
	[image: image14.png][temperature]

NN N N N N N N N

1 (containerDefinition
0.1 (ontologyRef

1 (contentSize

! (currentTemperature
0.1 (targetTemperature
0..1 (unit
0..1 (minValue
0.1 (maxValue
0.1 (stepValue
0.1 (nodnProperties
0..n

<subscription>

	oneM2M
Technical Report

	Document Number
	oneM2M-TR-0043-V-0.3.0

	Document Name:
	Modbus Interworking

	Date:
	2019-12-04

	Abstract:
	This technical report investigates oneM2M and modbus interworking scenarios and proposes possible solutions to support the interworking scenarios.

	Template Version: January 2017 (Do not modify)

The present document is provided for future development work within oneM2M only. The Partners accept no liability for any use of this report.
The present document has not been subject to any approval process by the oneM2M Partners Type 1. Published oneM2M specifications and reports for implementation should be obtained via the oneM2M Partners' Publications Offices.
About oneM2M

The purpose and goal of oneM2M is to develop technical specifications which address the need for a common M2M Service Layer that can be readily embedded within various hardware and software, and relied upon to connect the myriad of devices in the field with M2M application servers worldwide.

More information about oneM2M may be found at: http//www.oneM2M.org

Copyright Notification

© 2017, oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC).

All rights reserved.
The copyright and the foregoing restriction extend to reproduction in all media.

Notice of Disclaimer & Limitation of Liability

The information provided in this document is directed solely to professionals who have the appropriate degree of experience to understand and interpret its contents in accordance with generally accepted engineering or other professional standards and applicable regulations. No recommendation as to products or vendors is made or should be implied.

NO REPRESENTATION OR WARRANTY IS MADE THAT THE INFORMATION IS TECHNICALLY ACCURATE OR SUFFICIENT OR CONFORMS TO ANY STATUTE, GOVERNMENTAL RULE OR REGULATION, AND FURTHER, NO REPRESENTATION OR WARRANTY IS MADE OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. NO oneM2M PARTNER TYPE 1 SHALL BE LIABLE, BEYOND THE AMOUNT OF ANY SUM RECEIVED IN PAYMENT BY THAT PARTNER FOR THIS DOCUMENT, WITH RESPECT TO ANY CLAIM, AND IN NO EVENT SHALL oneM2M BE LIABLE FOR LOST PROFITS OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES. oneM2M EXPRESSLY ADVISES ANY AND ALL USE OF OR RELIANCE UPON THIS INFORMATION PROVIDED IN THIS DOCUMENT IS AT THE RISK OF THE USER.

Contents

3Contents

1
Scope
4
2
References
4
2.1
Normative references
4
2.2
Informative references
4
3
Definitions, symbols and abbreviations
4
3.1
Definitions
4
3.2
Symbols
5
3.3
Abbreviations
5
4
Conventions
5
5
Introduction
5
5.1
Background
5
5.2
Architecture and protocol stack
5
5.3
Key feature
7
5.4
Data model
8
6
Scenarios for oneM2M and Modbus Interworking
8
6.1
Use case
8
7
Possible Solutions for oneM2M and Modbus Interworking
9
7.1
Exposure of Modbus Functions to the oneM2M System
9
7.1.1
Summary of Interworking Architecture for exposure of Modbus Functions
9
7.1.2
Registration
10
7.1.2.1
<AE> resource representing a Modbus-IPE
10
7.1.2.2
deviceThermometer as a <flexContainer> resource specialization representing a Modbus Device
11
7.1.2.3
Defining SDT DataPoints based on a Modbus device’s register information
11
7.1.2.4
Temperature as a <flexContainer> resource specialization representing an SDT Module for a Modbus device
12
7.1.2.5
Modbus device registration call flow
13
7.1.3
Retrieve data from a Modbus device
14
7.1.4
Write data to a Modbus Slave device
15
8
Conclusion
16
History
17

