-

[image: image1.png]

	oneM2M
Technical Specification

	Document Number
	oneM2M-TS-0030-V-0.2.0

	Document Name:
	Generic Interworking

	Date:
	2017-April-03

	Abstract:
	The present document specifies Generinc Interworking of the oneM2M System with external systems (e.g. Area Networks containing non-oneM2M devices) that can be described with ontologies that are compliant with oneM2M’s Base Ontology in TS-0012.

	Template Version: 08 September 2015 (Dot not modify)

This Specification is provided for future development work within oneM2M only. The Partners accept no liability for any use of this Specification.
The present document has not been subject to any approval process by the oneM2M Partners Type 1. Published oneM2M specifications and reports for implementation should be obtained via the oneM2M Partners' Publications Offices.
About oneM2M

The purpose and goal of oneM2M is to develop technical specifications which address the need for a common M2M Service Layer that can be readily embedded within various hardware and software, and relied upon to connect the myriad of devices in the field with M2M application servers worldwide.

More information about oneM2M may be found at: http//www.oneM2M.org

Copyright Notification

© 2015, oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSTDI, TTA, TTC).

All rights reserved.
The copyright extends to reproduction in all media.

Notice of Disclaimer & Limitation of Liability

The information provided in this document is directed solely to professionals who have the appropriate degree of experience to understand and interpret its contents in accordance with generally accepted engineering or other professional standards and applicable regulations. No recommendation as to products or vendors is made or should be implied.

NO REPRESENTATION OR WARRANTY IS MADE THAT THE INFORMATION IS TECHNICALLY ACCURATE OR SUFFICIENT OR CONFORMS TO ANY STATUTE, GOVERNMENTAL RULE OR REGULATION, AND FURTHER, NO REPRESENTATION OR WARRANTY IS MADE OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. NO oneM2M PARTNER TYPE 1 SHALL BE LIABLE, BEYOND THE AMOUNT OF ANY SUM RECEIVED IN PAYMENT BY THAT PARTNER FOR THIS DOCUMENT, WITH RESPECT TO ANY CLAIM, AND IN NO EVENT SHALL oneM2M BE LIABLE FOR LOST PROFITS OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES. oneM2M EXPRESSLY ADVISES ANY AND ALL USE OF OR RELIANCE UPON THIS INFORMATION PROVIDED IN THIS DOCUMENT IS AT THE RISK OF THE USER.

Contents

3Contents

1
Scope
5
2
References
5
2.1
Normative references
5
2.2
Informative references
5
3
Definitions, symbols and abbreviations
5
3.1
Definitions
5
3.2
Symbols
6
3.3
Abbreviations
6
3.4
Acronyms
6
4
Conventions
7
5
Introduction to Generic Interworking (non normative)
7
5.1
Basic concepts of Generic Interworking
7
5.1.1
Generic interworking vs. Specific interworking
7
5.1.2
Use of ontologies for Generic interworking with Area Networks
7
5.1.2.1
General Principle
7
5.1.2.2
 tbd
8
5.1.2.3
 tbd
8
5.2
Using Generic Interworking with Device Abstraction
8
5.2.1
General description
8
5.2.2
An example, involving ZigBee, HAIM and SAREF
9
5.2.3
Deployment options (example)
10
5.3
Priciples of data flows
11
6
Functional specification of communication with the Generic interworking IPE and Abstraction Application Entity
11
6.1
Usage of oneM2M resources for IPE and AAE communication
11
6.1.1
General design principles (informative)
11
6.1.2
Parent-child and linking resource relationships
12
6.1.3
Data flows for IPE and AAE
13
6.2
Specification of the IPE for Generic interworking
19
6.2.1
General functionality of a Generic interworking IPE
19
6.2.2
Interworked Device discovery
19
6.2.3
Handling of DataPoints by the IPE
20
6.2.4
Handling of Operations by the IPE
20
6.2.5
Removing Devices.
22
6.3
Specification of the behavior of a communicating entity in message flows between IPE and the communicating entity
22
6.3.1
Preconditions on the communicating entity
22
6.3.2
Flow from the communicating entity to the IPE using InputDataPoints of a Service
22
6.3.2.1
Flow from the communicating entity to the IPE using a <container> type InputDataPoint
22
6.3.2.2
Flow from the communicating entity to the IPE using a <flexContainer> type InputDataPoint
23
6.3.3
Flow from the IPE to the communicating entity using OutputDataPoints of a Service
23
6.3.4
Flow from the communicating entity to the IPE using Operations of a Service
24
6.3.5
Flow from the IPE to the communicating entity using Operations of a Service
24
6.4
Specification of the Abstraction Application Entity (AAE)
24
6.4.1
General functionality of an AAE
24
6.4.2
Initialization of an AAE
25
6.4.2
Proxied Device discovery
25
6.4.3
Handling of Input- OutputDataPoints and Operations by the AAE
25
7
FlexContainer specializations for Generic interworking
28
7.1
Introduction
28
7.2
Resource Type genericInterworkingService
28
7.3
Resource Type genericInterworkingOperationInstance
31
Proforma copyright release text block
35
Annexes
36
Annex <y>: Bibliography
36
History
37

1
Scope

The present document specifies Generinc Interworking of the oneM2M System with external systems (e.g. Area Networks containing non-oneM2M devices) that can be described with ontologies that are compliant with oneM2M’s Base Ontology, specified in TS-0012 [3].
In oneM2M Release 2 the specification for Generic Interworking had been contained in sections 8 and 9 of TS-0012-v2.0.0 [4].
2
References

The following text block applies.

References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references,only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

2.1
Normative references

The following referenced documents are necessary for the application of the present document.

[1]
oneM2M TS-0011: "Common Terminology".

[2]
oneM2M TS-0001: "Functional Architecture".

[3]
oneM2M TS-0012: " Base Ontology".

[4]
oneM2M TS-0012-v2.0.0: " Base Ontology".
[5]
oneM2M TS-0023: " Home Appliances Information Model and Mapping".
2.2
Informative references
Clause 2.2 shall only contain informative references which are cited in the document itself.

The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
· Use the EX style, add the letter "i" (for informative) before the number (which shall be in square brackets) and separate this from the title with a tab (you may use sequence fields for automatically numbering references).
[i.1]
oneM2M Drafting Rules (http://www.onem2m.org/images/files/oneM2M-Drafting-Rules.pdf)
[i.2]
Smart Appliances REFerence (SAREF) ontology (http://ontology.tno.nl/saref)
3
Definitions, symbols and abbreviations

Delete from the above heading the word(s) which is/are not applicable.
3.1
Definitions

For the purposes of the present document, the terms and definitions given in oneM2M TS-0011 [1], TS-0012 [3] and the following apply:
Abstract Device: virtual Device (i.e. a set of oneM2M resources together with an AAE) that allows a communicating entity to communicate with an Interworked Device, using an Abstract Information Model, without the need to know the Device Information Model of that Interworked Device.
Abstract Information Model: Information Model of common functionalities abstracted from a set of Device Information Models (see [1])
Abstraction: process of mapping between a set of Device Information Models and an Abstract Information Model according to a specified set of rules (see [1])
Abstraction Application Entity: A specialized AE that communicates with an IPE and facilitates Abstraction by providing Services that translate between the Abstract Information Model and the Device Information Model of the IPE.
Device Information Model: Information Model of the native protocol (e.g. ZigBee) for the physical device (see [1])

GenericInterworking: generic interworking allows interworking with many types of non- oneM2M Area Networks and Devices that are described in the form of a oneM2M compliant ontology which is derived from the oneM2M Base Ontology (see [3])
NOTE:
Generic Interworking supports the interworking variant "full mapping of the semantic of the non-oneM2M data model to Mca" as indicated in clause F.2 of oneM2M TS-0001 [2].

Interworked Device: non-oneM2M device (NoDN) for which communication with oneM2M entities can be achieved via an Interworking Proxy Application Entity (IPE) (see [3])
Interworking Proxy Application Entity: A specialized AE that facititates interworking between Non-oneM2M Nodes (NoDN) and the oneM2M System. An IPE maps data of the NoDN into oneM2M resources (Interworked Devices). It invokes operations in the NoDN when the related oneM2M resources are modified and modifies oneM2M resources based on the output of NoDN operations. (see [1])
Proxied Device: virtual Device (i.e. a set of oneM2M resources together with an IPE) that represents the Interworked Device in the oneM2M System (see [3])
3.2
Symbols

Clause numbering depends on applicability.

For the purposes of the present document, the [following] symbols [given in ... and the following] apply:

Symbol format

<symbol>
<Explanation>

<2nd symbol>
<2nd Explanation>

<3rd symbol>
<3rd Explanation>

3.3
Abbreviations

For the purposes of the present document, the abbreviations given in TS-0011 [1], TS-0012 [3] and the following apply:

AAE
Abstraction Application Entity
IPE
Interworking Proxy Application Entity (see [1])
3.4
Acronyms

Acronyms should be ordered alphabetically.

Clause numbering depends on applicability.

For the purposes of the present document, the [following] abbreviations [given in ... and the following] apply:

Acronym format

<ACRONYM1>
<Explanation>

<ACRONYM2>
<Explanation>

<ACRONYM3>
<Explanation>

4
Conventions

The key words “Shall”, ”Shall not”, “May”, ”Need not”, “Should”, ”Should not” in this document are to be interpreted as described in the oneM2M Drafting Rules [i.1]
5
Introduction to Generic Interworking (non normative)
5.1
Basic concepts of Generic Interworking
Editor’s Note: the relationship between AAE (as a specialized AE) and the entities/ functional model defined in TS-0001 is to be further clarified.
5.1.1
Generic interworking vs. Specific interworking

Editor’s Note: This section should explain in which cases Generic Interworking can/should/needs to be used and what the difference to specific interworking with FlexContaiers is
5.1.2
Use of ontologies for Generic interworking with Area Networks

5.1.2.1
General Principle

Interworking with Area Networks is accomplished in oneM2M through functionality provided by Interworking Proxy Entities (IPE).

