
	[image: image1.png]


	oneM2M
Technical Report

	Document Number
	oneM2M-TR-0050-V-0.10.0

	Document Name:
	Attribute Based Access Control Policy


	Date:
	2019-July-15

	Abstract:
	This work item develops attribute based access control policy scheme and the corresponding access control policy management mechanism in oneM2M System.

	Template Version: January 2017 (Do not modify)


The present document is provided for future development work within oneM2M only. The Partners accept no liability for any use of this report.
The present document has not been subject to any approval process by the oneM2M Partners Type 1.  Published oneM2M specifications and reports for implementation should be obtained via the oneM2M Partners' Publications Offices.
About oneM2M 

The purpose and goal of oneM2M is to develop technical specifications which address the need for a common M2M Service Layer that can be readily embedded within various hardware and software, and relied upon to connect the myriad of devices in the field with M2M application servers worldwide. 

More information about oneM2M may be found at:  http//www.oneM2M.org

Copyright Notification

© 2017, oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC).

All rights reserved.
The copyright and the foregoing restriction extend to reproduction in all media.

Notice of Disclaimer & Limitation of Liability 

The information provided in this document is directed solely to professionals who have the appropriate degree of experience to understand and interpret its contents in accordance with generally accepted engineering or other professional standards and applicable regulations. No recommendation as to products or vendors is made or should be implied. 

NO REPRESENTATION OR WARRANTY IS MADE THAT THE INFORMATION IS TECHNICALLY ACCURATE OR SUFFICIENT OR CONFORMS TO ANY STATUTE, GOVERNMENTAL RULE OR REGULATION, AND FURTHER, NO REPRESENTATION OR WARRANTY IS MADE OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. NO oneM2M PARTNER TYPE 1 SHALL BE LIABLE, BEYOND THE AMOUNT OF ANY SUM RECEIVED IN PAYMENT BY THAT PARTNER FOR THIS DOCUMENT, WITH RESPECT TO ANY CLAIM, AND IN NO EVENT SHALL oneM2M BE LIABLE FOR LOST PROFITS OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES. oneM2M EXPRESSLY ADVISES ANY AND ALL USE OF OR RELIANCE UPON THIS INFORMATION PROVIDED IN THIS DOCUMENT IS AT THE RISK OF THE USER.