1
Scope

The present document studies to enhance oneM2M system to support interworking with modbus devices for horizonally extending oneM2M platform. The objectives of the Technical Report are to investigate interworking between modbus device and the oneM2M system:
· Enhancements for oneM2M system support interworking with Modbus device, such as supporting Master-slaver communication method
· Modbus data model is mapped to oneM2M resources
· Instantiating Modbus data model by usage of oneM2M base ontology

· Interworking procedure by operating oneM2M resource and reusing Gerneric Interworking

Furthermore, depending on the study result of the TR, normative works may be followed as CRs to the existing TSes.
2
References

References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references,only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.
NOTE:
While any hyperlinks included in this clause were valid at the time of publication oneM2M cannot guarantee their long term validity.
2.1
Normative references

The following referenced documents are necessary for the application of the present document.
Not applicable.

2.2
Informative references
The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
[i.1]
oneM2M Drafting Rules (http://member.onem2m.org/Static_pages/Others/Rules_Pages/oneM2M-Drafting-Rules-V1_0.doc)
[i.2]
Modbus website, http://www.modbus.org/
[i.3]
Modbus_Application_Protocol_V1_1b3, Modbus Organization
[i.4]
Modbus_Messaging_Implementation_Guide_V1_0b, Modbus Organization
[i.5]
Modbus_over_serial_line_V1_02, Modbus Organization
[i.6]
oneM2M TS-0011: "Common Terminology".
3
Definitions, symbols and abbreviations

3.1
Definitions

For the purposes of the present document, the [following] terms and definitions [given in TS-0011[i.6]] apply:

3.2
Symbols
For the purposes of the present document, the [following] symbols [given in TS-0011[i.6]] apply:

3.3
Abbreviations

For the purposes of the present document, the [following] abbreviations [given in TS-0011[i.6]] apply:
4
Conventions
The key words “Shall”, ”Shall not”, “May”, ”Need not”, “Should”, ”Should not” in this document are to be interpreted as described in the oneM2M Drafting Rules [i.1]
5
Introduction
5.1
Background
Modbus was first introduced by Modicon® (now part of Schneider Electric®) for process control systems. It is used to establish master-slave/client-server communication between intelligent devices and sensors and instruments. It is a de facto standard, truly open and the most widely used network protocol in the industrial manufacturing environment.

Modbus is easy to deploy and maintain, and used across a wide range of industries. It is also an ideal protocol for remote terminal unit (RTU) applications where wireless communication is required. Modbus is not only an industrial protocol. Building, infrastructure, transportation and energy applications also make use of its benefits.
Originally, Modbus was implemented as an application level protocol intended to transfer data over serial port, it has expanded to include implementations over serial, TCP/IP, and UDP. Today, it is a common protocol used by countless devices for simple, reliable, and efficient communication across a variety of networks. Modbus was designed as a request-response protocol with a flexible data and function model that are part of the reason it is still in use today. In addition, support for the simple and elegant structure of Modbus continues to grow.
5.2
Architecture and protocol stack
The Modbus protocol follows a master and slave architecture where a master transmits a request to a slave and waits for the response (as shown in figure5.2-1). This architecture gives the master full control over the flow of information, which has benefits on older multidrop serial networks. Even on modern TCP/IP networks, it gives the master a high degree of control over slave behavior, which is helpful in some designs.
[image: image2.png]Send Request

E— N Read Response

Master Slave

Figure 5.2-1 The Master-Slave, Request-Response Relationship of Modbus device

The Modbus protocol allows an easy communication within all types of network (as shown in Figure 5.2-2). Every type of devices (such as PLC, Driver, Motion control, I/O Device…) can use Modbus protocol to initiate a remote operation.
The same communication can be done as well on serial line as on an Ethernet TCP/IP networks. Gateways allow a communication between several types of buses or network using the Modbus protocol.