[image: image3.emf]oneM2M compliant

Solution

Area Network

(e.g. KNX)

Interworked Devices (physical

devices) in the Area Network

Proxied Devices(oneM2M resources)

in the oneM2M System technology

Communicating

entity

REST

-

ful

Resource access

Inter

working

Proxy

Entity

Figure 1: Interworking

The IPE creates "proxied" devices as oneM2M Resources (e.g. AEs) in the oneM2M Solution that can be accessed by communicating entities (e.g. oneM2M Applications) in the usual way.

To accomplish the creation of proxied devices the IPE uses an ontology that describes the Device Information Model of the interworked Area Network and its entities (device types, their operations, etc.).
For example, in figure 1, an ontology that describes a KNX Area Network and its entities would be needed.

To achieve the flexibility for the IPE to create proxied devices for many different types of Area Networks each ontology that describes a specific Device Information Model needs to be derived from the Base Ontology that is specified in [3].
E.g. the OWL representation of an ontology that describes the Device Information Model of an Area Network of type "KNX" needs to:

a) contain an 'include' statement which includes Base Ontology;

b) the Class of "KNX Nodes" needs to be a subclass of the "Device" Class of oneM2M's Base Ontology;

c) the Class of "KNX Communication Objects" needs to be a subclass of the "Service" Class of the Base Ontology;

d) etc.

NOTE:
For the purpose of Generic interworking with Area Networks the Base Ontology is only used to describe type information and not for describing instances of these types. E.g. the Base Ontology describes the type "Device", but does not contain information about a specific Device.
The Base Ontology therefore only contains Classes and Properties but not instances.

5.1.2.2
 tbd
Editor’s Note: should go to TS-0012 ??
5.1.2.3
 tbd
Editor’s Note: should go to TS-0012 ??
5.2
Using Generic Interworking with Device Abstraction

5.2.1
General description

As explained in section 5.1 it is the task of an IPE to interact via the Area Network with the Interworked Devices and to provide oneM2M resources (Proxied Devices) to the communicating entities for communication with the Interworked Devices. However these Proxied Devices still exhibit the native data model – the Device Information Model of the external technology of the device – and a communicating entity needs to know that native Device Information Model (e.g. ZigBee information model).
Device abstraction relieves a communicating entity that wants to communicate with an Interworked Device (e.g. a ZigBee device) from the need to know the native Device Information Model of that Interworked Device.
Specific oneM2M Applications, called “Abstraction Application Entities” (AAEs) translate between the – technology specific – native Device Information Model and an Abstract Information Model, that is based on of common functionalities abstracted from a set of Device Information Models. Such Abstract Information Models can be provided by industry associations of a specific industry sector. An example of an Abstract Information Model, which is specified in oneM2M is the Home Appliance Information Model (HAIM), specified in TS-0023 [5].
As in the case of the IPE an Abstract Information Model can be described by an ontology and that ontology needs to be derived from the Base Ontology.
For data exchange with communcating entities the AAE provides oneM2M resources, called Abstract Devices.
Abstract Devices exhibit the data structure and provide the functionality described in the Abstract Information Model. The communicating entity only needs to understand this single data model to be able to communicate with devices via IPEs from multiple technologies when these are abstracted.

The AAE works together with the IPE for which it provides abstraction.
As explained in section 5.1 the IPE creates and uses a Proxied Device resource (<container> or <flexContainer> child resource of the IPE's <AE> resource) for each Interworked Device of the Area Network.
For Abstraction, the AAE additionally creates and uses an Abstract Device resource (<container> or <flexContainer> child resource of the AAE's <AE> resource) for each Proxied Device of the IPE.

[image: image4.emf]oneM2M compliant

Solution

Area Network

(e.g. KNX)

Inter

working

Proxy

Entity

Abstract Devices

(oneM2M resources)

exhibiting the Abstract

Information Model

Proxied Devices (oneM2M resources)

exhibiting the Device Information

Model of the interworked

technology

Interworked Devices

(physical devices) in

the Area Network

Communicating

entity

Abstraction

Application

Entity

Abstract

Information

Model

Device

Information

Model

Device

Information

Model

Figure 2: Abstraction
Figure 2 shows the collaboration between IPE and AAE when a a communicating entity - using abstraction – wants to invoke a Service at the Interworked Device:
Instead of invoking the Service of the Proxied Device (using the Device Information Model) the communicating entity invokes the abstracted Service of the Abstract Device (using the Abstract Information Model). This abstracted Service is modelled as a child-resource of the <AE> resource corresponding to the Abstract Device.
The AAE converts the data of the abstracted operation into the data of the Service of the Device Information Model and feeds these data into the Service resource of the Proxied Device.
Finally the IPE uses the data of the Service resource of the Proxied Device and invokes the (native) Service at the Interworked Device.
In order to be able to associate Services (“native Services”) of the ontology for the Device Information Model with their related abstracted Services of the the ontology for the Abstract Information Model (“abstracted Services”) these two different Services need to be equivalent, in the sense that they fulfil exactly the same Function.
This functional equivalce of services is formally expressed in the two ontologies. The two ontologies need to fulfil the following conditions:

· “native” Services need to expose the same Functions as their related “abstracted” Services.

· Similarily, Input- and OutputDataPoints and Operations of these Services need to expose the same Commands.

· Input- and OutputDataPoints and OperationInputs and –Outputs need to be related via VariableConversions

Exposing the same Function by Services of the different ontologies ensures, that they have the same semantic meaning. The Service in the ontology of the Abstract Information Model is therefore an abstraction of the Service in the ontology of the Device Information Model
Note: Functions and Commands can be defined in the ontology for the Device Information Model (e.g. ZigBee) or the the ontology for the Abstract Information Model (e.g. HAIM) or they can be defined in a separate ontology (e.g. SAREF) that is referenced by the tho othere ontologies
5.2.2
An example, involving ZigBee, HAIM and SAREF

The figure 3 below illustrates this situation for a light switch. In the example the physical implementation is a ZigBee device implementing a ZigBee Service “On/Off Cluster”. An IPE for ZigBee creates the interworking towards the ZigBee network. This device is abstracted as oneM2M device according to the Home Appliance Information Model (HAIM). In HAIM the corresponding Service is a “binary Switch”.
Both types of Services expose a Function “On Off Function” which is e.g. described in the SAREF ontology.
To turn the switch on SAREF defines an “On Command”.

The corresponding Service in HAIM is executed by setting an Input Datapoint called “powerState” to the binary value “TRUE”.

In Zigbee an operation (ZigBee command) needs to be invoked in the On/Off Cluster with an input parameter (ZigBee Command ID) equal to 0.
A VariableConversion can been specified in the ontology of the ZigBee Device Information Model that contains the rules how to convert a value of InputDataPoint “powerState” into a value of OperationInput “ZigBee Command ID”.

[image: image5.emf]Device

type_DD

hasService hasFunction

Operation

Input

“ID = 0”

exposes

Function

Function

“On Off Function”

Service

“On/Off Cluster”

Operation

“ZigBee

Command”

hasOperation

Command

“OnCommand”

hasCommand

hasInput

exposes

Command

Device

type_DA

hasFunction

Service

“binary Switch”

Input

DataPoint

“powerState

= TRUE”

hasService

exposes

Function

exposes

Command

hasInput

DataPoint

Variable

Conversion

hasConversion

ontology of the Device Information Model

(example ZigBee)

ontology of the Abstract Information Model

(example: HAIM)

convertsTo

Figure 3: ontologies relations
5.2.3
Deployment options (example)

While IPE and AAE are functionally specified as different types of AEs, individual deployments may or may not choose to integrate them within their respective implementations.
For specific deployments it might be useful to design a an interworking solution that integrates the IPE and the AAE functionality.
Thus this interworking solution could provide
· only Proxied Device resources – i.e. not providing support for abstraction.
· only Abstracted Device resources – i.e. only providing support for abstraction but not for the native Device Information Model.
· Both types. This could allow a communicating entity to use the Abstract Information Model in general but for selected services use the native Device Information Model (which may support functionality that does not exist in the Abstract Information Model).
On the other hand, other deployments may choose to implement IPE and AAE separately.
Such a deployment option may be appropriate when an AAE can provide abstraction (using e.g. the HAIM Information Model) for multiple Device Information Models (e.g. ZigBee, KNX, Echonet lite..). This would allow a communicating entity to always use the same Abstract Device, even if e.g. the Interworked Device had been replaced by another Interworked Device of a different Area Network technology (and the IPE had been replaced by an appropriate IPE).
5.3
Priciples of data flows
Editor’s Note: This section should give an informative overview of data flows to/from an IPE. Maybe section 6.1.1 should be moved here and enhanced
6
Functional specification of communication with the Generic interworking IPE and Abstraction Application Entity
6.1
Usage of oneM2M resources for IPE and AAE communication

6.1.1
General design principles (informative)

For Generic interworking the oneM2M resource types <AE>, <container>, <flexContainer>, and specializations of <flexContainer>: genericInterworkingService and genericInterworkingOperationInstance are intended to hold data that can be used for data exchange with the IPE or AAE.

For Generic interworking and Abstraction a convention is needed how the IPE and AAE uses these resources to communicate with other oneM2M entities. This is described in the subsequent clauses.