Contents

3Contents

1
Scope
6
2
References
6
2.1
Normative references
6
2.2
Informative references
6
3
Definitions, symbols and abbreviations
6
3.1
Definitions
6
3.2
Symbols
7
3.3
Abbreviations
7
4
Conventions,
7
5
Security areas and high level security requirements
7
5.1
Security areas
7
5.2
High level security requirements
7
6
Security Area #1: Attribute Based Access Control Policy
8
6.1
Introduction
8
6.2
Key Issues
9
6.2.1
Key Issue #1.1: Support attribute level access control to resource
9
6.2.1.1
Key issue details
9
6.2.1.2
Potential security requirements
10
6.2.2
Key Issue #1.2: Support more policy combining algorithms
10
6.2.2.1
Key issue details
10
6.2.2.2
Potential security requirements
10
6.2.3
Key Issue #1.3: Non-Originator Context
10
6.2.3.1
Key issue details
10
6.2.3.2
Potential security requirements
10
6.2.4
Key Issue #1.4: Propagate ACPs
10
6.2.4.1
Key issue details
10
6.2.4.2
Potential security requirements
11
6.2.5
Key Issue #1.5: ACPs with limited usage configurations
11
6.2.5.1
Key issue details
11
6.2.5.2
Potential security requirements
11
6.2.6
Key Issue #1.6: Hard to determine if an entity has authorization
11
6.2.6.1
Key issue details
11
6.2.6.2
Potential security requirements
11
6.2.m
Key Issue #1.m: <key issue name>
12
6.2.m.1
Key issue details
12
6.2.m.2
Potential security requirements
12
6.3
Solutions
12
6.3.1
Solution #1.1: ABAC Policy Data Flow Model
12
6.3.1.1
Introduction
12
6.3.1.2
Solution details
12
6.3.1.3
Evaluation
13
6.3.2
Solution #1.2: ABAC Policy Language Model
13
6.3.2.1
Introduction
13
6.3.2.2
Solution details
13
6.3.2.2.1
Policy Language Model
13
6.3.2.2.2
Rule Primitive
14
6.3.2.2.3
Rule
14
6.3.2.2.4
Policy
15
6.3.2.2.5
Policy Set
15
6.3.2.3
Evaluation
16
6.3.3
Solution #1.3: ABAC Rule and Policy Combining Algorithms
16
6.3.3.1
Introduction
16
6.3.3.2
Solution details
16
6.3.3.2.1
Combining Algorithms
16
6.3.3.2.2
Deny-overrides
16
6.3.3.2.3
Permit-overrides
16
6.3.3.2.4
Deny-unless-permit
17
6.3.3.2.5
Permit-unless-deny
17
6.3.2.2.6
Policy evaluation result
17
6.3.3.3
Evaluation
17
6.3.4
Solution #1.4: Non-Originator Context
17
6.3.4.1
Introduction
17
6.3.4.2
Solution details
18
6.3.4.3
Evaluation
19
6.3.5
Solution #1.5: ACPs with limited usage configurations
19
6.3.5.1
Introduction
19
6.3.5.2
Solution details
19
6.3.5.3
Evaluation
19
6.3.6
Solution #1.6 Propagate ACPs
19
6.3.6.1
Introduction
19
6.3.6.2
Solution details
20
6.3.6.3
Evaluation
20
6.3.7
Solution #1.7: Hard to determine if an entity has authorization
20
6.3.7.1
Introduction
20
6.3.7.2
Solution details
21
6.3.7.3
Evaluation
21
6.3.8
Solution #1.8: ABAC Policy Syntax
21
6.3.8.1
Introduction
21
6.3.8.2
Solution details
21
6.3.8.2.1
Element <PolicySet>
21
6.3.8.2.2
Element <Policy>
23
6.3.8.2.3
Element <Rule>
24
6.3.8.2.4
Element <Primitive>
24
6.3.8.2.5
Element <Operand>
25
6.3.8.2.6
Element <AttributeDesignator>
25
6.3.8.2.7
Element <AttributeValue>
25
6.3.8.2.8
Primitive comparison functions
26
6.3.9
Solution #1.9: ABAC policy resource
26
6.3.9.1
Introduction
26
6.3.9.2
Solution details
26
6.3.9.2.1
Resource Type abacPolicy
26
6.3.10
Solution #1.10: Attribute-Level Access Control
27
6.3.10.1
Introduction
27
6.3.10.2
Solution details
27
6.3.10.2.1
Attribute-Level Access Control Rules
27
6.3.10.2.2
Access Control Decision
28
6.3.n
Solution #1.n: <solution name>
29
6.3.n.1
Introduction
29
6.3.n.2
Solution details
29
6.3.n.3
Evaluation
29
6.4
Conclusions
29
7
Security Area #2: Enhanced Privacy Policy Enforcement
29
7.1
Introduction
29
7.2
Key Issues
30
7.2.1
Key Issue #2.1: Support privacy policy
30
7.2.1.1
Key issue details
30
7.2.1.2
Potential security requirements
30
7.2.m
Key Issue #2.m: <key issue name>
31
7.2.m.1
Key issue details
31
7.2.m.2
Potential security requirements
31
7.3
Solutions
31
7.3.1
Solution #2.1: Privacy policy enforcement
31
7.3.1.1
Introduction
31
7.3.1.2
Solution details
31
7.3.1.2.1
Obtaining privacy policy
31
7.3.1.2.2
Generic procedure
32
7.3.2
Solution #2.2: Attribute-Level Privacy Policy Solution
32
7.3.2.1
Introduction
32
7.3.2.2
Solution details
33
7.3.n
Solution #2.n: <solution name>
33
7.3.n.1
Introduction
33
7.3.n.2
Solution details
33
7.3.n.3
Evaluation
33
7.4
Conclusions
33
8
Security Area #3: Heterogeneous Access Control Policy Integration
34
8.1
Introduction
34
8.2
Key Issues
34
8.2.1
Key Issue #3.1: Heterogeneous access control policy integration
34
8.2.1.1
Key issue details
34
8.2.1.2
Potential security requirements
34
8.2.2
Key Issue #3.2: Authorization mechanism combination
34
8.2.2.1
Key issue details
34
8.2.2.2
Potential security requirements
35
8.2.m
Key Issue #3.m: <key issue name>
35
8.2.m.1
Key issue details
35
8.2.m.2
Potential security requirements
35
8.3
Solutions
35
8.3.1
Solution #3.1: Access control combining policy
35
8.3.1.1
Introduction
35
8.3.1.2
Solution details
36
8.3.1.2.1
Resource Type accessControlCombiningPolicy
36
8.3.1.2.2
accessControlOriginators
38
8.3.1.2.3
accessControlOperations
38
8.3.1.2.4
Procedures
38
8.3.n
Solution #3.n: <solution name>
40
8.3.n.1
Introduction
40
8.3.n.2
Solution details
40
8.3.n.3
Evaluation
40
8.4
Conclusions
40
x
Security Area #y: <security area name>
40
x.1
Introduction
40
x.2
Key Issues
40
x.2.m
Key Issue #y.m: <key issue name>
41
x.2.m.1
Key issue details
41
x.2.m.2
Potential security requirements
41
x.3
Solutions
41
x.3.n
Solution #y.n: <solution name>
41
x.3.n.1
Introduction
41
x.3.n.2
Solution details
41
x.3.n.3
Evaluation
41
x.4
Conclusions
41
z
Conclusions
41
Proforma copyright release text block
42
Annexes
42
Annex <y>: Bibliography
43
History
43





































































































































































