
	[image: image1.png]

	oneM2M
Technical Report

	Document Number
	oneM2M-TR-0042-V-0.1.0

	Document Name:
	WoT Interworking

	Date:
	2017-08-23

	Abstract:
	This technical report identifies the interworking scenarios and and its requirements between oneM2M and W3C Web of Things systems and analyze possible architectural solutions to address the requirements.

	Template Version: January 2017 (Do not modify)

The present document is provided for future development work within oneM2M only. The Partners accept no liability for any use of this report.
The present document has not been subject to any approval process by the oneM2M Partners Type 1. Published oneM2M specifications and reports for implementation should be obtained via the oneM2M Partners' Publications Offices.
About oneM2M

The purpose and goal of oneM2M is to develop technical specifications which address the need for a common M2M Service Layer that can be readily embedded within various hardware and software, and relied upon to connect the myriad of devices in the field with M2M application servers worldwide.

More information about oneM2M may be found at: http//www.oneM2M.org

Copyright Notification

© 2017, oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC).

All rights reserved.
The copyright and the foregoing restriction extend to reproduction in all media.

Notice of Disclaimer & Limitation of Liability

The information provided in this document is directed solely to professionals who have the appropriate degree of experience to understand and interpret its contents in accordance with generally accepted engineering or other professional standards and applicable regulations. No recommendation as to products or vendors is made or should be implied.

NO REPRESENTATION OR WARRANTY IS MADE THAT THE INFORMATION IS TECHNICALLY ACCURATE OR SUFFICIENT OR CONFORMS TO ANY STATUTE, GOVERNMENTAL RULE OR REGULATION, AND FURTHER, NO REPRESENTATION OR WARRANTY IS MADE OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. NO oneM2M PARTNER TYPE 1 SHALL BE LIABLE, BEYOND THE AMOUNT OF ANY SUM RECEIVED IN PAYMENT BY THAT PARTNER FOR THIS DOCUMENT, WITH RESPECT TO ANY CLAIM, AND IN NO EVENT SHALL oneM2M BE LIABLE FOR LOST PROFITS OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES. oneM2M EXPRESSLY ADVISES ANY AND ALL USE OF OR RELIANCE UPON THIS INFORMATION PROVIDED IN THIS DOCUMENT IS AT THE RISK OF THE USER.

Contents

3Contents

1
Scope
4
2
References
4
2.1
Normative references
4
2.2
Informative references
4
3
Definitions, symbols and abbreviations
4
3.1
Definitions
4
3.2
Symbols
5
3.3
Abbreviations
5
4
Conventions,
6
5
Introduction
6
5.1
Background and Rationale
6
5.1.1
Overview of Interworking in oneM2M
6
5.1.2
Needs for oneM2M – WoT Interworking
6
5.2
Technical comparison of oneM2M and W3C WoT systems
7
5.2.1
Overview of oneM2M system
7
5.2.2
Overview of W3C WoT system
7
5.2.2.1
W3C WoT architecture
7
5.2.2.2
WoT thing description
9
5.2.3
Comparisons of oneM2M and WoT systems
10
6
Interworking Scenarios
11
6.1
Scenario 1: Exposing oneM2M to WoT systems directly
11
6.2
Scenario 2: Integrate WoT system into oneM2M using IPE
12
7
Information Model Mapping and Gap Analysis
13
7.1
WoT Thing Description vs oneM2M Smart Device Template
13
7.2
WoT Thing Description vs oneM2M Base Ontology
13
7.3
WoT Thing Description vs oneM2M Resource Model in General
13
8
Potential Architectural Solutions and Implementation Guidance
13
8.1
Exposing oneM2M entities as WoT servients by TD
13
8.2
Integrate WoT system into oneM2M using IPE
14
8.2.1
Solution 1: Direct Resource Mapping
14
8.2.2
Solution 2: Using Generic Interworking Framework
14
8.2.3
Solution 3: Transparent Interworking
14
9
Conclusion
14
Annexes
14
History
15

1
Scope

The present document describes the interworking scenarios between the oneM2M and W3C WoT systems and the potential interworking solutions to achieve semantic interoperability. The scope includes the following aspects:
· Technical comparison of oneM2M and W3C WoT systems

· Interworking scenarios between oneM2M and W3C WoT systems

· Information modelling mapping between oneM2M SDT/ Base Ontology and W3C WoT TD, including alignment suggestion for the future evolution.