Resources for RESTful communication style vs. procedure call (RPC) style:

A Generic interworking IPE/AAE needs to be able to communicate with systems that implement some form of RESTful communication style as well as other systems that communicate in a procedure call (RPC) style.

For RESTful systems the use of Input- or OutputDataPoints may be more appropriate.

On the other hand procedure calls can be better modelled using Operations (and their OperationInputs/-Outputs).

Also a combination of both (where Operations additionally receive input from InputDataPoints and/or write output into OutputDataPoints) is possible.

Persistent resources vs. transient resources:

· Persistent resources are genericInterworkingService, <container>s and <flexContainer>s that contain data of Services, Input- or OutputDataPoints. Services, Input- and OutputDataPoints of an Interworked Device usually exist as long as the IPE enables the communication with the Interworked Device.
· Transient resources are genericInterworkingOperationInstances, <container>s and <flexContainer>s that contain data of Operations, OperationInput or OperationOutput.
These resources are created and exist as long as the Interworked Device performs execution of an Operation and receive the output data of the Operation. Once the output data have been deliverd to subscribed communicating entities transient resources may be deleted by the IPE.

NOTE:
While in general the present document assumes that semantic information can be made available (using the <semanticDescriptor> resource) the mechanisms described here for IPE communication do not rely on the existence of semanticDescriptors. This allows e.g. very simple devices to exchange their data in "raw" form (e.g. as byte-fields that need to be interpreted by the communicating entity).

6.1.2
Parent-child and linking resource relationships

Figure 4 provides an overview of parent-child resource relationships that are used for communication with AEs (in particular the IPE) in the context of Generic interworking.

It involves the:

· Persistent resource types:

· <AE>, <container> or <flexContainer> - for a oneM2M Device or an Interworked Device

· <container> - for an Input- or OutputDataPoint

· <flexContainer> - for an Input- or OutputDataPoint

· genericInterworkingService specialization of <flexContainer> - for a Service of a a oneM2M Device or an Interworked Device

· Transient resource types:

· <container> - for OperationInput or OperationOutput data of an Operation

· <flexContainer> - for OperationInput or OperationOutput data of an Operation

· genericInterworkingOperationInstance specialization of <flexContainer> - for an Operation of a Service

[image: image6.emf]Device <AE>, <container> or <flexContainer>

(persistent resource)

<semanticDescriptor>

child-resources

Input- / OutputDataPoint <container>

(persistent resource)

Input- / OutputDataPoint <flexContainer>

(persistent resource)

contentInstance … …

latest contentInstance

[customAttribute]

child-resources

child-resources

genericInterworkingService

(persistent resource)

child-resources

and / or

genericInterworkingOperationInstance

(transient resource)

OperationInput / -Output <container>

(transient resource)

OperationInput / -Output <flexContainer>

contentInstance … …

latest contentInstance

[customAttribute]

child-resources

child-resources

and / or

<semanticDescriptor>

<semanticDescriptor>

<semanticDescriptor>

[Input_DataPoint_Links]

Descriptor

Descriptor

Descriptor

Descriptor

[Output_DataPoint_Links]

[Output-DataPoint_Links]

[Input -DataPoint_Links]

[Output_Links]

[Input_Links]

<semanticDescriptor>

Descriptor

<semanticDescriptor>

Descriptor

<semanticDescriptor>

Descriptor

Legend:

Persistent child resources

Transient child resources

Links

Figure 4: Parent-child and Link relationships in the context of Generic interworking
Parent-child relationships:

· An <AE> resource, required for representing a Device, is created by its AE.
Alternatively, in the case of an Interworked Device, the AE that is the generic interworking IPE may create resources of type <container> or <flexContainer>, that represents the Interworked Device.

· Input- and Output DataPoints (<containers> and/or <flexContainers>) are created by the AE as child resources of its (<AE>, <containers>, <flexContainers>) resource that represents the Device.

· Services (resources of specialization type genericInterworkingService of a <flexContainer>) are created by the AE as child resources of its resource that represents the Device.

· OperationInstances (resources of specialization type genericInterworkingOperationInstance of a <flexContainer>) are created by the AE or by the communicating entity as child resources of the genericInterworkingService of the Service.

· OperationInput (<containers> and/or <flexContainers>) are created by the communicating entity as child resources of the genericInterworkingOperationInstance of the Operation instance.

· OperationOutput (<containers> and/or <flexContainers>) are are created by the AE as child resources of the genericInterworkingOperationInstance of the Operation instance.

· All of the above can contain a <semanticDescriptor> as child resource.

Link relationships:

· Services can contain links to:

· InputDataPoints (contained in the InputDataPointsLinks attribute)

· OutputDataPoints (contained in the ouputDataPointsLinks attribute)

· OperationInstances can contain links to:

· InputDataPoints (contained in the InputDataPointsLinks attribute)

· OutputDataPoints (contained in the ouputDataPointsLinks attribute)

· OperationInputs (contained in the inputLinks attribute)

· OperationOutputs (contained in the outputLinks attribute)
6.1.3
Data flows for IPE and AAE

Both, IPEs and AAEs are types of Application entities (AEs) that act as translating entities.
· IPEs translate data to and from Interworked Devices (entities outside of the oneM2M system) into oneM2M resources (the data of Proxied Devices) that can be accessed by communicating oneM2M entities.
· In the case of IPE being the translating entity the target entity is the Interworked Device while the communicating entity can be any oneM2M entity (e.g. a CSE, an AE). In particular, if Abstraction is needed in addition to interworking the communicating entity is an AAE.
· AAEs translate data between Proxied Devices and Abstract Devices.
· In the case of AAE being the translating entity the target entity is the IPE while the communicating entity can be any oneM2M entity (e.g. a CSE, an AE)
The following figures show the data flows for both types of translating entities

[image: image7.emf]UPDATE

InputDataPoints

Translating

entity

Communicating

entity

Target

entity

translate input

CSE

NOTIFY

RETRIEVE

InputDataPoint

Communication initiated by Communicating entity

Communication initiated by Target entity

translate output

UPDATE

OutputDataPoints

NOTIFY

RETRIEVE

OutputDataPoints

Invoke Command

Invoke Command

Figure 5: Data flow for a translating entity involving dataPoints
Read/Write operations on datapoints are the simplest form of executing Commands, i.e. a Command is exposed as datapoint of a Service.
· A communicating entity can invoke a Command at the target entity
· The communicating entity updates an InputDatapoint, which triggers a notification to the translating entity.

· The translating entity translates the data of the datapoint into the appropriate value and format suitable for the target entity and transmits it to the target entity, who executes the Command.
Note 1: the way how a translating entity transmits a Command to the target entity is not described in this figure.
- in the case the translating entity is an IPE and the target entity is an Interworked Device the Command is transmitted over the Area Network using the technology and protocol of the Interworked Device
- in the case the translating entity is an AAE and the target entity is an IPE – both being oneM2M entities – the arrow does not imply direct communication. Instead the Command is transmitted in exactly the same way as a communicating device communicates with the translating entity (right hand side of the figure when communication is initiated by the communicating entity)
· In the other direction, a target entity can invoke a Command in the communicating entity
· The target entity autonomously transmits data of a Command to the translating entity.
Note 2: the way how a target entity transmits a Command to the translating entity is not described in this figure.
- in the case the translating entity is an IPE and the target entity is an Interworked Device the Command is transmitted over the Area Network using the technology and protocol of the Interworked Device
- in the case the translating entity is an AAE and the target entity is an IPE – both being oneM2M entities – the arrow does not imply direct communication. Instead the Command is transmitted in exactly the same way as a translating entity communicates with the communicating device (right hand side of the figure when communication is initiated by the target entity)
· The translating entity translates the data into the appropriate values and updates the OutputDatapoint related to this Command
· As the communicating entity is subscribed to changes of the OutputDatapoint it gets notified, retrieves the value of the datapoint and executes the Command

[image: image8.emf]UPDATE

inputLinks, inputDPLinks

CREATE

Operation

Command response

Invoke Command

Invoke Command

UPDATE InputDataPoint,

CREATE OperationInput

UPDATE

outputLinks, outputDPLinks

RETRIEVE

output

X

OperationState=

"data_received_

by_application"

Translating

entity

Communicating

entity

Target

entity

translate input

Waiting for

answer

translate output

CSE

Communicating entity expects an answer

NOTIFY

RETRIEVE

operationInput

UPDATE

expirationTime

OperationState=

"data_transmitted_to

_interworked_device

OperationState=

"operation_failed“

OR

(

)

NOTIFY

...

expirationTimer expired,

Operation resource can be deleted

Communication initiated by Communicating entity

Communicating entity expects no answer

OperationState=

"operation_ended“

NOTIFY

UPDATE OutputDataPoint,

CREATE OperationOutput

OperationState=

"operation_ended“

Figure 6: Data flow for a translating entity involving operations
when initiated by a communicating entity
Another form of exposing Commands are operations. Operations allow grouping of input- and output parameters into a single transaction between the communicating entity and the target entity.
· When the communicating entity invokes an operation in the target entity the communicating creates a <genericInterworkingOperation> resource
· It also updates the InputDataPoints and/or create new OperationInputs that are parameters of the operation and that need to be sent in the operation to the target entity.

· To trigger the operation the communicating entity updates the inputLinks and inputDataPointLinks attribute of the <genericInterworkingOperation> resource with the links to InputDataPoints and/or OperationInputs that are used in this operation
· As the translating entity has subscribed to creation and update of the <genericInterworkingOperation> resource it is notified, which triggers the communicating entity to invoke the operation in the target entity.