1
Scope

The present document provides options and analyses for the security features and mechanisms supporting attribute based access control policy, enhanced privacy policy enforcement, heterogeneous access control policy integration and access control policy management for oneM2M.

The scope of this technical report includes key issue analyses, generic requirements, potential solutions and evaluations of these solutions for the four security aspects mentioned above.

2
References

The following text block applies. 

References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references,only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

2.1
Normative references

As a Technical Report (TR) is entirely informative it shall not list normative references.
The following referenced documents are necessary for the application of the present document.
Not applicable.

2.2
Informative references
Clause 2.2 shall only contain informative references which are cited in the document itself.

The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
 [i.1]
oneM2M TS-0001: "Functional Architecture".

[i.2]
oneM2M TS-0003: "Security Solutions".
[i.3]
oneM2M TS-0004: "Service Layer Core Protocol Specification".
[i.4]
oneM2M TR-0016: "Study of Authorization Architecture for Supporting Heterogeneous Access Control Policies".

[i.5]
eXtensible Access Control Markup Language (XACML) Version 3.0. 22 January 2013. OASIS Standard.
[i.6]

3
Definitions, symbols and abbreviations

Delete from the above heading the word(s) which is/are not applicable.
3.1
Definitions

anonymization: a process that removes personally identifiable information from a data set, so that the people whom the data is associated with remain anonymous
pseudonomization: a particular type of anonymization procedure by which personally identifiable information within a data set is replaced by one or more aliased identifiers (i.e. pseudonyms)
3.2
Symbols

Clause numbering depends on applicability.

For the purposes of the present document, the [following] symbols [given in ... and the following] apply:

Symbol format

<symbol>
<Explanation>

<2nd symbol>
<2nd Explanation>

<3rd symbol>
<3rd Explanation>

3.3
Abbreviations

Abbreviations should be ordered alphabetically.

Clause numbering depends on applicability.