· Potential architectural solutions and implementation guidance of interworking between oneM2M and W3C WoT systems.
2
References

References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references,only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

2.1
Normative references

Not applicable.

2.2
Informative references
The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
[i.1]
oneM2M Drafting Rules (http://member.onem2m.org/Static_pages/Others/Rules_Pages/oneM2M-Drafting-Rules-V1_0.doc)
[i.2]
oneM2M TS-0001, Functional Architecture, Release-2 v-2.10.0, August 2016.

[i.3]
Web of Things (WoT) Architecture, W3C Editor's Draft, May 4, 2017 (https://w3c.github.io/wot-architecture/)

[i.4]
WoT Current Practices, Unofficial Draft, April 27, 2017 (http://w3c.github.io/wot/current-practices/wot-practices.html)

[i.5]
Web of Things (WoT) Thing Description, W3C Editor’s Draft, March 6, 2017 (https://w3c.github.io/wot-thing-description/)
Copyright © 2017 W3C® (MIT, ERCIM, Keio, Beihang). This document includes material copied from or derived from [i.3], [i.4], and [i.5]

3
Definitions, symbols and abbreviations

3.1
Definitions

Clause numbering depends on applicability.

· A definition shall not take the form of, or contain, a requirement.

· The form of a definition shall be such that it can replace the term in context. Additional information shall be given only in the form of examples or notes (see below).

· The terms and definitions shall be presented in alphabetical order.
For the purposes of the present document, the [following] terms and definitions [given in ... and the following] apply:

Definition format

<defined term>: <definition>

If a definition is taken from an external source, use the format below where [N] identifies the external document which must be listed in Section 2 References.
<defined term>[N]: <definition>

example 1: text used to clarify abstract rules by applying them literally

NOTE:
This may contain additional information.

3.2
Symbols

Clause numbering depends on applicability.

For the purposes of the present document, the [following] symbols [given in ... and the following] apply:

Symbol format

<symbol>
<Explanation>

<2nd symbol>
<2nd Explanation>

<3rd symbol>
<3rd Explanation>

3.3
Abbreviations

Abbreviations should be ordered alphabetically.

Clause numbering depends on applicability.

For the purposes of the present document, the [following] abbreviations [given in ... and the following] apply:

Abbreviation format

AE

Application Entity

API
Application Program Interface

ASN
Application Service Node

CRUD
Create, Retrieve, Update, Delete

CSE
Common Service Entity

CSF
Common Service Function

IG
Interest Group

IN

Infrastructure Node

IoT
Internet of Things

IPE
Interworking Proxy Entity

JSON-LD
JavaScript Object Notation for Linked Data
MN

Middle Node

RDF
Resource Description Framework
ROA

Resource-Oriented Architecture

SDT
Smart Device Template

TD

Thing Description

URI
Uniform Resource Identifier

WG

Working Group

WoT
Web of Things

4
Conventions,

The key words “Shall”, ”Shall not”, “May”, ”Need not”, “Should”, ”Should not” in this document are to be interpreted as described in the oneM2M Drafting Rules [i.1]
5
Introduction
5.1
Background and Rationale

Editor’s note: short background and the benefits of oneM2M – WoT interworking
5.1.1
Overview of Interworking in oneM2M