· The translating entity sets the operationState attribute of the <genericInterworkingOperation> resource to the value “data_received_by_application” and sets an expirationTime
· The translating entity translates the input data contained in the InputDataPoints and/or OperationInputs into appropriate values for the target entity and invokes the command at the target entity.
Note 3: see Note 1
· If the command can be invoked the translating entity sets the operationState attribute to the value “data_transmitted_to_interworked_device”
· If no output of the operation is foreseen then the translating entity sets the operationState attribute to the value “operation_ended”.
· However, if output of the operation is foreseen the translating entity awaits the command response from the target entity.
Note 4: the way how a target entity transmits a Command response to the translating entity is not described in this figure.
- in the case the translating entity is an IPE and the target entity is an Interworked Device the response is transmitted over the Area Network using the technology and protocol of the Interworked Device
- in the case the translating entity is an AAE and the target entity is an IPE – both being oneM2M entities – the arrow does not imply direct communication. Instead the response is transmitted in exactly the same way as a translating entity communicates with the communicating device (right hand side of the figure)
· After receiving the command response the translating entity translates the output data into appropriate values and updates/creates related OutputDataPoints and/or OperationOutputs.
· The translating entity updates the outputLinks and outputDataPointLinks attribute
· The translating entity sets the operationState attribute to the value “operation_ended”.
· The communicating entity gets notified about the change in the outputLinks and outputDataPointLinks attribute and can retrieve data from OutputDataPoints and/or OperationOutputs.
· After the has expirationTime passed the translating entity may delete the <genericInterworkingOperation> resource and all its child resources (i.e. OperationInput/OperationOutput containers and flexcontainers).

[image: image9.emf]UPDATE

outputLinks, outputDPLink

Translating

entity

Communicating

entity

Target

entity

translate output

Waiting for

answer

translate input

CSE

Target entity expects an answer

CREATE

Operation

NOTIFY

RETRIEVE

operationOutput

OperationState=

"data_transmitted_to

_interworked_device

NOTIFY

OperationState=

"operation_ended“

...

expirationTimer expired,

Operation resource can be deleted

Communication initiated by Target entity

Target entity expects no answer

OperationState=

"operation_ended“

NOTIFY

RETRIEVE

operationOutput

X

OperationState=

"operation_failed“

OR

(

)

UPDATE

inputLinks, inputDPLinks

Invoke Command

Command response

Command response

UPDATE OutputDataPoint,

CREATE OperationOutput

set expirationTime

UPDATE InputDataPoint,

CREATE OperationInput

Figure 7: Data flow for a translating entity involving operations
when initiated by a target entity
transaction between the communicating entity and the target entity.

· When the target entity invokes a command that is exposed as an operation the translating entity creates a <genericInterworkingOperation> resource
Note 5: see Note 2
Note 6: the way how a translating entity transmits a Command response to the target entity is not described in this figure.
- in the case the translating entity is an IPE and the target entity is an Interworked Device the response is transmitted over the Area Network using the technology and protocol of the Interworked Device
- in the case the translating entity is an AAE and the target entity is an IPE – both being oneM2M entities – the arrow does not imply direct communication. Instead the response is transmitted in exactly the same way as a communicating device communicates with the translating entity (right hand side of the figure when communication is initiated by the communicating entity)

6.2
Specification of the IPE for Generic interworking
6.2.1
General functionality of a Generic interworking IPE

Generic interworking Interworking supports the interworking variant with full mapping of the semantic of the non-oneM2M data model to Mca as indicated in clause F.2 of oneM2M TS-0001 [2].

The non-oneM2M data model is described in the form of a oneM2M compliant ontology which is derived (as sub-classes and sub-properties) from the oneM2M Base Ontology and may be available in a formal description language (e.g. OWL).

A oneM2M compliant ontology can describe an external technology (e.g. ZigBee) for which a standardized interworking with oneM2M is required or it could describe a model of consensus that is shared by large industry sector (like SAREF, referenced in [i.2]) that facilitates the matching of existing assets (standards/protocols/datamodels/etc.). An IPE that provides Generic interworking with a M2M Area Network shall instantiate the classes, object- and data properties of the ontology describing the non-oneM2M data model of the M2MArea Network as oneM2M resources, according to the instantiation rules of clause 7.1.

· Depending on the capabilities of the IPE and when the ontology describing the non-oneM2M data model is made available as a formal description the IPE may access and parse the OWL file of the ontology to support creation of the required oneM2M resources.

6.2.2
Interworked Device discovery

The IPE shall discover the devices in the non-oneM2M solution or, alternatively, they may be manually configured in the IPE.

1. For each discovered Interworked Device in the non-oneM2M solution the IPE shall:

either:

· create a <container> or <flexContainer> child resource of the IPE's <AE> resource for a Proxied Device that represents the non-oneM2M Interworked Device in the oneM2M System; or

· in the case the IPE provides interworking with a single Interworked Device, the IPE may use it's own <AE> resource for the Proxied Device that represents the non-oneM2M Interworked Device in the oneM2M System.

2. For each discovered device in the non-oneM2M solution the IPE shall create the Input- and OutputDataPoints (resource types <container> and/or <flexContainer>) and Services (resource type <flexContainer> specialization: <genericInterworkingService>) as child resources of the resource of the Proxied Device.

3. The IPE shall create <semanticDescriptor>s as child resources of the Input- and OutputDataPoints and Services.

4. The IPE shall subscribe to all created resources.

NOTE:
Whether <AE>, <container> or <flexContainer> resource types are used to represent InterworkedDevices and whether <container> or <flexContainer> resource types are used for input- and OutputDataPoints and operationInputs/-Outputs is not specified and depends on configuration.

6.2.3
Handling of DataPoints by the IPE
· When the IPE receives a request by the interworked non-oneM2M device via the non-oneM2M reference point to write an OutputDataPoint belonging to a Service of the device the IPE shall
· de-serialize the received data and, depending on the resource type of the OutputDataPoint (<flexContainer> or <container>) shall
· UPDATE/(CREATE contentInstance) the OutputDataPoint resources of the related genericInterworkingService with the output data.

· When the IPE receives a request by the interworked non-oneM2M device via the non-oneM2M reference point to read an InputDataPoint belonging to a Service of the device the IPE shall
· RETRIEVE data from the InputDataPoint resource of the related genericInterworkingService,
· serialize the data and
· return them to the non-oneM2M device.
· When the IPE is notified by the CSE that a <flexContainer> or <container> child-resource of the Proxied Device has been changed the IPE shall

· check to which Service the <flexContainer> or <container> resource belongs by checking if one of the inputDataPointLinks references the resource as InputDataPoint.

· read the data of the changed resource and

· invoke the Service, parameterized with data of the InputDataPoint, via the non-oneM2M reference point in the interworked non-oneM2M device.
6.2.4
Handling of Operations by the IPE
When the IPE receives notification from the CSE about creation of an OperationInstance resource (resource type genericInterworkingOperation) as child resource of a genericInterworkingService resource the IPE shall perform the following actions:

1. The IPE shall RETRIEVE the input data of the operation (contained in the resources to which the attributes inputLinks and InputDataPoint Links of genericInterworkingOperation provide links).

2. the IPE shall UPDATE the operationState attribute of the OperationInstance with the value "data received by application".
3. the IPE shall invoke the related operation together with their input data in the non-oneM2M device via the non-oneM2M reference point.

4. the IPE shall handle the result of the operation, received from the Interworked Device via the non-oneM2M reference point:

· If the the non-oneM2M device is capable of processing the operation (i.e. no error is reported over the non-oneM2M reference point) then:

a) The IPE shall UPDATE the operationState attribute of the OperationInstance with the value "data transmitted to interworked device".

b) The IPE shall UPDATE the expirationTime attribute to an appropriate value that allows the Interworked Device to execute the operation and allows the subscribed communicating entities to get notified and potentially retrieve the results.
c) When the IPE receives output data from the operation in the non-oneM2M device via the non-oneM2M reference point the IPE shall de-serialize these data and update, depending on the operation specification, the operationOutput resources and/or the OutputDataPoint resources with the output data:

-
When the received output data from the operation contain a state indication (according to the OperationState class of the ontology) then the IPE may UPDATE the operationState attribute with the value received in the state indication.

-
When the received output data from the operation contains no state indication (according to the OperationState class of the ontology) then the IPE shall UPDATE the operationState attribute with the value "operation ended".

-
In case the operation contains no output data and the non-oneM2M reference point does not contain a state indication then the IPE shall UPDATE the operationState attribute of the OperationInstance with the value "operation ended".

When an error occurs during communication over the non-oneM2M reference point then the IPE shall UPDATE the operationState attribute with the value "operation failed".

· If the non-oneM2M device is not capable of processing the operation (i.e. an error is reported over the non-oneM2M reference point) then the IPE shall DELETE the OperationInstance resource.

When the IPE receives unsolicited data through an operation in the non-oneM2M device via the non-oneM2M reference point (e.g. when the device reacts on some external event and publishes related output data) the IPE shall de-serialize these data and perform the following actions.
1) Creation of OperationOutputs and OutputDataPoints of the Operation by the IPE:

· For all Operation parameters that are (transient) OperationOutputs the IPE shall CREATE <container>s and/or <flexContainer>s that contain the data for the OperationOutputs of the Operation.
· For all Operation parameters that are (persistent) OutputDataPoints the IPE shall CREATE <contentInstance>s of <container>s and/or UPDATE <flexContainer>s that contain data for the OutputDataPoints of the Operation. outputDataPointLinks
2) The IPE shall CREATE a genericInterworkingOperationInstance resource as child-resource of the genericInterworkingService resource that represents the Service of the Operation.
The IPE shall:

a) make the <container>s and/or <flexContainer>s that contain the data for the OperationOutput child-resources of the genericInterworkingOperationInstance resource;

b) set the outputDataPointLinks attribute (with the OutputDataPoint names, links to <container>s and/or <flexContainer>s for the OutputDataPoints and, if needed, attributeNames);

c) set the outputLinks attribute attribute (with the OperationOutput names, links to <container>s and/or <flexContainer>s for the OperationOutput, and if needed attributeNames).

