Ontology based Interworking allows Services to contain (sub-)Services.

[image: image4.emf]<subscription>

0..n

[genericInterworkingService]

0..1

creator

0..1

ontologyRef

<semanticDescriptor>

0..n

serviceName

1

containerDefinition

inputDataPointLinks

1

0..1

outputDataPointLinks

0..1

[genericInterworking

Service]

0..n

[genericInterworking

OperationInstance]

0..n

Figure 3: Structure of [genericInterworkingService] resource

The [genericInterworkingService] resource shall contain the child resource specified in table 1.

Table 1: Child resources of [genericInterworkingService] resource

	Child Resources of [genericInterworking
Service]
	Child Resource Type
	Multiplicity
	Description
	[genericInterworkingServiceAnnc] Child Resource Type

	semanticDescriptor
	<semanticDescriptor>
	0..n
	See clause 9.6.30 in TS-0001 [2]
	<semanticDescriptor>, <semanticDescriptorAnnc>

	[variable]
	<subscription>
	0..n
	See clause 9.6.8
in TS-0001 [2]
	<subscription>

	[variable]
	<flexContainer> specialization: [genericInterworking
Service]
	0..n
	A Service may be composed of (sub)-Services that are contained as child-resources
	[genericInterworkingService]

[genericInterworkingServiceAnnc]

	[variable]
	<flexContainer> specialization: [genericInterworking
OperationInstance]
	0..n
	See clause 7.3
For each invocation of an operation of a Service a child-resource of type [genericInterworkingOperationInstance] is created. When the operation is finished this child-resource is deleted by the IPE
	[genericInterworkingOperationInstance]

[genericInterworkingOperationInstanceAnnc]

The [genericInterworkingService] resource shall contain the attributes specified in table 2.

Table 2: Attributes of [genericInterworkingService] resource

	Attributes of
[genericInterworking
Service]
	Multiplicity
	RW/

RO/

WO
	Description
	[genericInterworkingService
Annc]
Attributes

	resourceType
	1
	RO
	See clause 9.6.1.3 in TS-0001 [2]
	NA

	resourceID
	1
	RO
	See clause 9.6.1.3 in TS-0001 [2]
	NA

	resourceName
	1
	WO
	See clause 9.6.1.3 in TS-0001 [2]
	NA

	parentID
	1
	RO
	See clause 9.6.1.3 in TS-0001 [2]
	NA

	accessControlPolicyIDs
	0..1 (L)
	RW
	See clause 9.6.1.3 in TS-0001 [2]
	MA

	labels
	0..1 (L)
	RW
	See clause 9.6.1.3 in TS-0001 [2]
	MA

	stateTag
	1
	RO
	See clause 9.6.1.3 in TS-0001 [2]
	OA

	announceTo
	0..1 (L)
	RW
	See clause 9.6.1.3 in TS-0001 [2]
	NA

	announcedAttribute
	0..1 (L)
	RW
	See clause 9.6.1.3 in TS-0001 [2]
	NA

	dynamicAuthorizationConsultationIDs
	0..1 (L)
	RW
	See clause 9.6.1.3 in TS-0001 [2]
	OA

	containerDefinition
	1
	WO
	See clause 9.6.1.2.2 in TS-0001 [2]
The value shall be “org.onem2m. genericInterworkingService”
	MA

	creator
	0..1
	RO
	See clause 9.6.35 in TS-0001 [2]
	NA

	ontologyRef
	0..1
	RW
	See clause 9.6.35 in TS-0001 [2]
	OA

	serviceName
	1
	RW
	The attribute contains the name of the Service. The name of the Service is given by the class name of that Service in the used ontology (which needs to be derived from the Base Ontology)
	MA

	inputDataPointLinks
	0..1
	RW
	This attribute contains a list of triples, each triple containing the following fields:

1.
A text string with the name of an inputDatapoint of the Service

2.
A URI of the resource (container or flexContainer) that holds the data of the inputDataPoint

3.
A field for identifying simple-type data

If the inputDataPoint contains simple-type data then

i.
If the resource type of the inputDataPoint is <container> then this field shall contain the text string “latest”

ii.
If the resource type of the inputDataPoint is <flexContainer> then this field shall contain the name of the [customAttribute] (which is identical to the name of the inputDataPoint)

If the inputDataPoint contains complex-type data then this field shall remain empty.