For the purposes of the present document, the [following] abbreviations [given in ... and the following] apply:

Abbreviation format

ABAC
Attribute Based Access Control

ASP
Application Service Provider
4
Conventions, 

The key words “Shall”, ”Shall not”, “May”, ”Need not”, “Should”, ”Should not” in this document are to be interpreted as described in the oneM2M Drafting Rules [i.1]
5
Security areas and high level security requirements
5.1
Security areas
Editor's Note: This clause further clarifies the scope of the study by listing the security areas that this TR is working on. 
This document includes the following security areas:
1) Attribute based access control policy deals with architecture and policy aspects of attributes based access control in oneM2M System.
2) Enhanced privacy policy enforcement deals with architecture and policy aspects of privacy protection in oneM2M System.
3) Heterogeneous access control policy integration deals with the integration of different types of access control policies (including privacy policies) in oneM2M System.
4) Access control policy management deals with access control policy provision and the privilege management in the access control policy provision in oneM2M System.
5.2
High level security requirements
Editor's Note: This clause will document high-level requirements that guide the study.
Fine grained access control should be supported, e.g. access control to any resource attribute and child resource.

Privacy control should reach the level of resource attributes and child resources.

Authorization system should support new access control policy types.

Access control policies should be provisioned and managed securely.

6
Security Area #1: Attribute Based Access Control Policy

6.1
Introduction
Editor's Note: This clause will provide general description related to each security area.

The present security area focuses on how to use Attribute Based Access Control (ABAC) in oneM2M System.

ABAC is considered the "next generation" authorization model because it provides dynamic, context-aware and risk-intelligent access control to resources allowing access control policies that include specific attributes from many different information systems to be defined to resolve an authorization and achieve an efficient regulatory compliance, allowing enterprises flexibility in their implementations based on their existing infrastructures.
A typical access control rule can be modelled as a 3-tuple (subject, resource, action) where:
· the subject initiates an access request, 

· the resource is the object which the subject wants to access 

· and the action represents the operation on the object.
When extra access conditions need to be considered, an access control rule can be modelled as a 4-tuple (subject, resource, action, context) where the context represents the conditions under which a specific access control rule can be used for access control. 

Attribute Based Access Control (ABAC) is an access control model that grants or denies access requests based on the attributes of a subject, resource, action, and/or context. In ABAC the attributes can be about anything and anyone. They mainly fall into 4 different categories:

· Subject attributes: attributes describing the user that attempts the access e.g. age, gender, department, role, job, etc.
· Action attributes: attributes describing the action being attempted, e.g. create, read, update, delete, etc.
· Resource attributes: attributes describing the object being accessed, e.g. resource type, creation time, owner, location, etc.
· Context attributes: attributes describing constraint conditions, e.g. time, location or dynamic aspects of the access control scenario.
ABAC determines access to resources by matching the current value of subject attributes, resource attributes, and/or context with the values specified in access control rules. Various attributes can be added to subject, resource, action and/or context according to the requirements of applications. 

The key feature of ABAC is that it supports Boolean logic, in which rules contain "IF, THEN" statements about who is making the request, the resource and the operation. For example: IF the requestor is a “customer”, THEN allow create an “order”. ABAC can express complex access control scenarios through using Boolean rule set that can evaluate many different attributes. Attributes can be compared to static values or to one another, thus enabling relation-based access control.
ABAC allows various attributes related to subject, resource, action and context to be added to these elements. In oneM2M System the attributes belonging to a subject may be role, IP address, domain, group, etc., the attributes belonging to a resource may be resource type, parent ID, creation time, etc., the attributes belonging to an action maybe a time period in which the specified action can be performed, and various attributes of subject, resource and/or action can be used to describe access control conditions that are used to constrain the usage of an access control rule.
One standard that implements attribute based access control is XACML [i.5]. The eXtensible Access Control Markup Language (XACML) defines an attribute based access control policy language and an architecture that enforces XACML policies.
oneM2M TR-0016 [i.4] has studied XACML and concludes that XACML is not suitable for oneM2M.