[image: image3.emf]Gateway

PLC

I/O

Device

HMI

Gateway

Device

I/O

Device I/O

Modbus on TCP/IP

Modbus on RS

485

Modbus on MB

+

Server Server

Modbus communication

Figure 5.2-2 Modbus Network Architecture

There are many variants of Modbus protocols:
· Modbus RTU — This is used in serial communication & makes use of a compact, binary representation of the data for protocol communication. Modbus RTU is the most common implementation available for Modbus. A Modbus RTU message must be transmitted continuously without inter-character hesitations.
· Modbus ASCII — This is used in serial communication and makes use of ASCII characters for protocol communication.
· Modbus TCP/IP or Modbus TCP — This is a Modbus variant used for communications over TCP/IP networks. It does not require a checksum calculation as lower layers already provide checksum protection.

· Modbus over TCP/IP or Modbus over TCP or Modbus RTU/IP — This is a Modbus variant that differs fromModbus TCP in that a checksum is included in the payload as with Modbus RTU.

· Modbus over UDP — Some have experimented with using Modbus over UDP on IP networks, which removes the overheads required for TCP.
· Modbus Plus (Modbus+, MB+ or MBP) — Modbus Plus is proprietary to Schneider Electric® and unlike the other variants, it supports peer-to-peer communications between multiple masters. It requires a dedicated co-processor to handle fast HDLC-like token rotation. It uses twisted pair at 1 Mbit/s and includes transformer isolation at each node, which makes it transition/edge triggered instead of voltage/level triggered.
At present, Modbus TCP is more efficient networking through the use of dedicated connections and identifiers for each request and response. Modbus RTU and Modbus ASCII are older serial ADU formats with the primary difference between the two being that RTU uses a compact binary representation while ASCII sends all requests as streams of ASCII characters.

The Modbus protocol defines a simple protocol data unit (PDU) independent of the underlying communication layers. The mapping of Modbus protocol on specific buses or network can introduce some additional fields on the application data unit (ADU). The Modbus frame is as shown in figure 5.2-3.

[image: image4.png]Additional address

Error check

Figure 5.2-3 Modbus Frame

A Modbus frame or Modbus Application Data Unit (ADU) consists of the following:
· Additional address field: A field containing additional addresses used by the underlying communication protocol. It is 1 byte slave address over serial links (such as RS 232, RS 485). For Modbus TCP, it is called Modbus Application Protocol (MBAP) Header that include transaction identifier, protocol identifier, length and unit identifier.

· Modbus PDU: It is independent of underlying communication layer and consists of two parts: 1) 1-byte Function code to indicate identity of the requested service, 2) Variable length data field containing payload of the requested service. There are three types of Modbus PDUs: Modbus Request, Modbus Response and Modbus Exception.
· An optional error check field. Modbus TCP is not needed.
5.3
Key feature
There are many devices and gateways that support Modbus, as it is a very simple protocol and convenient to transmit and understand. Specially, Modbus TCP/IP simply takes the Modbus instruction set and wraps TCP/IP around it. If you already have a Modbus driver and you understand Ethernet and TCP/IP sockets, you can have a driver up and running and talking to a PC in a few hours. Development costs are exceptionally low. Minimum hardware is required, and development is easy under any operating system. The following are key features of Modbus:
· Communication mode
Modbus uses master-slave/client-server communication mode, Master issues a unicast request and slave responds to that. In serial and MB+ networks, only the node assigned as the Master may initiate a command. On Ethernet, any device can send out a Modbus command, although usually only one master device does so. Modbus also supports broadcast mode where master’s request is sent to all the slaves but no slave responds to broadcast request.
· Data model
Modbus manages the access of data simply and flexibly. Modbus data are divided into four ranges, they are that these types of data can be provided/alterable by I/O system or an application program. In most cases, slaves store each type of data that it supports in separate memory, and limits the number of data elements that a master can access.
· Function code
There are three categories of Modbus Function codes, including Public Function codes, User-Defined Function codes and Reserved Function codes. Public Function codes can satisfy common operations, such as accessing data in device by reading and writing data model, and simply diagnosing device. Function code is flexibility that user can select and implement a function code by self-defining User-Defined Function codes according to service requirements.