	MA

	outputDataPointLinks
	0..1
	RW
	This attribute contains a list of triples, each triple containing the following fields:

1.
A text string with the name of an outputDatapoint of the Service

2.
A URI of the resource (container or flexContainer) that holds the data of the outputDataPoint

3.
A field for identifying simple-type data

If the outputDataPoint contains simple-type data then

i.
If the resource type of the outputDataPoint is <container> then this field shall contain the text string “latest”

ii.
If the resource type of the outputDataPoint is <flexContainer> then this field shall contain the name of the [customAttribute] (which is identical to the name of the outputDataPoint)

Otherwise, if the outputDataPoint contains complex-type data then this field shall remain empty.

	MA

7.3
Resource Type genericInterworkingOperationInstance
In the context of Ontology based Interworking resources of resource type genericInterworkingOperationInstance are created as child-resources of a Service by the CSE. The originator of a request can be:

· the AE (for AE initiated communication for notifying communicating entities);
· a communicating entity (to notify the AE about an operation that needs to be performed by the AE and to receive output back from the AE).
After the expirationTime the AE may delete the operationInstance and all linked operationInput and operationOutput resources (contained in the references in attributes: inputLinks and outputLinks)

An OperationInstance resource holds in its attributes inputDataPointLinks and inputLinks references to resources of type <container> and <flexContainer> from which the AE should retrieve input of the operation. Similarly the attributes outputDataPointLinks and outputLinks references to resources of type <container> and <flexContainer> to which the AE should write its output of the operation.

[image: image5.emf]<subscription>

0..n

[genericInterworking

OperationInstance]

0..1

creator

0..1

ontologyRef

<semanticDescriptor>

0..n

operationName

1

containerDefinition

inputDataPointLinks

1

0..1

outputDataPointLinks

0..1

inputLinks

0..1

outputLinks

0..1

operationState

1

expirationTime

1

Figure 4: Structure of [genericInterworkingOperationInstance] resource

The [genericInterworkingOperationInstance] resource shall contain the child resource specified in table 3.

Table 3: Child resources of [genericInterworkingOperationInstance] resource

	Child Resources of [genericInterworkingOperationInstance]
	Child Resource Type
	Multiplicity
	Description
	[genericInterworkingOperationInstanceAnnc]
Child Resource Type

	semanticDescriptor
	<semanticDescriptor>
	0..n
	See clause 9.6.30 in TS-0001 [2]
	<semanticDescriptor>, <semanticDescriptorAnnc>

	[variable]
	<subscription>
	0..n
	See clause 9.6.8
in TS-0001 [2]
	<subscription>

The [genericInterworkingOperationInstance]resource shall contain the attributes specified in table 4.

Table 4: Attributes of [genericInterworkingOperationInstance] resource

	Attributes of
[genericInterworking
OperationInstance]
	Multiplicity
	RW/

RO/

WO
	Description
	[genericInterworkingOperation
InstanceAnnc]
Attributes

	resourceType
	1
	RO
	See clause 9.6.1.3 in TS-0001 [2]
	NA

	resourceID
	1
	RO
	See clause 9.6.1.3 in TS-0001 [2]
	NA

	resourceName
	1
	WO
	See clause 9.6.1.3 in TS-0001 [2]
	NA

	parentID
	1
	RO
	See clause 9.6.1.3 in TS-0001 [2]
	NA

	expirationTime
	1
	RW
	See clause 9.6.1.3 in TS-0001 [2]
This attribute shall contain the time after which the operationInstance and its operationInput and operationOutput resources may be deleted by the AE.