3) The IPE shall CREATE <semanticDescriptor> resources to all created resources and fill the descriptor attribute with RDF data.

4) The IPE shall set the expirationTime attribute of the genericInterworkingOperationInstance to an appropriate value that allows communicating entities (that had subscribed to the genericInterworkingService resource and were notified about the creation of the genericInterworkingOperationInstance resource) to retrieve the genericInterworkingOperationInstance and its OperationOutput child-resources.
5) The IPE shall set the operationState attribute of the genericInterworkingOperationInstance resource

· When the received output data from the non-oneM2M device operation contains a state indication (according to the OperationState class of the ontology) then the IPE may UPDATE the operationState attribute with the value received in the state indication.

· When the received output data from the non-oneM2M device operation contain no state indication (according to the OperationState class of the ontology) then the IPE shall UPDATE the operationState attribute with the value "operation ended".

At periodic, implementation specific, times the IPE shall check the expirationTime attribute of all Operation resources of all Proxied Devices and DELETE expired Operations and their OperationInputs and -Outputs.

6.2.5
Removing Devices.

When a Interworked Device in the non-oneM2M solution becomes unavailable the IPE shall delete the resource for its Proxied Device and all its related DataPoint, Service and Operation resources.
6.3
Specification of the behavior of a communicating entity in message flows between IPE and the communicating entity

6.3.1
Preconditions on the communicating entity
1) Any communicating entity, that wants to communicate with:

a. an interworked non-oneM2M device via the IPE needs to be subscribed to the <AE> resource of the IPE to get notified about resources for Proxied Device that are created by the IPE to represent interworked non-oneM2M devices that were discovered by the IPE.

b. a specific interworked non-oneM2M device via the IPE needs to be subscribed to the <container> or <flexContainer> or <AE> resource that had been created by the IPE as a related Proxied Device to represent the interworked non-oneM2M device.

2) The communicating entity needs also be subscribed to

a. the genericInterworkingService resources that have been created by the IPE as child resourses of the resource of the Proxied Device.

b. <container> or <flexContainer> resources that have been created by the IPE as child resourses of the Proxied Device to represent (persistent) Input- or OutpuDataPoints of the genericInterworkingService resources.
6.3.2
Flow from the communicating entity to the IPE using InputDataPoints of a Service
6.3.2.1
Flow from the communicating entity to the IPE using a <container> type InputDataPoint

1) When the communicating entity wants to invoke a Service in the interworked non-oneM2M device it shall determine the genericInterworkingService resource that is related to the Service by checking the serviceName attribute, which contains the class name of the Service in the related compliant ontology.

2) The communicating entity determines the <container> or <flexContainer> that is related to the InputDataPoint from the InputDataPoint Links attribute of the genericInterworkingService resource, which contains references to the InputDataPoints of the Service as a list of triples.
The first field of the triple identifies the InputDataPoint in the related compliant ontology, the second field contains the URI of the resource (container or flexContainer) that holds the data of the InputDataPoint.
The third field indicates whether the InputDataPoint contains simple data or the InputDataPoint contains complex data:

· If the InputDataPoint is of type <container> and contains simple data the third field contains the text string "latest".

· If the InputDataPoint is of type <container> and contains complex data the third field is empty.

3) The communicating entity shall update the InputDataPoint:

· If the InputDataPoint contains simple data then the communicating entity CREATEs a new <contentInstance> of the InputDataPoint.

· If the InputDataPoint contains complex data, (contained in child-resources: <container> or <flexContainer>) then the communicating entity UPDATEs the child-<flexContainer>s and/or CREATEs new <contentInstance>s of child-<container>s as needed.
· If the InputDataPoint contains complex data the communicating entity may also CREATE or DELETE child-resources of the InputDataPoint <container> as needed. In this case the communicating entity shall create <subscription>s to all created resources that notify the IPE.
When a new child resource of the InputDataPoint resource is created then the communicating entity may optionally also create a <semanticDescriptor> child resource of the newly created resource:

a) The descriptor attribute of the <semanticDescriptor> shall be updated with the RDF description of the created instance of class:Variable

b) The descriptor attribute of the parent <semanticDescriptor> shall be updated with an instance of the "hasSubStructure" object property

c) The descriptor attribute of the parent <semanticDescriptor> shall be updated with an instance of the resourceDescriptorLink annotation property with the URI of the new <semanticDescriptor> resource.

· If only child-resources of an InputDataPoint have changed the communicating entity shall issue a null UPDATE (i.e. containing no attributes) on the InputDataPoint on order to make sure the IPE gets notified by the CSE that the InputDataPoint or its child-resources have been changed.

6.3.2.2
Flow from the communicating entity to the IPE using a <flexContainer> type InputDataPoint

1) The communicating entity determines the genericInterworkingService resource as in clause 6.3.1.1.

2) The communicating entity determines the <container> or <flexContainer> that is related to the InputDataPoint as in clause 6.3.1.1.
In the case of a <flexContainer> type InputDataPoint the third field indicates whether the InputDataPoint contains simple data - in this case the third field contains a text string with the name of the name of the [customAttribute] (which is identical to the name of the InputDataPoint) - or the InputDataPoint contains complex data - in this case the third field is empty.

3) The communicating entity updating the InputDataPoint:

a)
If the InputDataPoint contains simple data then the communicating entity UPDATEs the InputDataPoint with a new value for the [customAttribute].

b)
If the InputDataPoint contains complex data then the communicating entity shall behave as in clause 6.3.2.1 step 3).

6.3.3
Flow from the IPE to the communicating entity using OutputDataPoints of a Service
When the communicating entity is notified by the CSE that a child-resource of the Proxied Device has been changed the IPE shall

c. Identify the Service to which the <flexContainer> or <container> resource belongs by checking which one of the genericInterworkingService resources contains an outputDataPointLinks attribute that references the resource as OutputDataPoint.

d. read the data of the <flexContainer> or <container> resource (and possibly its child-resources) and use them in the context of the service to which they belong.

6.3.4
Flow from the communicating entity to the IPE using Operations of a Service
1) If the Operation is parameterized by input parameter that are (transient) OperationInputs the communicating entity shall CREATE <container>s and/or <flexContainer>s that contain the data for the OperationInputs of the Operation.

2) If the Operation is parameterized by input parameter that are (persistent) InputDataPoints the communicating entity may CREATE <contentInstance>s of <container>s and/or UPDATE <flexContainer>s that contain data for the InputDataPoints of the Operation.

3) The communicating entity shall CREATE a genericInterworkingOperationInstance resource as child-resource of the genericInterworkingService resource that represents the Service of the Operation.
The communicating entity shall:

· make the <container>s and/or <flexContainer>s that contain the data for the OperationInput child-resources of the genericInterworkingOperationInstance resource;

· set the inputDataPointLinks attribute (with the InputDataPoint names, links to <container>s and/or <flexContainer>s for the InputDataPoints, and if needed Attributenames);

· set the inputLinks attribute attribute (with the OperationInput names, links to <container>s and/or <flexContainer>s for the OperationInput, and if needed Attributenames).

4) The communicating entity may CREATE <semanticDescriptor> resources to all created resources and fill the descriptor attribute with RDF data.

5) The communicating entity shall CREATE a subscription to the genericInterworkingOperationInstance resource in order to get notified about changes of the OperationState and potential creation of OperationOutput <container> and/or <flexContainer> child resources of the genericInterworkingOperationInstance.

6) Since the IPE has subscribed to the genericInterworkingService resource it gets notified about the creation of a genericInterworkingOperationInstance child-resource and retrieves the resource and its OperationInputs and InputDataPoints.

6.3.5
Flow from the IPE to the communicating entity using Operations of a Service
Since the communicating entity is subscribed to the genericInterworkingService resources of the Proxied Device it gets notified by the CSE when the IPE creates a genericInterworkingOperationInstance as child-resource of the genericInterworkingService.

1) The communicating entity needs to retrieve the genericInterworkingOperationInstance
2) As the genericInterworkingOperationInstance contains outputDataPointLinks and outputLinks attributes the communicating entity receives information about output data of the operation and can retrieve the referenced <container> and/or <flexContainer> resources
6.4
Specification of the Abstraction Application Entity (AAE)
6.4.1
General functionality of an AAE
The AAE translates between
· data – modelled according to the Device Information Model of the Area Network - that describe Services of a set of Proxied Devices
and
· data – modelled according to the Abstract Information Model - that describe Services of a related set of Abstract Devices.

To that purpose both, the Device Information Model and the Abstract Information Model need to be available as oneM2M compliant ontologies to the AAE.
6.4.2
Initialization of an AAE

First the AAE needs to be configured with the information on the IPE (the <AE> resource of the IPE, the ontology describing the Device Information Model of the IPE) for which it should provide Services abstraction and with the information on the ontology describing the Abstract Information Model.

Depending on the capabilities of the AAE and if the ontologies are made available as a OWL files the AAE may access and parse the OWL files.