· Availability of many devices
Interoperability among different vendors' devices and compatibility with a large installed base of Modbus-compatible devices makes Modbus an excellent choice.
5.4
Data model

The Modbus standard defines bit-addressable and 16-bit word addressable input and output data items. Modbus bases its data model on a series of tables that have distinguishing characteristics. The four primary tables for data model are as following:
Table 5.4-1 Modbus data model table

	Primary tables
	Object type
	Type of access
	Comments

	Discretes Input
	Single bit
	Read-Only
	This type of data can be provided by an I/O system, e.g. read the status of switch

	Coils
	Single bit
	Read-Write
	This type of data can be alterable by an application program, e.g. switch on a transducer

	Input Registers
	16-bit word
	Read-Only
	This type of data can be provided by an I/O system, e.g. read temperature on a sensor

	Holding Registers
	16-bit word
	Read-Write
	This type of data can be alterable by an application, e.g. set value to a controller.

There are two ways of organizing the data in device. Each device can have its own organization of the data according to its application. The figure 5.4-1 below shows an example for data organization in a device having digital and analog, inputs and outputs. Data block (device application memory) is accessible with different Modbus functions, such as read coils, write holding registers. All the data elements handled via Modbus can be located in device application memory by reference numbers form 1to n. The pre-mapping between the Modbus data model and the device application is totally vendor device specific.

[image: image5.emf]Coils

Input

Registers

Holding

Registers

Discretes

Input

Separate or

overlapping

blocks of

memory

Deviceapplication

memory

Modbus Device

Modbus Request

Read Input

Read Coils

Read Registers

Write Registers

Figure 5.4-1 Implementation example of Modbus data model
6
Scenarios for oneM2M and Modbus Interworking
6.1
Use case
As the Modbus protocol is mainly used for industial purposes, a use case where a group of sensors working over Modbus are remotely monitored by client application will be described. The figure 6.1-1 below shows a possible use case of interworking between Modbus devices and oneM2M services. A factory has 3 sensors working on Modbus protocol which are connected to a local Modbus gateway (IPE) with an embedded application to send sensors data to oneM2M cloud server. The client can monitor sensors readings by accessing oneM2M cloud server.

[image: image6.png]Factory

Sensor 1 E@

— W
R —_—)
i i | °]
i i] e—

sensor2fCO2) .. H

! oneM2M
Sensor 3_\0\ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, cloud server

’ 1 N

Modbus
gateway (IPE)

Client

Figure 6.1-1 Use case architecture overview.

Figure 6.1-2 shows how the architecture presented in previous section can be presented in the form of Modbus and oneM2M entites. Sensors 1, 2, 3 from Figure 6.1-1 are represented as Modbus Slaves and are connected to Modbus Master. Modbus Master is integrated with oneM2M AE entity to use services provided by IN-CSE. Modbus Master coupled with a oneM2M AE entity that makes up an IPE. It is a key unit to provide interworking between Modbus devices and a oneM2M based platform. The client application is represented as an AE.

[image: image7]
Figure 6.1-2 Use case entity representation
7
Possible Solutions for oneM2M and Modbus Interworking
7.1
Exposure of Modbus Functions to the oneM2M System

7.1.1
Summary of Interworking Architecture for exposure of Modbus Functions

A Modbus-IPE that exposes Modbus Functions to the oneM2M System is responsible for the creation of oneM2M resources representing the exposed Modbus Functions on its Registrar CSE. A single Modbus-IPE may expose Modbus Functions provided by one or more Modbus devices to the oneM2M System. A high-level summary of the relationship of Modbus devices providing Modbus Functions to be exposed to the oneM2M System and the Modbus-IPE representing the exposed Modbus Functions is depicted in figure 7.1.1-1.