If an AE got notified about creation of the operationInstance and if the AE accepts to process the operation (i.e. does not immediately delete the operationInstance) the expirationTime is set by the AE.
	MA

	accessControlPolicyIDs
	0..1 (L)
	RW
	See clause 9.6.1.3 in TS-0001 [2]
	MA

	labels
	0..1 (L)
	RW
	See clause 9.6.1.3 in TS-0001 [2]
	MA

	creationTime
	1
	RO
	See clause 9.6.1.3 in TS-0001 [2]
	NA

	lastModifiedTime
	1
	RO
	See clause 9.6.1.3 in TS-0001 [2]
	NA

	stateTag
	1
	RO
	See clause 9.6.1.3 in TS-0001 [2]
	OA

	announceTo
	0..1 (L)
	RW
	See clause 9.6.1.3 in TS-0001 [2]
	NA

	announcedAttribute
	0..1 (L)
	RW
	See clause 9.6.1.3 in TS-0001 [2]
	NA

	dynamicAuthorizationConsultationIDs
	0..1 (L)
	RW
	See clause 9.6.1.3. in TS-0001 [2]
	OA

	containerDefinition
	1
	WO
	See clause 9.6.1.2.2 in TS-0001 [2]
The value shall be “org.onem2m. genericInterworkingOperationInstance”
	MA

	creator
	0..1
	RO
	See clause 9.6.35 in TS-0001 [2]
	NA

	ontologyRef
	0..1
	RW
	See clause 9.6.35 in TS-0001 [2]
	OA

	operationName
	1
	RW
	The attribute contains the name of the Operation. The name of the Operation is given by the class name of that Operation in the used ontology (which needs to be derived from the Base Ontology)
	MA

	operationState
	1
	RW
	This attribute contains a text string that indicates how far the operation has progressed.
specified values are:

o
“data_received_by_application”

o
 “operation_ended”

o
“operation_failed”

o
“data_transmitted_to_interworked_device”

Additional, application specific values for the text string of the operationState attribute are permissible.
	MA

	inputDataPointLinks
	0..1
	RW
	This attribute contains a list of triples, each triple containing the following fields:

1.
A text string with the name of an inputDatapoint of the operationInstance

2.
A URI of the resource (container or flexContainer) that holds the data of the inputDataPoint

3.
A field for identifying simple-type data

If the inputDataPoint contains simple-type data then

i.
If the resource type of the inputDataPoint is <container> then this field shall contain the text string “latest”

ii.
If the resource type of the inputDataPoint is <flexContainer> then this field shall contain the name of the [customAttribute] (which is identical to the name of the inputDataPoint)

If the inputDataPoint contains complex-type data then this field shall remain empty.

	MA

	outputDataPointLinks
	0..1
	RW
	This attribute contains a list of triples, each triple containing the following fields:

1.
A text string with the name of an outputDatapoint of the OperationInstance

2.
A URI of the resource (container or flexContainer) that holds the data of the outputDataPoint

3.
A field for identifying simple-type data

If the outputDataPoint contains simple-type data then

i.
If the resource type of the outputDataPoint is <container> then this field shall contain the text string “latest”

ii.
If the resource type of the outputDataPoint is <flexContainer> then this field shall contain the name of the [customAttribute] (which is identical to the name of the outputDataPoint)

If the outputDataPoint contains complex-type data then this field shall remain empty.

	MA

	inputLinks
	0..1
	RW
	This attribute contains a list of triples, each triple containing the following fields:

1.
A text string with the name of an operationInput of the operationInstance

2.
A URI of the resource (container or flexContainer) that holds the data of the operationInput

3.
A field for identifying simple-type data

If the operationInput contains simple-type data then

i.
If the resource type of the operationInput is <container> then this field shall contain the text string “latest”

ii.
If the resource type of the operationInput is <flexContainer> then this field shall contain the name of the [customAttribute] (which is identical to the name of the operationInput)

If the Input contains complex-type data then this field shall remain empty.