Interworking provides entities from incompatible systems with the framework and ability to communicate and interact with each other. A system compliant to a standard X (such as oneM2M) can be called X-compliant. A native thing/device in an X-compliant system will be called an “X-compliant thing/device”. Similarly, native users/applications in the X-compliant system can interact with the X-compliant devices/things without leveraging any interworking technologies. However, X-compliant users/applications must leverage interworking technologies in order to interact with Y-compliant things/devices.
In general, interworking requires certain new logic functionality, which acts as a translator or intermediator between systems which are compliant to different standards. In oneM2M functional architecture [i.2], Interworking Proxy Entity (IPE) is the logic entity that handles interworking between the oneM2M system and an external system. For a given external device that is X-compliant such as W3C Web of Things (WoT), IPE will create corresponding oneM2M resource representation (as “avatar”) in the oneM2M system and this resource representation will then provide oneM2M-compliant interface. Accordingly, oneM2M users/application can issue RESTful operations (i.e. Create, Retrieve, Update, and Delete which are referred to as CRUD) directly on this resource, which will be captured by the IPE and translated to native operations in external X-compliant system; then IPE sends those native operations to the external device and eventually realize the interworking from oneM2M users/applications to X-compliant device. For the reverse interworking from X-compliant devices to oneM2M users/applications, IPE follows the similar process but translates native operations in the X-compliant system to oneM2M RESTful operations.

5.1.2
Needs for oneM2M – WoT Interworking

In real Internet of Things (IoT) scenarios, due to the lack of or no coordination among different parties/organizations, it is possible that IoT things/devices deployed by different parties may be compliant to different standards. For example, considering a downtown scenario in a smart city, different parties may deploy their outdoor cameras for various civic purposes such as traffic control, security monitoring, and parking spot management. An application identifying street parking may use the latest images captured around the street by a variety of cameras which may be compliant to different standards
IoT applications or IoT devices may have limited capabilities and will not support multiple standards simultaneously for cost saving or other purposes. For example, some of deployed cameras along streets are only compliant to World Wide Web Consortium (W3C) Web of Things (WoT) standard [i.3] while the user interfaces through an oneM2M application. As a result, the user will not be able to retrieve images from those WoT-compliant cameras unless certain interworking mechanism can be designed and leveraged. Overall, it can be seen that interworking is an essential technology to realize various IoT applications in reality which needs interoperability across oneM2M and W3C WoT.
Note: W3C WoT Interest Group (IG) and Working Group (WG) are still ongoing. The content about W3C WoT in this technical report is based on the latest progress in W3C WoT IG and WG, and shall be reexamined and updated according to future deliverables from W3C WoT IG and WG.
5.2
Technical comparison of oneM2M and W3C WoT systems
Editor’s note: technical introduction to W3C WoT (e.g. architecture, TD) and comparison between two systems, including similarities and differences in terms of architectural style (RESTful), resource modelling, semantics.
5.2.1
Overview of oneM2M system
The goal of oneM2M is to develop technical specifications which address the need for a common service layer that can be readily embedded within hardware apparatus and software modules in order to support a wide variety of devices in the field. As specified in oneM2M TS-0001 [i.2], the oneM2M common service layer supports a set of Common Service Functions (CSFs) (i.e. service capabilities). An instantiation of a set of one or more particular types of CSFs is referred to as a Common Service Entity (CSE) which can be hosted on different types of network nodes (e.g. Infrastructure Node (IN) and Middle Node (MN), and Application Service Node (ASN)). The CSEs provide the service capabilities to other CSEs as well as to Application Entities (AEs). Typically, an AE represents an instantiation of application logic for end-to-end M2M solutions, for example, an instance of a fleet tracking application, a remote blood sugar monitoring application, a power metering application, or a controlling application, etc. oneM2M service layer is developed based on Resource-Oriented Architecture (ROA) principle, in the sense that different resources and RESTful operations on them are specified in oneM2M functional architecture to support different CSFs. A resource is uniquely addressable using Uniform Resource Identifiers (URIs) and can be manipulated via RESTful CRUD operations. A resource may contain child resource(s) and attribute(s). For example, a parent resource can represent an oneM2M device while its child resources can further represent the operations or properties of this device.

5.2.2
Overview of W3C WoT system

5.2.2.1
W3C WoT architecture
WoT functional architecture has been designed with three primary requirements [i.3]: flexibility by aiming to support a wide range of physical WoT devices, upper compatibility to current IoT standards and legacy IoT solutions, and security and privacy. In WoT system, the major functional entity is “WoT Servient” which is an entity consisting of a web client, a web server, and device control capabilities. A WoT Servient becomes a WoT Server if it only has a web server and device control capabilities, or a WoT client if it does not have a web server but a web client. Through a WoT Servient, IoT physical devices can be accessed, monitored, and controlled (e.g. to get their status and data values from those devices).