[image: image8.emf]Resource instances representing

exposed Modbus functions

CSE hosting interworking functionality

Mca

Modbus-IPE

Create & manage

oneM2M resources &

exposed Modbus

functions

Initiate discovery &

execution of Modbus

functions

oneM2M AE

Modbus

device 1

Modbus

device 2

Modbus

device 3

Modbus device(s)

Modbus

Modbus

Master

Figure 7.1.1-1 Exposure of Modbus Functions to the oneM2M System via Modbus-IPE
In the oneM2M System, Modbus devices are designed according to the oneM2M Smart Device Template (SDT) described in TS-0023. SDT offers a generic and flexible modeling structure for non-oneM2M devices including Modbus devices.

7.1.2
Registration
7.1.2.1
<AE> resource representing a Modbus-IPE

The first step to support the Modbus interworking with the oneM2M System is to register a Modbus-IPE to its Registrar CSE as an <AE> resource. When the Modbus-IPE completes its registration with the Registrar CSE by initiating an <AE> Create request, an <AE> resource representing that Modbus-IPE is created as a result of the registration. This resource is a parent for <flexContainer> resource specializations representing Modbus devices connected to an associated Modbus Master. These devices are modelled using an SDT Device (details are described in the next section). Figure 7.1.2.1-1 shows an example resource tree structure of the Modbus_IPE <AE> resource. Modbus_IPE has a [deviceThermometer] as a child resource, which represents a thermometer Modbus device.
[image: image1.png]

Figure 7.1.2.1-1 <AE> resource representing a Modbus-IPE
7.1.2.2
deviceThermometer as a <flexContainer> resource specialization representing a Modbus Device
Modbus devices shall be modelled as SDT Devices. Mapping of the SDT Device model to oneM2M resources is performed according to the general mapping procedure described in clause 6.2.2 of TS-0023. A SDT Device component is mapped to a specialization of a <flexContainer> resource with an associated 'DeviceClass ID' (e.g. "org.onem2m.home.device.tv") containerDefinition attribute.

Figure 7.1.2.2-1 shows an example of a Modbus device:[deviceThermometer], which is modelled as a <flexContainer> resource specialization derived from the corresponding SDT Device component. The model of [deviceThermometer] follows the schema described in clause 5.5.45 of TS-0023.

[image: image11.png][deviceThermometer]

e
L

containerDefinition

e
N

ontologyRef

—_

contentSize

e
N

N YN)

o

nodelink
0.1
[temperature]
0.1
[battery]
0.n Lo
<subscription>

7.1.2.3
Defining SDT DataPoints based on a Modbus device’s register information

In order to enable interworking, a mapping between a Modbus device’s registers and SDT DataPoints is defined. Every Modbus register has the following properties: slave id, register type, address, length. The information of these registers are typically provided by a manufacturer in a device’s datasheet. Register type and length are used to define the following SDT DataPoint attributes: DataType, writable and readable. The rules to perform the mapping are shown in Table 7.1.2.3-1. A holding register and input register of length 2 can be mapped into either xs:integer or xs:float DataType depending on data context. As an example mapping, a coil register can be mapped to a DataPoint with DataType (xs:boolean), Redable (True), and Writable (True).

This information can be stored in an optional attribute called nodnProperties of the <flexContainer> specialization.

Table 7.1.2.3-1 Mapping between Modbus register types and SDT Data points
	Modbus Register
	Mapping
	SDT Data points

	Modbus register type
	Length
	
	DataType
	Readable
	Writable

	Coil (1 bit, Read-Write)
	1 (1 bit)
	(
	xs:boolean
	True
	True

	Discrete Input (1 bit, Read-Only)
	1 (1 bit)
	
	xs:boolean
	True
	False

	Holding Register (16-bit, Read-Write)
	2 (4 bytes)
	
	xs:integer / xs:float
	True
	True

	Input Register (16-bit, Read-Only)
	2 (4 bytes)
	
	xs:integer / xs:float
	True
	False

	Holding Register (16-bit, Read-Write)
	1 (2 bytes)
	