By analysing the ontologies the AAE then needs to find out which Services in the ontology describing the Device Information Model can be abstracted into Services in the ontology describing the Abstract Information Model.
Both Services need to expose the same Function.
Similarly, the AAE needs to find out which Input- / OutputDataPoints and Operations of both ontologies expose the same Command.
Finally, the AAE needs to check that for all Variables (Input- / OutputDataPoints and OperationInputs / -Outputs) VariableConversions exist
Note: In many cases the Functions and Commands will be specified in the ontology of the Abstract Information Model and the VariableConversions will be specified in the ontology of the Device Information Model.
The AAE needs to discover the currently existing Proxied Devices of an IPE for which it can provide Services abstraction by retrieving the <container> or <flexContainer> child resources of the IPE's <AE> resource which represent Proxied Devices. For each of these Proxied Devices it will create an Abstract Device
6.4.2
Proxied Device discovery

The AAE shall subscribe to the <AE> resource of the IPE in order to discover Proxied Devices (<container> or <flexContainer> child resource of the IPE's <AE> resource) that the IPE may create in the future and for which the AAE could provide Services abstraction

1. For each discovered Proxied Device the AAE shall create a <container> or <flexContainer> child resource of the AAE's <AE> resource for an Abstract Device that represents the Proxied Device
2. For each Service (resource type <genericInterworkingService>) of the Proxied Device the AAE shall create the related abstracted Service as child resources of the resource of the Abstract Device.

3. The IPE shall create <semanticDescriptor>s as child resources of the Services.
4. For each Abstracted Service the AAE shall create the Input- and OutputDataPoints (resource types <container> and/or <flexContainer>) as child resources of the resources of the Abstract Device.
5. The AAE shall subscribe to all its created resources.
6. The AAE shall subscribe to all discovered Proxied Devices and their child resources to get notified about changes in these resources.
6.4.3
Handling of Input- OutputDataPoints and Operations by the AAE
A Command (datapoint or operation) may be exposed differently in the ontologies of the Device Information Model (of the Proxied Device) and the Abstract Information Model (of the Abstract Device).
The following table specifies the behaviour of the AAE when a communicating entity is initiating the communication with the AAE. In this case the AAE transforms a Command of the Abstract Device Service into a Command of the Proxied Device Service.
Table 1: Transformation of a Command of the Abstract Device Service into a
Command of the Proxied Device Service
	
	Command in the Abstract Device Service is exposed as InputDataPoint
(to trigger the command the communicating entity has UPDATED that InputDataPoint)
	Command in the Abstract Device Service is exposed as Operation
(to trigger the command the communicating entity needs to created a <genericInterworkingOperation>)

	Command in the Proxied Device Service is exposed as InputDataPoint
	Value of InputDataPoint of Abstract Device Service is converted according to VariableConversion and written into InputDataPoint of Proxied Device
	The value of OperationInput or InputDataPoint of the <genericInterworkingOperation> of the Abstract Device Service is converted according to VariableConversion and written into the InputDataPoint of the Operation of the Proxied Device.

	Command in the Proxied Device Service is exposed as Operation
	The AAE creates an OperationInstance (type <genericInterworkingOperation>) resource as child resource of <genericInterworkingService> resource of the Proxied Device Service and subscribes to its outputDatapointLinks, outputLinks and operationState attributes.

The AAE reads the OperationInput or InputDataPoint of the Operation of the Abstract Device Service. The value of OperationInput or InputDataPoint of the Operation of the Abstract Device Service is converted according to VariableConversion and written into the resources for OperationInput or InputDataPoint of the <genericInterworkingOperation> of the Proxied Device.
The AAE updates attributes inputDatapointLinks, and/or inputLinks with the values of the resources for OperationInput or InputDataPoint

	The AAE creates an OperationInstance (type <genericInterworkingOperation>) resource as child resource of <genericInterworkingService> resource of the Proxied Device Service and subscribes to its outputDatapointLinks, outputLinks and operationState attributes.

The AAE reads the OperationInput or InputDataPoint of the Operation of the Abstract Device Service. The value of OperationInput or InputDataPoint of the Operation of the Abstract Device Service is converted according to VariableConversion and written into the resources for OperationInput or InputDataPoint of the <genericInterworkingOperation> of the Proxied Device.
The AAE updates attributes inputDatapointLinks, and/or inputLinks with the values of the resources for OperationInput or InputDataPoint
Subsequently, the operationState attribute of the Operation of the Proxied Device shall be monitored for the lifetime of the Operation (<genericInterworkingOperation> resource) of the Proxied Device and copied into the operationState attribute of the Operation of the Abstract Device

When the operationState attribute of the Operation of the Proxied Device indicates the value "operation ended" the AAE shall convert the value of the OperationOutputs or OutputDataPoint of of the Operation of the Proxied Device according to VariableConversion and write it into OperationOutput or OutputDataPoint of the Operation of the Abstracted Device.
The AAE shall set the operationState attribute of the Operation of the Abstracted Device to the value "operation ended"

The following table specifies the behaviour of the AAE when an IPE is initiating the communication with the AAE.
In this case the AAE transforms a Command of the Proxied Device Service into a Command of the Abstract Device Service
Table 2: Transformation of a Command of the Proxied Device Service into a
Command of the Abstract Device Service
	
	Command in the Abstract Device Service is exposed as OutputDataPoint
	Command in the Abstract Device Service is exposed as Operation

	Command in the Proxied Device Service is exposed as OutputDataPoint
(to trigger the command the IPE has UPDATED that OutputDataPoint)
	Value of OutputDataPoint of Proxied Device Service is converted according to VariableConversion and written into OutDataPoint of the Abstract Device

	The AAE creates an OperationInstance (type <genericInterworkingOperation>) resource as child resource of <genericInterworkingService> resource of the Abstract Device Service

The AAE reads the OutputDataPoint of the Proxied Device Service. The value of the OutputDataPoint is converted according to VariableConversion and written into the resources for OperationOutput or OutputDataPoint of the <genericInterworkingOperation> of the Abstract Device Service.
The AAE updates attribute outputDatapointLinks or outputLinks with the values of the resources for OperationOutput or OutputDataPoint
The AAE shall set the operationState attribute of the Operation of the Abstract Device to the value "operation ended".

	Command in the Proxied Device Service is exposed as Operation
(to trigger the command the IPE needs to created a <genericInterworkingOperation>)
	The AAE reads the OperationOutput or OutputDataPoint of the <genericInterworkingOperation > resource Operation of the Proxied Device Service. The value of the OperationOutput or OutputDataPoint of the Operation of the Abstract Device Service is converted according to VariableConversion and written into the resource of the OutputDataPoint of the Service of the Abstract Device.
The AAE shall set the operationState attribute of the Operation of the Proxied Device to the value "operation ended".

	First, the AAE creates an OperationInstance (type <genericInterworkingOperation > resource as child resource of <genericInterworkingService> resource of the Abstract Device Service) and subscribes to its inputDatapointLinks, inputLinks and operationState attributes.
The value of OperationOutput or OutputDataPoint of the Operation of the Proxied Device Service is converted according to VariableConversion and written into OperationOutput or OutputDataPoint of the Operation of the Abstract Device.

Subsequently, the operationState attribute and expirationTime attribute of the Operation of the Proxied Device shall be copied into the operationState attribute and expirationTime attribute of the Operation of the Abstract Device

In case the Operation contains no OperationInput or InputDataPoint the AAE shall set the value of the operationState attribute of the Operation of the Abstract Device to "operation ended"
If the value of the operationState attribute of the Operation of the Abstract Device is different to "operation ended" or “operation failed” then the AAE shall wait to receive input to this operation (OperationInput or InputDataPoint of the <genericInterworkingOperation> of the Abstract Device Service) by subscribed communicating entities, at maximum until the time indicated by the expirationTime attribute
If the AAE is notified about changes in the inputDatapointLinks, inputLinks attributes of the <genericInterworkingOperation> of the Abstract Device Service the AAE shall convert the values of the OperationInput or InputDataPoint of the <genericInterworkingOperation> of the Abstract Device Service according to VariableConversion and write them into OperationInput or InputDataPoint of the Operation of the Proxied Device.
The AAE shall set the operationState attribute of the Operation of the Abstracted Device to the value "operation ended".

If the AAE is not notified about changes in the inputDatapointLinks, inputLinks attributes of the <genericInterworkingOperation> of the Abstract Device Service until the time indicated by the expirationTime attribute the AAE shall set the the operationState attribute of the Operation of the Abstracted Device to the value "operation failed".
Additionally, the AAE shall set the the operationState attribute of the Operation of the Proxied Device to the value "operation failed".

7
FlexContainer specializations for Generic interworking
7.1
Introduction

For Ontology based Interworking two specialization types of <flexContainer> are needed: genericInterworkingService and genericInterworkingOperationInstance.
7.2
Resource Type genericInterworkingService
Resource type genericInterworkingService is used for grouping Input- and/or Output Datapoints and/or OperationInstances of a Service. For Ontology based Interworking Input- and/or Output Datapoints and/or OperationInstances can be grouped as a Service with respect to their usage within a single Device.
A resource of type genericInterworkingService contains references to the <container> or <flexContainer> resources that represent Input- and/or Output Datapoints of the Service in the inputDataPointLinks and outputDataPointLinks attributes.
A resource of type genericInterworkingService is also the parent resource of genericInterworkingOperationInstances for that Service.

A resource of type genericInterworkingService can be a child-resource of:

a) AE, container, flexContainer since Ontology based Interworking allows these three resource types to represent Devices and InterworkeDevices.

b) genericInterworkingService since Ontology based Interworking allows Services to contain (sub-)Services.