In particular this security area covers the following:

· Analyze the pros and cons of current access control policy in the oneM2M System.
· Study ABAC architecture in oneM2M System.
· Study ABAC policy scheme (language) in oneM2M System.
· Study ABAC policy resources and procedures.
6.2
Key Issues
6.2.1
Key Issue #1.1: Support attribute level access control to resource
6.2.1.1
Key issue details
The current access control policy scheme used in oneM2M System is based on Access Control List (ACL). ACL was originally designed to control the access to the files in a computer system. An ACL specifies which subject (users or processes) can perform what operations on an object (resource). In ACL an access control rule is specified by a pair of user/process and operation, and the access control rule is associated with an object. In oneM2M, the subject of the access control rule could be domain, originatorID, all, Role-ID; the operation of the access control rule could be RETRIEVE, CREATE, UPDATE, DELETE, DISCOVER. The access control rule of oneM2M also supports context constraints that could be time window, location of the Originator, IP address of the Originator. In oneM2M, access control rules are associated to the resources in resource trees. In order to support more complicated access control scenarios, oneM2M also defines an optional parameter accessControlObjectDetails in access control rules.

One of the advantages of ACL is easy to understand and implement. ACL is ideal to control the access of file systems. In the case of oneM2M, the ACL rules are associated to the resources. However, in some scenarios, this granularity of access control may not be enough. Based on current design, even if the Originator only needs to access one attribute in a resource, a privilege that can RETRIEVE the whole resources has to be assigned to the Originator. For example, in clause 7.4.13.2.1 in [1.3] there is the following description:

If the memberType attribute of the <group> resource is not "MIXED", the Hosting CSE shall also verify that all the member IDs including sub-groups in the attribute memberIDs of the <group> resource representation provided in the request shall conform to the memberType of the group resource. To validate a resource type of a member, the Hosting CSE shall check the resourceType attribute of the resource which is indicated by the member ID. To check the resourceType attribute, the Hosting CSE may retrieve the member resource. When a member ID is virtual resource, the Hosting CSE shall check the resourceType attribute of the parent resource. If the resource type of the parent allows this child virtual resource type, the Hosting CSE checks whether the virtual resource type matches with the memberType attribute of the group. If they match, then the Hosting CSE considers that the virtual member resource is validated. If the resourceType cannot be retrieved due to lack of privilege, the request shall be rejected with a Response Status Code indicating "RECEIVER_HAS_NO_PRIVILEGE" error.
It shows that even if the Hosting CSE only needs to retrieve the resourceType attribute, the system has to assign the entire resource retrieval privilege to the Hosting CSE. This will lead to information leaks.

Currently, the context constraints applied to the access control rules are limited to only the time window, the Originator’s location and the Originator’s IP address. If a new context constraint type needs to be added, the structure of the access control rule has to be modified. This will lead to compatibility issue. For example, current access control rule cannot specify: an AE/CSE can perform an operation on a resource if the type of the resource is equal to “AE” because resource type cannot be used to specify context constraints.
In order to overcome some limitations of the current access control policy scheme, the present Work Item (WI) specifically focuses on the development of a fine-grained, easy-to-use and manageable access control policy scheme used in oneM2M System.
6.2.1.2
Potential security requirements
The oneM2M System should be able to grant access to specific attributes of a resource.

The types of context constraints should be scalable. The addition of new context constraint types should not affect the structure of access control rule.
6.2.2
Key Issue #1.2: Support more policy combining algorithms
6.2.2.1
Key issue details
Since the access control policy scheme used in oneM2M System is based on Access Control List (ACL), the logical relationship between the data elements in accessControlOriginators parameter is “OR”, i.e. “permit-override”. This limits the expressive capability of access control policy. For example, it cannot specify that an AE/CSE that has a role can perform an operation on a resource because the logical relationship between the AE/CSE and the role in current access control scheme is “OR”.
Multiple access control policies can be associated to one resource in oneM2M System. Currently, only one policy combining algorithm, i.e. “permit-override”, is supported. It seems that more policy combining algorithms should be supported. For example, when multiple stakeholders are involved, there could be a case that requires one can access a resource only when it is permitted by all access control policies specified by the different stakeholders respectively. In this case a policy combining algorithm “deny-override” should be supported. This algorithm specifies that an access request can be permitted only when it is permitted by all applicable access control policies.
Current access control scheme cannot specify a blacklist. In some access control scenarios using blacklists may be more appropriate than a white list, e.g. to exclude a small set of subjects.
6.2.2.2
Potential security requirements
The oneM2M system should enable more access control policy combining algorithms such as OR and/or NOT.