	xs:integer
	True
	True

	Input Register (16-bit, Read-Only)
	1 (2 bytes)
	
	xs:integer
	True
	False

	Holding Register (16-bit, Read-Write)
	4 (8 bytes)
	
	xs:double
	True
	True

	Input Register (16-bit, Read-Only)
	4 (8 bytes)
	
	xs:double
	True
	False

7.1.2.4
Temperature as a <flexContainer> resource specialization representing an SDT Module for a Modbus device
Depending on the functionalities of a target Modbus device, one or more ModuleClasses, which are generic ModuleClasses, defined in TS-0023 can be used to design a ModuleClass for the target Modbus device. The derived ModuleClass describes all functional capabilities of the target Mobus device.

For the [deviceThermometer] example described in clause 7.1.2.2, two ModuleClasses, Temperature (see clause 5.3.76 in TS-0023) and Battery (see clause 5.3.10 in TS-0023), can be used. DataPoints of a parent ModuleClass (in this example Thermometer) are created according to the mapping rule described in clause 7.1.2.3. The child ModuleClasses (in this case Temperature and Battery) inherit from those generic ModulesClasses.

ModuleClass is mapped into <flexContainer> resource specialization, for example Temperature, and its data points are mapped into customAttributes of that <flexContainer> resource specialization. However, those ModuleClasses do not consider interworking options with a non-oneM2M Device Nodes (noDN) such as Modbus devices. For that reason, a nodnProperties is added as customAttribute of a <flexContainer> resource which is mapped from an associated ModuleClass model.

The nodnProperties attribute stores one-to-one mappings in serialized string format (e.g. JSON) between each DataPoint and a Modbus register from which it is created. nodnProperties contains slave id, register type, address, and length attributes for each DataPoint as well as a protocol type (in this case Modbus). An example content of nodnProperties is shown on Figure 7.1.2.4-1.

[image: image9]
Figure 7.1.2.4-1 An example contents of noDNproperties
<subscription> resources are created for receiving notifications on <flexContainer> resource updates and shall be of type blocking subscription, that is notificationEventType attribute shall have a value "G" (see clause 9.6.8 in TS-0001). The blocking type of <subscription> resource ensures that a notification reaches its destination and no other UPDATE or DELETE operations are processed until the UPDATE has completed. notificationContentType attribute shall be set to "all attributes" so that nodnProperties attribute of a parent <flexContainer> resource is included into notification message. A subset of attributes of the subscribed-to resource that are triggering a notification when modified can be specified in the attribute tag of the notificationEventCriteria attribute.
[image: image12.png]Modbus device

AE

IPE CSE
< 1. Update attribute of <flexContainer>
| 2. Notification with value to be written
<
P 3. Write new value to a register
<
4. Responds with data written N
i 5. Response for successful device update
>
6. Update
<flexContainer>
7. Response for <flexContainer> update

Figure 7.1.2.4-2 shows an example of a Module, the specialization for Temperature ModuleClass, which is a <flexContainer> resource specialization derived from a corresponding SDT Module component. Here it is assumed that DataPoints of the [Temperature] resource specialization are derived as a result of the mapping procedures described in clause 7.1.2.3 and DataPoints are obtained as in clause 5.3.76 of TS-0023. nodnProperties [customAttribute] is added to support Modbus interworking.
Figure 7.1.2.4-2 [Temperature] as a <flexContainer> resource specialization representing an SDT Module for Modbus device
7.1.2.5
Modbus device registration call flow
Figure 7.1.2.5-1 shows the device registration call flow.

1. Modbus IPE sends a Create <AE> request to a Hosting CSE to register the Modbus-IPE (see clause 7.4.5.2.1 in TS-0004). The request must specify App-ID and requestReachabily attributes of the to be created <AE> resource. Other <AE> attribtes are optional.

2. After verifying the privileges and the given attributes, the Hosting CSE creates the <AE> resource.
3. Hosting CSE responds with the successful result of <AE> resource creation, otherwise it responds with an error.
4. Modbus devices are registered at Modbus IPE, in particular Modbus interworking information (slave id, registers type, address, length) are defined in accordance with provided device datasheet.