The general WoT Servient functional architecture as defined in [i.3] is presented in Figure 5.2.2.1-1. Servients communicate with each other through “WoT Interface”, a resource-oriented Web Application Program Interface (API). A Servient can be in client role (i.e., it only consumes other things), server role (i.e., it only exposes things and provides capabilities), or both. As defined in [i.4], “Thing” is the abstract concept of a physical entity that can either be a real-world artifact, such as a device, or a virtual entity that represents physicality, such as a room or group of devices. In general, a WoT Thing (e.g., a legacy device only providing proprietary interface) has an associated WoT Servient, which is the representation of this Thing in the WoT system, with which other WoT Servients can interact. Servients can also provide access to virtual things such as a collection of physical things (e.g., all lights in a room). In addition, Servients can be hosted in different places such as inside a smartphone, a local gateway, or the cloud.
[image: image2.png]
Figure 5.2.2.1-1: Functional Architecture of WoT Servient [i.3]
According to [i.3], the functionalities of several major modules of a WoT Servient are described below.

· Thing Description: Each WoT Thing is described by a WoT TD, which basically describes the semantics of a Thing as well as its WoT Interface. The TD must be acquired before it the Thing can be accessed and/or interested with. Things can provide their own TDs locally, but the TD can also be hosted externally (e.g. if there is not enough space on the thing/device). To ease TD discovery, TDs can be registered with a well-known TD Repository, where the TD for Things of interest can be queried. The Clause 5.2.2.2 gives more details about TD.

· App Script: The application logic of a WoT Thing (or technically a servient) can be implemented natively, for instance in the device firmware, which is expected to be common for very resource-constrained Things. Following the patterns in the Web, however, application logic should also be provided by scripts. This is supported through a scripting runtime environment—similar to the Web browser—that may be provided by a servient. App scripts implement application logic in a modular and portable way. It can access local hardware, locally connected legacy devices, and remote things through the WoT Interface.
· Script API: Portability of such scripts is ensured through a common Scripting API (i.e. Client API, Server API, Discovery API, and Proprietary API) that allows an application to discover things (via Discovery API), to consume things (via Client API), to expose things (via Server API), and/or to access/control the hardware physically attached to the servient (via Proprietary API). Scripting API is more like an internal API used by application scripts, while the WoT Interface is the external interaction interface between different WoT Servients.
· Protocol Binding: It supports binding Script API messages to different underlying protocols with various communication patterns such as push, pull, pub-sub and bi-directional messaging. After protocol binding, message will be transmitted over WoT interface from one WoT Servient to another WoT Servient. This will be realized by standardized Binding Template.

· Security and Privacy: Security and privacy features will be embedded in other modules like TD, Script API, Protocol Binding, etc. As a result, W3C WoT WG will not generate a standalone specification for security and privacy, but include security and privacy design in TD specification, Script API specification, and binding template specification.

W3C WoT WG will not standardize App Script, but it plans to standardize Thing Description (TD), Script API, Binding Template, and Security and Privacy. TD is the key module to enable interactions between two WoT Servients, and will play a critical role in oneM2M-WoT interworking (e.g. mapping between W3C TD model and semantic models in oneM2M). Protocol binding and security/privacy may also be considered for oneM2M-WoT interworking.

5.2.2.2
WoT thing description
Resource Description Framework (RDF) has been used as an underlying data model for TD representation. A TD is actually a RDF document. Four pieces of content contained in a TD are presented in Figure 5.2.2.2-1 as described in [i.3]:

· Semantic Metadata: It gives generic thing information and context enrichment (e.g. linking to external vocabularies and ontologies)

· Interaction Resources (of a Thing): They describe the capabilities of a thing in terms of Properties, Actions, and Events. Readable/Writable data or resources on a thing are described as Properties; changes and processes on a thing are described as Actions; Events are used as a mechanism to enable notification about the thing under certain conditions.

· Communication: This piece describes bindings to different communications protocols (e.g. HTTP, CoAP, etc.).