	MA

	outputLinks
	0..1
	RW
	This attribute contains a list of triples, each triple containing the following fields:

1.
A text string with the name of an operationOutput of the operationInstance

2.
A URI of the resource (container or flexContainer) that holds the data of the outputDataPoint

3.
A field for identifying simple-type data

If the operationOutput contains simple-type data then

i.
If the resource type of the operationOutput is <container> then this field shall contain the text string “latest”

ii.
If the resource type of the operationOutput is <flexContainer> then this field shall contain the name of the [customAttribute] (which is identical to the name of the operationOutput)

If the operationOutput contains complex-type data then this field shall remain empty.

	MA

The following text is to be used when appropriate:

Proforma copyright release text block

This text box shall immediately follow after the heading of an element (i.e. clause or annex) containing a proforma or template which is intended to be copied by the user. Such an element shall always start on a new page.

Notwithstanding the provisions of the copyright clause related to the text of the present document, oneM2M grants that users of the present document may freely reproduce the <proformatype> proforma in this {clause|annex} so that it can be used for its intended purposes and may further publish the completed <proformatype>.

<PAGE BREAK>

Annexes

Each annex shall start on a new page (insert a page break between annexes A and B, annexes B and C, etc.).

Use the Heading 9 style for the title and the Normal style for the text.
Annex <A> (Informative/Normative):Remove Informative or Normative as appropriatTitle of annex (style H9)
<Text>

<PAGE BREAK>

Annex (Informative/Normative): Remove Informative or Normative as appropriateTitle of annex (style H9)
<Text>

B.1
First clause of the annex (style H1)
<Text>

B.1.1
First subdivided clause of the annex (style H2)
<Text>

<PAGE BREAK>
The following text is to be used when appropriate:

Annex <y>:
Bibliography

The annex entitled "Bibliography" is optional.

It shall contain a list of standards, books, articles, or other sources on a particular subject which are not mentioned in the document itself
It shall not include references mentioned in the document.

Use the Heading 9 style for the title and B1+ or Normal for the text.

· <Publication>: "<Title>".

OR

<Publication>: "<Title>".

<PAGE BREAK>

History

This clause shall be the last one in the document and list the main phases (all additional information will be removed at the publication stage).
	Publication history

	V1.1.1
	<dd-Mmm-yyyy>
	<Milestone>

	
	
	

	
	
	

	
	
	

	
	
	

	Draft history (to be removed on publication)

	V0.0.1
	16-Oct-2016
	Initial version. CR to TS-0012 moved sections 8 and 9 into sections 6 and 7 of the current document

	V0.1.0
	02-Nov-2016
	Including contributions at MAS#25:
MAS-2016-0215R01-DRAFT_TS-0030-Generic-Interworking-V0_0_0

	
	
	

	
	
	

	
	
	

© oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC)
Page 3 of 24
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

_1529510780.ppt

Device <AE>, <container> or <flexContainer> (persistent resource)

<semanticDescriptor>

child-resources

Input- / OutputDataPoint <container> (persistent resource)

Input- / OutputDataPoint <flexContainer> (persistent resource)

contentInstance … …

latest contentInstance

[customAttribute]

child-resources

child-resources

genericInterworkingService (persistent resource)

child-resources

and / or

genericInterworkingOperationInstance (transient resource)

OperationInput / -Output <container> (transient resource)

OperationInput / -Output <flexContainer>

contentInstance … …

latest contentInstance

[customAttribute]

child-resources

child-resources

and / or

<semanticDescriptor>

<semanticDescriptor>

<semanticDescriptor>

[Input_DataPoint_Links]

Descriptor

Descriptor

Descriptor

Descriptor

[Output_DataPoint_Links]

[Output-DataPoint_Links]

[Input -DataPoint_Links]

[Output_Links]

[Input_Links]

<semanticDescriptor>

Descriptor

<semanticDescriptor>

Descriptor

<semanticDescriptor>

Descriptor

Legend:

Persistent child resources

Transient child resources

Links

*

_1533032538.vsd

_1533032754.vsd

_1529510760.ppt

oneM2M compliant Solution

Area Network

(e.g. KNX)

real Devices in Area Network

“proxied” Devices in the oneM2M System technology

oneM2M

AE

REST-ful Resource access

Inter

working

Proxy

Entity