5. Modbus IPE sends corresponding requests to a CSE to create resources as described in sections 7.1.2.1 - 7.1.2.3. For all <flexContainer> resources, the containerDefinition attribute is mandatory. The contentSize attribute is calculated by Hosting CSE. CustomAttributes must be specified if they are mandatory for that <flexContainer>. Each resource creation is originated by Modbus-IPE in a separate request for each resource.

For the presented above thermometer example, [deviceThermometer], [temperature] and [battery] as child resources of [deviceThermometer], and <subscription> resources for [temperature] and [battery] shall be created.
6. After verifying the privileges and the given attributes, the Hosting CSE creates each resource.
7. [image: image13.png]Modbus IPE oneM2M CSE

1. Modbus master registration /
Create <AE>

A
y

2. Create <AE>

3. Create <AE> response

4. Add device
information

5. Create device resources

N
7>

6. Create device
resources

7. Create device resources response

A

Hosting CSE responds with the successful result for each created resource, otherwise it responds with an error.
 Figure 7.1.2.5-1 Device registration call flow

7.1.3
Retrieve data from a Modbus device
Suppose a scenario when current readings of a Modbus device need to be displayed at an AE application and Modbus-IPE continuously monitors a Modbus device and uploads that data to a CSE hosted on a server in the network. Inititially, AE shall be subscribed to the <flexContainer> resource, which is a specialization of some SDT module for a Modbus device (e.g. Temperature, see clause 7.1.2.4), using a <subscription> resource (notificationEventType A, see clause 9.6.8 in TS-0001). The following steps described in the Figure 7.1.3-1 shall be performed for this scenario:

Table 7.1.3-1 Register type to function code mapping for Modbus read request
	Register type
	Function code

	Coil
	01

	Discrete input
	02

	Holding register
	03

	Input register
	04

1. Modbus IPE sends a retrieve <flexContainer> request to a hosting CSE. This <flexContainer> resource is a specialization of some Modbus module and contains nodnProperties attribute.

2. Hosting CSE responds to the retrieve request with <flexContainer> data that includes nodnProperties.
3. Modbus IPE uses information stored in nodnProperties to compose Modbus read request. The function code can be identified from a register type as in the Table 7.1.3-1. Slave id, address and length should written in correspong message fields. After theModbus message is composed, the Modbus IPE sends this message to Modbus device.

4. Modbus device responds with requested data.

5. Modbus IPE sends an update <flexContainer> request (see clause 7.4.37.2.3 in TS-0004). The request body specifies the customAttributes to be updated and their new values read from Modbus device.

6. After verifying the privileges and the given attributes, the hosting CSE updates <flexContainer> resource.

7. The hosting CSE responds with updated <flexContainer> data after successful update to Modbus IPE, otherwise it responds with an error.
8. The hosting CSE sends a notification for <flexContainer> resource update to the AE (see clause 7.5.1.2.2 in TS-0004).

9. The AE sends a confirmation message about notification receiving to the hosting CSE (see clause 7.5.1.2.2 in TS-0004).

[image: image10.png]Modbus device

3. Retrieve data request

CSE

A

4. Response with data

IPE
1. Retrieve <flexContainer> request
to get nodnProperties
2. Response with <flexContainer> data
&
Y
5

. Update <flexContainer> request with read data‘

A

rd

AE

<flexCo

6. Update
ntainer>

7. Response for <flexContainer> update

8. Notification with new data in <flexContainer>

&
<

9. Confirmation of receiving notification

r g

Figure 7.1.3-1 Modus Slave Device monitoring call flow

Table 7.1.4-1 Register type and length to function code mapping for Modbus write request