· Security: A TD can also provide content related to security mechanisms, policies, and parameters to securely access the thing and the TD itself.

[image: image3.png]
Figure 5.2.2.2-1: Concepts of the Thing Description (TD) [i.4]
A TD example for temperature sensor from [i.5] is illustrated in Figure 5.2.2.2-1. Although this example is based on JavaScript Object Notation for Linked Data (JSON-LD) serialization, W3C WoT IG/WG has been investigating other options and may define a general TD model independent of serialization format. This TD example defines a thing myTempSensor which has two properties (i.e. myTemp and myThreshold). Both properties have the type of “Temperature” and the unit of “celsius”. myThreshould can be updated, but myTemp which is the actual measurement from the temperature sensor is read-only. “base” and “links” together give the URI for accessing those two properties. For example, the URI for myTemp is coap:///www.example.com:5683/temp/val. In addition, “@context” as provided by JSON-LD allows a TD to link to and reuse existing external models and vocabularies (i.e. ontology) to enhance semantic interoperability.

 {

"@context": ["https://w3c.github.io/wot/w3c-wot-td-context.jsonld",

"https://w3c.github.io/wot/w3c-wot-common-context.jsonld"],

"@type": "Sensor",

"name": "myTempSensor",

"base": "coap:///www.example.com:5683/temp/",

"interactions": [

{

"@id": "val",

"@type": ["Property","Temperature"],

"unit": "celsius",

"reference": "threshold",

"name": "myTemp",

"outputData": {"valueType": {"type": "number"}},

"writable": false,

"links": [{

"href": "val",

"mediaType": "application/json"

}]

}, {

"@id": "threshold",

"@type": ["Property","Temperature"],

"unit": "celsius",

"name": "myThreshold",

"outputData": {"valueType": {"type": "number"}},

"writable": true,

"links": [{

"href": "thr",

"mediaType": "application/json"

}]

},{

"@type": ["Event"],

"outputData": {"valueType": {"type": "number"}},

"name": "myChange",

"property": "temp",

"links": [{

"href": "val/changed",

"mediaType": "application/json"

}]

}, {

"@type": ["Event"],

"outputData": {"valueType": {"type": "number"}},

"name": "myWarning",

"links": [{

"href": "val/high",

"mediaType": "application/json"

}]

}

]

}

Figure 5.2.2.2-2: A TD Example for Temperature Sensor [i.5]

5.2.3
Comparisons of oneM2M and WoT systems

According to [i.2] for oneM2M and [i.3]-[i.5] for W3C WoT, oneM2M and W3C WoT systems share the following commonalities:

· Both are based on the RESTful design principle. For example, a resource in oneM2M has a URI and can be manipulated via CRUD operations. Similarly, as illustrated in Figure 5.2.2.2-2, Properties/Actions/Events on a Things are described as resources; each has a URI and can be accessed (e.g. Retrieve and Update).

· Both can bind to various communication protocols (e.g. HTTP, CoAP, MQTT, etc.).

· Both use RDF to describe semantic metadata about a thing (in W3C WoT) or a resource (in oneM2M).

· Both can leverage external ontologies.

· TD model in W3C WoT and Smart Device Template (SDT)/Base Ontology in oneM2M provide similar information.

Several differences between the oneM2M and the W3C WoT systems have been identified below. Although this is not an exhaustive list, it needs to be taken into account when designing interworking solutions between the two systems.

· oneM2M provides a common Service Layer that includes a set of CSFs describing service aspects. By comparison, W3C WoT does not specify common service functions in a TD.
· A WoT Thing is associated with a WoT Servient, and in the meantime, a WoT Thing has a corresponding TD which describes how to interact with this thing through its corresponding servient. In other words, the TD can be separated from the WoT thing or its servient in the sense that the TD can be regarded as a user manual and can be hosted/published to a TD repository. By comparison, in oneM2M system, there is not such a “description” or “manual” for interacting with oneM2M devices/resources.
· The <semanticDescriptor> resource defined in oneM2M is different from the TD defined in the W3C WoT system. The <semanticDescriptor> resource provides additional metadata as semantic annotations for a particular resource. In contrast, the TD describes more aspects about a whole thing (e.g. semantic metadata, security, interaction patterns and communication binding details), not limited to a single resource. At the same time the TD in W3C WoT uses a more centralized approach, while the <semanticDescriptor> resource in oneM2M is more distributed.