[image: image10.emf]<subscription>

0..n

[genericInterworkingService]

0..1

creator

0..1

ontologyRef

<semanticDescriptor>

0..n

serviceName

1

containerDefinition

inputDataPointLinks

1

0..1

outputDataPointLinks

0..1

[genericInterworking

Service]

0..n

[genericInterworking

OperationInstance]

0..n

Figure 8: Structure of [genericInterworkingService] resource

The [genericInterworkingService] resource shall contain the child resource specified in table 1.

Table 1: Child resources of [genericInterworkingService] resource

	Child Resources of [genericInterworking
Service]
	Child Resource Type
	Multiplicity
	Description
	[genericInterworkingServiceAnnc] Child Resource Type

	semanticDescriptor
	<semanticDescriptor>
	0..n
	See clause 9.6.30 in TS-0001 [2]
	<semanticDescriptor>, <semanticDescriptorAnnc>

	[variable]
	<subscription>
	0..n
	See clause 9.6.8
in TS-0001 [2]
	<subscription>

	[variable]
	<flexContainer> specialization: [genericInterworking
Service]
	0..n
	A Service may be composed of (sub)-Services that are contained as child-resources
	[genericInterworkingService]

[genericInterworkingServiceAnnc]

	[variable]
	<flexContainer> specialization: [genericInterworking
OperationInstance]
	0..n
	See clause 7.3
For each invocation of an operation of a Service a child-resource of type [genericInterworkingOperationInstance] is created. When the operation is finished this child-resource is deleted by the IPE
	[genericInterworkingOperationInstance]

[genericInterworkingOperationInstanceAnnc]

The [genericInterworkingService] resource shall contain the attributes specified in table 2.

Table 2: Attributes of [genericInterworkingService] resource

	Attributes of
[genericInterworking
Service]
	Multiplicity
	RW/

RO/

WO
	Description
	[genericInterworkingService
Annc]
Attributes

	resourceType
	1
	RO
	See clause 9.6.1.3 in TS-0001 [2]
	NA

	resourceID
	1
	RO
	See clause 9.6.1.3 in TS-0001 [2]
	NA

	resourceName
	1
	WO
	See clause 9.6.1.3 in TS-0001 [2]
	NA

	parentID
	1
	RO
	See clause 9.6.1.3 in TS-0001 [2]
	NA

	accessControlPolicyIDs
	0..1 (L)
	RW
	See clause 9.6.1.3 in TS-0001 [2]
	MA

	labels
	0..1 (L)
	RW
	See clause 9.6.1.3 in TS-0001 [2]
	MA

	stateTag
	1
	RO
	See clause 9.6.1.3 in TS-0001 [2]
	OA

	announceTo
	0..1 (L)
	RW
	See clause 9.6.1.3 in TS-0001 [2]
	NA

	announcedAttribute
	0..1 (L)
	RW
	See clause 9.6.1.3 in TS-0001 [2]
	NA

	dynamicAuthorizationConsultationIDs
	0..1 (L)
	RW
	See clause 9.6.1.3 in TS-0001 [2]
	OA

	containerDefinition
	1
	WO
	See clause 9.6.1.2.2 in TS-0001 [2]
The value shall be “org.onem2m. genericInterworkingService”
	MA

	creator
	0..1
	RO
	See clause 9.6.35 in TS-0001 [2]
	NA

	ontologyRef
	0..1
	RW
	See clause 9.6.35 in TS-0001 [2]
	OA

	serviceName
	1
	RW
	The attribute contains the name of the Service. The name of the Service is given by the class name of that Service in the used ontology (which needs to be derived from the Base Ontology)
	MA

	inputDataPointLinks
	0..1
	RW
	This attribute contains a list of triples, each triple containing the following fields:

1.
A text string with the name of an inputDatapoint of the Service

2.
A URI of the resource (container or flexContainer) that holds the data of the inputDataPoint

3.
A field for identifying simple-type data

If the inputDataPoint contains simple-type data then

i.
If the resource type of the inputDataPoint is <container> then this field shall contain the text string “latest”

ii.
If the resource type of the inputDataPoint is <flexContainer> then this field shall contain the name of the [customAttribute] (which is identical to the name of the inputDataPoint)

If the inputDataPoint contains complex-type data then this field shall remain empty.

	MA

	outputDataPointLinks
	0..1
	RW
	This attribute contains a list of triples, each triple containing the following fields:

1.
A text string with the name of an outputDatapoint of the Service

2.
A URI of the resource (container or flexContainer) that holds the data of the outputDataPoint

3.
A field for identifying simple-type data

If the outputDataPoint contains simple-type data then

i.
If the resource type of the outputDataPoint is <container> then this field shall contain the text string “latest”

ii.
If the resource type of the outputDataPoint is <flexContainer> then this field shall contain the name of the [customAttribute] (which is identical to the name of the outputDataPoint)

Otherwise, if the outputDataPoint contains complex-type data then this field shall remain empty.

	MA

7.3
Resource Type genericInterworkingOperationInstance
In the context of Ontology based Interworking resources of resource type genericInterworkingOperationInstance are created as child-resources of a Service by the CSE. The originator of a request can be:

· the AE (for AE initiated communication for notifying communicating entities);
· a communicating entity (to notify the AE about an operation that needs to be performed by the AE and to receive output back from the AE).
After the expirationTime the AE may delete the operationInstance and all linked operationInput and operationOutput resources (contained in the references in attributes: inputLinks and outputLinks)

An OperationInstance resource holds in its attributes inputDataPointLinks and inputLinks references to resources of type <container> and <flexContainer> from which the AE should retrieve input of the operation. Similarly the attributes outputDataPointLinks and outputLinks references to resources of type <container> and <flexContainer> to which the AE should write its output of the operation.

[image: image11.emf]<subscription>

0..n

[genericInterworking

OperationInstance]

0..1

creator

0..1

ontologyRef

<semanticDescriptor>

0..n

operationName

1

containerDefinition

inputDataPointLinks

1

0..1

outputDataPointLinks

0..1

inputLinks

0..1

outputLinks

0..1

operationState

1

expirationTime

1

Figure 9: Structure of [genericInterworkingOperationInstance] resource

The [genericInterworkingOperationInstance] resource shall contain the child resource specified in table 3.

Table 3: Child resources of [genericInterworkingOperationInstance] resource

	Child Resources of [genericInterworkingOperationInstance]
	Child Resource Type
	Multiplicity
	Description
	[genericInterworkingOperationInstanceAnnc]
Child Resource Type

	semanticDescriptor
	<semanticDescriptor>
	0..n
	See clause 9.6.30 in TS-0001 [2]
	<semanticDescriptor>, <semanticDescriptorAnnc>

	[variable]
	<subscription>
	0..n
	See clause 9.6.8
in TS-0001 [2]
	<subscription>

The [genericInterworkingOperationInstance]resource shall contain the attributes specified in table 4.

Table 4: Attributes of [genericInterworkingOperationInstance] resource

	Attributes of
[genericInterworking
OperationInstance]
	Multiplicity
	RW/

RO/

WO
	Description
	[genericInterworkingOperation
InstanceAnnc]
Attributes

	resourceType
	1
	RO
	See clause 9.6.1.3 in TS-0001 [2]
	NA

	resourceID
	1
	RO
	See clause 9.6.1.3 in TS-0001 [2]
	NA

	resourceName
	1
	WO
	See clause 9.6.1.3 in TS-0001 [2]
	NA

	parentID
	1
	RO
	See clause 9.6.1.3 in TS-0001 [2]
	NA

	expirationTime
	1
	RW
	See clause 9.6.1.3 in TS-0001 [2]
This attribute shall contain the time after which the operationInstance and its operationInput and operationOutput resources may be deleted by the AE.

If an AE got notified about creation of the operationInstance and if the AE accepts to process the operation (i.e. does not immediately delete the operationInstance) the expirationTime is set by the AE.
	MA

	accessControlPolicyIDs
	0..1 (L)
	RW
	See clause 9.6.1.3 in TS-0001 [2]
	MA

	labels
	0..1 (L)
	RW
	See clause 9.6.1.3 in TS-0001 [2]
	MA

	creationTime
	1
	RO
	See clause 9.6.1.3 in TS-0001 [2]
	NA

	lastModifiedTime
	1
	RO
	See clause 9.6.1.3 in TS-0001 [2]
	NA

	stateTag
	1
	RO
	See clause 9.6.1.3 in TS-0001 [2]
	OA

	announceTo
	0..1 (L)
	RW
	See clause 9.6.1.3 in TS-0001 [2]
	NA

	announcedAttribute
	0..1 (L)
	RW
	See clause 9.6.1.3 in TS-0001 [2]
	NA

	dynamicAuthorizationConsultationIDs
	0..1 (L)
	RW
	See clause 9.6.1.3. in TS-0001 [2]
	OA

	containerDefinition
	1
	WO
	See clause 9.6.1.2.2 in TS-0001 [2]
The value shall be “org.onem2m. genericInterworkingOperationInstance”
	MA

	creator
	0..1
	RO
	See clause 9.6.35 in TS-0001 [2]
	NA

	ontologyRef
	0..1
	RW
	See clause 9.6.35 in TS-0001 [2]
	OA

	operationName
	1
	RW
	The attribute contains the name of the Operation. The name of the Operation is given by the class name of that Operation in the used ontology (which needs to be derived from the Base Ontology)
	MA

	operationState
	1
	RW
	This attribute contains a text string that indicates how far the operation has progressed.
specified values are:

o
“data_received_by_application”

o
 “operation_ended”

o
“operation_failed”

o
“data_transmitted_to_interworked_device”

Additional, application specific values for the text string of the operationState attribute are permissible.
	MA

	inputDataPointLinks
	0..1
	RW
	This attribute contains a list of triples, each triple containing the following fields:

1.
A text string with the name of an inputDatapoint of the operationInstance

2.
A URI of the resource (container or flexContainer) that holds the data of the inputDataPoint

3.
A field for identifying simple-type data

If the inputDataPoint contains simple-type data then

i.
If the resource type of the inputDataPoint is <container> then this field shall contain the text string “latest”

ii.
If the resource type of the inputDataPoint is <flexContainer> then this field shall contain the name of the [customAttribute] (which is identical to the name of the inputDataPoint)

If the inputDataPoint contains complex-type data then this field shall remain empty.