	Register type
	Length > 1
	Function code

	Coil
	false
	05

	Coil
	true
	0F

	Holding register
	false
	06

	Holding register
	true
	10

7.1.4
Write data to a Modbus Slave device
Suppose a scenario when it is required to update some value in a Modbus device through an AE application registered to a CSE. Inititially, the Modbus-IPE shall be subscribed to the <flexContainer> resource, which is a specialization of some SDT module for a Modbus device (e.g. Temperature, see clause 7.1.2.4), using a blocking type of <subscription> resource (notificationEventType G, see clause 9.6.8 in TS-0001). The following steps described in the Figure 7.1.4-1 shall be performed for this scenario:
1. In order to write data to a Modbus device from an AE, the AE sends a request to update specified customAttributes of the <flexContainer> resource which map to the Modbus Device (see clause 7.4.37.2.3 in TS-0004).

2. After verifying the privileges and the given attributes, the hosting CSE sends a notification for the received write request to the Modbus IPE (notification includes nodnProperties) and temporarily blocks the <flexContainer> resource for any UPDATE operations (see clause 7.5.1.2.2 in TS-0004).

3. Modbus IPE uses information stored in nodnProperties to compose Modbus write request. The function code to be used can be identified from a register type and length as in the Table 7.1.4-1. Slave id, address, and length should written in corresponding message fields. After Modbus message is composed Modbus IPE sends this message to Modbus device.

4. Modbus device responds with written data to Modbus IPE.
5. Modbus IPE responds to the hosting CSE with successful device update message, otherwise responds with an error (see clause 7.5.1.2.2 in TS-0004).

6. If the device was updated successfully, the hosting CSE updates the <flexContainer> resource internally, otherwise discards the changes. The resource is unlocked for UPDATE operations.

7. The hosting CSE responds to AE with the result of UPDATE request.
 Figure 7.1.4-1 Writing to a Modbus Slave Device call flow

8
Conclusion
This TR investigates a mechanism how oneM2M application can access data stored in modbus devices via an interworking proxy. After an in-depth analysis of the Modbus protocol, an interworking mechanism via an interworking proxy using SDT 4.0 and <flexcontainer> resources. In particular, a nodnProperties attribute is introduced as a customAttribute of a <flexContainer> resource which is mapped from an associated Modbus ModuleClass model.

As the proposed interworking mechanism in this TR provides a proper solution for Modbus interworking, it is recommended to develop a normative standalone TS for supporting Modbus interworking based on the proposed mechanism.

History

	Publication history

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	Draft history (to be removed on publication)

	V0.0.1
	2017-03-27
	Initial Skeleton

	V0.1.0
	2017-04-07
	Incorporated contributions:

ARC-2017-0131R02-Modbus_Introduction

	V0.2.0
	2019-06-13
	Incorporated agreed contributions:
SDS-2019-0195R02 Modbus interworking scenarios

	V0.3.0
	2019-12-04
	Incorporated agreed contributions:

SDS-2019-0659R03 Modbus interworking procedures

	
	
	

AE

Modbus

Master

IPE

IN-CSE

Mca

Slave 1

Slave 2

Slave 3

Mca

AE

Modbus_IPE

[deviceThermometer]

<subscriptions>

0..n

0..n

�

Figure 7.1.2.2-1 [deviceThermometer] resource representing a Modbus Slave

{"currentTemperature": {

"slaveID": 1,

"registerType": "inputRegister", 	"address": "23",					"length": 2

},

"targetTemperature": {

"slaveID": 1

"registerType": "holdingRegister", 	"address": "25",					"length": 2

},�"unit": {…},

…

}

© oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC)
Page 1 of 11
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

Gateway
PLC
I/O
Device
HMI
Gateway
Device
I/O
Device
I/O
Modbus on TCP/IP
Modbus on RS485
Modbus on MB+
Server
Server
Modbus communication

_1552418278.vsd
�

Coils

Input Registers

Holding Registers

Discretes
Input

Separate or overlapping blocks of memory

Device application memory

Modbus Device

Modbus Request

Read Input

Read Coils

Read Registers

Write Registers