· Reference points specified in oneM2M include functionalities and protocol aspects. In contrast, W3C WoT does not specify functionalities although they can be described in TD; the protocol aspects of WoT defined in the TD are restricted to the use of a few keywords, which may not be sufficient to support oneM2M reference points (e.g. oneM2M-specific protocol extensions such as HTTP headers).

· oneM2M provides sophisticated filters for resource discovery. In contrast, only discovery of TDs is needed in W3C WoT system. The discovery of TDs targets the whole TD document, not a particular resource or a specific type of resources hosted on a thing.

6
Interworking Scenarios
6.1
Scenario 1: Exposing oneM2M to WoT systems directly

Editor’s note: describing the scenario that oneM2M entities are exposed as WoT servients by WoT TD, so that a native WoT servient (client/server) may interact with the oneM2M system (AE/CSE), ideally without knowing technology specifics of oneM2M.
This scenario is for the case that oneM2M nodes (in physical form of devices, gateways or platforms) are exposed as WoT Servients (in the server role) based on the metadata description of WoT TD. The objective is to enable a native WoT Servient (i.e. in the client role) to interact with the oneM2M nodes and consume the services and data provided by the oneM2M service layer via Mca/Mcc reference point, while with minimal (ideally none) requirement on the knowledge of oneM2M interface specifications. In other words, a WoT Servient can become oneM2M compliant and consume oneM2M interfaces according to the WoT TD of the oneM2M interfaces.
The architectural view of this scenario is shown in Figure 6.1-1. A oneM2M ASN/MN/IN (containing CSE) can directly host services and data as oneM2M resources and exposes them via RESTful APIs (Mca/Mcc) over different protocol bindings. As long as the oneM2M resource model and protocol bindings can be well expressed in WoT TD, the ASN/MN/IN can be modelled as a WoT Servient (Server) and interact with a native WoT Servient (Client) based on the WoT specifications. From oneM2M perspective, the WoT Servient (Client) may act as either an AE or CSE depending on whether Mca or Mcc is used. The latter case implies the WoT Servient (Client) itself also hosts oneM2M resources and may expose a corresponding TD as well. An ADN (containing only AE) cannot host and expose resources directly, but may still be represented as a standalone WoT Servient based on its registered resource model on a registrar CSE in an ASN/MN/IN.

The TD describing a oneM2M node as a WoT Servient can be hosted anywhere in the oneM2M system in theory. In this study, it’s recommended to co-locate the TD of a oneM2M node in the local CSE (for ASN/MN/IN) or the registrar CSE (for ADN).

[image: image4]
Figure 6.1-1 oneM2M-WoT Interworking Scenario 1: Exposing oneM2M to WoT systems directly
6.2
Scenario 2: Integrate WoT system into oneM2M using IPE
Editor’s note: describing the scenario that WoT servients are integrated into a oneM2M system via the IPE, so that WoT data can be exchanged within the oneM2M system as resources.

This scenario is for the case that WoT Servients are represented as interworked devices in the oneM2M system via IPE. The objective is to enable a native oneM2M AE to interact with the WoT Servients and consume the services and data provided by the WoT Servients in the form of oneM2M resources mapped by the IPE, while with minimal (ideally none) requirement on the knowledge of WoT specifications.
The architectural view of this scenario is shown in Figure 6.2-1. An oneM2M IPE acting as a WoT Servient (Client) can interact with a native WoT Servient (Server) based on the TD of the WoT Servient (Server). The IPE then maps the WoT resource model described in the TD into oneM2M resource model in a hosting CSE of a ASN/MN/IN. From that on, any oneM2M entity (AE/CSE) may consume the service and data provide by the WoT Servient as represented in the mapped oneM2M resources via Mca/Mcc reference points. In case the WoT Servient’s TD is changed/updated later, the IPE needs to update the previously mapped resource model in the hosting CSE accordingly. In the reverse direction, update to the mapped resource representation may also be reflected back by the IPE to the interworked WoT Servient (Server) accordingly.