	MA

	outputDataPointLinks
	0..1
	RW
	This attribute contains a list of triples, each triple containing the following fields:

1.
A text string with the name of an outputDatapoint of the OperationInstance

2.
A URI of the resource (container or flexContainer) that holds the data of the outputDataPoint

3.
A field for identifying simple-type data

If the outputDataPoint contains simple-type data then

i.
If the resource type of the outputDataPoint is <container> then this field shall contain the text string “latest”

ii.
If the resource type of the outputDataPoint is <flexContainer> then this field shall contain the name of the [customAttribute] (which is identical to the name of the outputDataPoint)

If the outputDataPoint contains complex-type data then this field shall remain empty.

	MA

	inputLinks
	0..1
	RW
	This attribute contains a list of triples, each triple containing the following fields:

1.
A text string with the name of an operationInput of the operationInstance

2.
A URI of the resource (container or flexContainer) that holds the data of the operationInput

3.
A field for identifying simple-type data

If the operationInput contains simple-type data then

i.
If the resource type of the operationInput is <container> then this field shall contain the text string “latest”

ii.
If the resource type of the operationInput is <flexContainer> then this field shall contain the name of the [customAttribute] (which is identical to the name of the operationInput)

If the Input contains complex-type data then this field shall remain empty.

	MA

	outputLinks
	0..1
	RW
	This attribute contains a list of triples, each triple containing the following fields:

1.
A text string with the name of an operationOutput of the operationInstance

2.
A URI of the resource (container or flexContainer) that holds the data of the outputDataPoint

3.
A field for identifying simple-type data

If the operationOutput contains simple-type data then

i.
If the resource type of the operationOutput is <container> then this field shall contain the text string “latest”

ii.
If the resource type of the operationOutput is <flexContainer> then this field shall contain the name of the [customAttribute] (which is identical to the name of the operationOutput)

If the operationOutput contains complex-type data then this field shall remain empty.

	MA

The following text is to be used when appropriate:

Proforma copyright release text block

This text box shall immediately follow after the heading of an element (i.e. clause or annex) containing a proforma or template which is intended to be copied by the user. Such an element shall always start on a new page.

Notwithstanding the provisions of the copyright clause related to the text of the present document, oneM2M grants that users of the present document may freely reproduce the <proformatype> proforma in this {clause|annex} so that it can be used for its intended purposes and may further publish the completed <proformatype>.

<PAGE BREAK>

Annexes

Each annex shall start on a new page (insert a page break between annexes A and B, annexes B and C, etc.).

Use the Heading 9 style for the title and the Normal style for the text.
Annex <A> (Informative/Normative):Remove Informative or Normative as appropriatTitle of annex (style H9)
<Text>

<PAGE BREAK>

Annex (Informative/Normative): Remove Informative or Normative as appropriateTitle of annex (style H9)
<Text>

B.1
First clause of the annex (style H1)
<Text>

B.1.1
First subdivided clause of the annex (style H2)
<Text>

<PAGE BREAK>
The following text is to be used when appropriate:

Annex <y>:
Bibliography

The annex entitled "Bibliography" is optional.

It shall contain a list of standards, books, articles, or other sources on a particular subject which are not mentioned in the document itself
It shall not include references mentioned in the document.

Use the Heading 9 style for the title and B1+ or Normal for the text.

· <Publication>: "<Title>".

OR

<Publication>: "<Title>".

<PAGE BREAK>

History

This clause shall be the last one in the document and list the main phases (all additional information will be removed at the publication stage).
	Publication history

	V1.1.1
	<dd-Mmm-yyyy>
	<Milestone>

	
	
	

	
	
	

	
	
	

	
	
	

	Draft history (to be removed on publication)

	V0.0.1
	16-Oct-2016
	Initial version. CR to TS-0012 moved sections 8 and 9 into sections 6 and 7 of the current document

	V0.1.0
	02-Nov-2016
	Including contributions at MAS#25:
MAS-2016-0215R01-DRAFT_TS-0030-Generic-Interworking-V0_0_0

	V0.2.0
	03-April-2017
	Including contributions at MAS#28:

MAS-2017-0012R05-CR_TS-0030_Specification_of_an_Abstraction_Application_Entity
MAS-2017-0075-CR_TS-0030_Corrections_and_General_section

	
	
	

	
	
	

© oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC)
Page 38 of 38
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

_1547464694.ppt

oneM2M compliant Solution

Area Network

(e.g. KNX)

Interworked Devices (physical devices) in the Area Network

Proxied Devices (oneM2M resources) in the oneM2M System technology

Communicating

entity

REST-ful Resource access

Inter

working

Proxy

Entity

Device
type_DD

hasService

hasFunction

Operation
Input
“ID = 0”

exposes
Function

Function
“On Off Function”

Service
“On/Off Cluster”

Operation
“ZigBee
Command”

hasOperation

Command
“On Command”

hasCommand

hasInput

exposes
Command

Device
type_DA

hasFunction

Service
“binary Switch”

Input
DataPoint
“powerState
= TRUE”

hasService

exposes
Function

exposes
Command

hasInput
DataPoint

Variable
Conversion

hasConversion

ontology of the Device Information Model
(example ZigBee)

ontology of the Abstract Information Model
(example: HAIM)

convertsTo

UPDATE
inputLinks, inputDPLinks
CREATE Operation
Command response
Invoke Command
Invoke Command
UPDATE InputDataPoint, CREATE OperationInput
UPDATE
outputLinks, outputDPLinks
RETRIEVE output
X
OperationState=
"data_received_by_application"
Translating entity
Communicating entity
Target entity
translate input
Waiting for answer
translate output
CSE
Communicating entity expects an answer
NOTIFY
RETRIEVE
operationInput
UPDATE
expirationTime
OperationState=
"data_transmitted_to_interworked_device
OperationState=
"operation_failed“
OR
(
)
NOTIFY
...
expirationTimer expired, Operation resource can be deleted
Communication initiated by Communicating entity
Communicating entity expects no answer
OperationState=
"operation_ended“
NOTIFY
UPDATE OutputDataPoint, CREATE OperationOutput OperationState=
"operation_ended“

UPDATE
outputLinks, outputDPLink
Translating entity
Communicating entity
Target entity
translate output
Waiting for answer
translate input
CSE
Target entity expects an answer
CREATE Operation
NOTIFY
RETRIEVE
operationOutput
OperationState=
"data_transmitted_to_interworked_device
NOTIFY
OperationState=
"operation_ended“
...
expirationTimer expired, Operation resource can be deleted
Communication initiated by Target entity
Target entity expects no answer
OperationState=
"operation_ended“
NOTIFY
RETRIEVE
operationOutput
X
OperationState=
"operation_failed“
OR
(
)
UPDATE
inputLinks, inputDPLinks
Invoke Command
Command response
Command response
UPDATE OutputDataPoint, CREATE OperationOutput set expirationTime
UPDATE InputDataPoint, CREATE OperationInput

UPDATE InputDataPoints
Translating entity
Communicating entity
Target entity
translate input
CSE
NOTIFY
RETRIEVE
InputDataPoint
Communication initiated by Communicating entity
Communication initiated by Target entity
translate output
UPDATE OutputDataPoints
NOTIFY
RETRIEVE
OutputDataPoints
Invoke Command
Invoke Command

oneM2M compliant Solution

Area Network
(e.g. KNX)

Inter
working

Proxy
Entity

Abstract Devices (oneM2M resources) exhibiting the Abstract Information Model

Proxied Devices (oneM2M resources) exhibiting the Device Information Model of the interworked
technology

Interworked Devices (physical devices) in the Area Network

Communicating
entity

Abstraction
Application
Entity

Abstract Information
Model

Device Information
Model

Device Information
Model

_1533032538.vsd

_1547458060.ppt

oneM2M compliant Solution

Area Network

(e.g. KNX)

real Devices in Area Network

“proxied” Devices in the oneM2M System technology

oneM2M

AE

REST-ful Resource access

Inter

working

Proxy

Entity

_1533032754.vsd

_1529510780.ppt

Device <AE>, <container> or <flexContainer> (persistent resource)

<semanticDescriptor>

child-resources

Input- / OutputDataPoint <container> (persistent resource)

Input- / OutputDataPoint <flexContainer> (persistent resource)

contentInstance … …

latest contentInstance

[customAttribute]

child-resources

child-resources

genericInterworkingService (persistent resource)

child-resources

and / or

genericInterworkingOperationInstance (transient resource)

OperationInput / -Output <container> (transient resource)

OperationInput / -Output <flexContainer>

contentInstance … …

latest contentInstance

[customAttribute]

child-resources

child-resources

and / or

<semanticDescriptor>

<semanticDescriptor>

<semanticDescriptor>

[Input_DataPoint_Links]

Descriptor

Descriptor

Descriptor

Descriptor

[Output_DataPoint_Links]

[Output-DataPoint_Links]

[Input -DataPoint_Links]

[Output_Links]

[Input_Links]

<semanticDescriptor>

Descriptor

<semanticDescriptor>

Descriptor

<semanticDescriptor>

Descriptor

Legend:

Persistent child resources

Transient child resources

Links

*