Depending on different mechanisms (e.g. transparent or semantic) of the resource model mapping between oneM2M and WoT TD, a oneM2M entity (AE/CSE) interworking with a WoT Servients may or may not need to understand the information model of WoT TD.

[image: image5]
Figure 6.1-1 oneM2M-WoT Interworking Scenario 2: Integrate WoT system into oneM2M using IPE
7
Information Model Mapping and Gap Analysis

Editor’s note: the following sub-clause titles are provisional and subject to change during further study.
7.1
WoT Thing Description vs oneM2M Smart Device Template

<Text>

7.2
WoT Thing Description vs oneM2M Base Ontology

7.3
WoT Thing Description vs oneM2M Resource Model in General
Editor’s note: compare the information/metadata described in WoT TD and by different types of oneM2M resources (e.g. <semanticDescriptor>, <conatiner>, <AE>)
8
Potential Architectural Solutions and Implementation Guidance
Editor’s note: the following sub-clause titles are provisional and subject to change during further study.
8.1
Exposing oneM2M entities as WoT servients by TD
Editor’s note: study how oneM2M resource trees and binding interfaces can be described by WoT TD, so that a native WoT servient (client/server) may interact with the oneM2M system (AE/CSE), ideally without knowing technology specifics of oneM2M.
8.2
Integrate WoT system into oneM2M using IPE

8.2.1
Solution 1: Direct Resource Mapping
Editor’s note: this solution envisions the interworking approach of mapping WoT data model directly to oneM2M resources e.g. <flexContainer> by defining mapping rules similar to those defined in TS-0023. In this approach, WoT TD (Thing Description) is comparable to SDT.
8.2.2
Solution 2: Using Generic Interworking Framework
Editor’s note: this solution envisions the usage of the generic interworking framework in WI-0063 via Base Ontology mapping.
8.2.3
Solution 3: Transparent Interworking
Editor’s note: this solution envisions the rudimentary interworking approach by encapsulating opaque WoT data model in <container> resources as defined for OIC interworking.
9
Conclusion

Editor’s note: to summarize the present document and to give architectural suggestions for the normative work of WoT interworking in the next phase.
Annexes

Each annex shall start on a new page (insert a page break between annexes A and B, annexes B and C, etc.).

Use the Heading 9 style for the title and the Normal style for the text.
Annex <A>:
Title of annex (style H9)
<Text>

<PAGE BREAK>

Annex :
Title of annex (style H9)
<Text>

B.1
First clause of the annex (style H1)
<Text>

B.1.1
First subdivided clause of the annex (style H2)
<Text>

<PAGE BREAK>
History

This clause shall be the last one in the document and list the main phases (all additional information will be removed at the publication stage).
	Publication history

	V1.1.1
	<yyyy-mm-dd>
	<Milestone>

	
	
	

	
	
	

	
	
	

	
	
	

	Draft history (to be removed on publication)

	V0.0.1
	2017-04-06
	Initial skeleton

	V0.1.0
	2017-08-23
	Incorporate agreed input contributions from TP#29:

MAS-2017-0093R01 WoT Interworking Scenarios
MAS-2017-0094R02 WoT Interworking Background for TR-0042

	
	
	

	
	
	

	
	
	

WoT Servient - Client�(oneM2M AE/CSE)

Thing Description

Resource Model

Protocol Binding

AE

CSE

oneM2M ASN/MN/IN �(WoT Servient - Server)

Mca

WoT i/f (Mca/Mcc)

Protocol Binding�(oneM2M)

Resource Model

App Script

AE

oneM2M ADN�(WoT Servient - Server)

Mca

AE

CSE

oneM2M ASN/MN/IN

Mca

WoT Servient�(Server)

Protocol Binding

Resource Model

App Script

Thing Description

IPE�(WoT Servient - Client)

Mca

Mcc

WoT i/f

Resource Model

Protocol Binding

© oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC)
Page 4 of 15
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