6.2.3
Key Issue #1.3: Non-Originator Context
6.2.3.1
Key issue details
Editor's Note: This clause will describe the key issue.

Current access control policies depend on the context of the requestor/originator.  For example, one might give authorization to access the door lock if the request comes from an originator when the originator is located close to the house.  Some interesting scenarios can be developed using the context of entities other than the originator.  For example, authorization to access the door lock can be granted only if the home owner is not home.

6.2.3.2
Potential security requirements
Editor's Note: This clause will describe the potential requirements arising from the key issue.

When granting access to an originator the oneM2M System should consider factors or conditions other than just the state of the originator request message. It could also look at the location of another “entity” or the state of some other device.
6.2.4
Key Issue #1.4: Propagate ACPs
6.2.4.1
Key issue details
Editor's Note: This clause will describe the key issue.

When adding new devices such as sensors or actuators, it should not be difficult to integrate those devices into the applications that manage the systems that those devices are becoming a part of.  For example, adding a new smart lock should be simple to integrate into the smart home application that each family member uses to manage devices within the home. If the lock is located in the main entrance, all members of the family should be able to control the smart lock, however if the lock is located in the garage, the children may not be authorized to access the smart lock. These different authorizations should be easy to configure by considering the context of the configuration of the smart lock.

6.2.4.2
Potential security requirements
Editor's Note: This clause will describe the potential requirements arising from the key issue.

When new resources are created there should be a mechanism to apply default policies other than just assigning authorizations to the originator.  For example, in my home, I want all access to all devices.  However, when a new device registers to the CSE, until my “AE-ID” is added to the resource only the application that created the resource has access to the resources (or ALL entities have access).
6.2.5
Key Issue #1.5: ACPs with limited usage configurations
6.2.5.1
Key issue details
Editor's Note: This clause will describe the key issue.

Access control policies are generally given with “unlimited” usage, meaning that if the policy grants a permission to perform an operation, that operation can be performed as often as desired by the originator that has the permission. It could be desired to allow a more limited policy.  For example, a permission may allow an originator to unlock a door 2 times per day.

6.2.5.2
Potential security requirements
Editor's Note: This clause will describe the potential requirements arising from the key issue.

The oneM2M system should allow configurable limits to the ACP such as a “count”. The CSE should check the “count” before allowing access and then modify the remaining “count” after granting access to an originator. This could limit based on the number of accesses, the amount of data allowed to be accessed, etc.
6.2.6
Key Issue #1.6: Hard to determine if an entity has authorization
6.2.6.1
Key issue details
Editor's Note: This clause will describe the key issue.

AccessControlPolicies are linked to a resource.  If we want to determine if Entity A has permission to Update a given resource, it would require 

1. Retrieve the Resource (assuming Retrieve permission exists), 

2. Retrieve all <acp> referenced by acpids, 

3. Evaluate each <acp>.

For example, issuing a discovery request for resources with label=someValue so that the entity can perform an Update on each resource returned, a list of URI that match the specified criteria is returned. Then the entity must attempt to perform an Update operation on each of the URIs in the discovery response. The returned URIs may include resources that the entity does not have Update permission (for example, in case where all entities are granted DISCOVERY permissions), therefore the Update Request may fail.

If the discovery request allowed the entity to specify that the response should only include URIs for resources that the entity has Update permission, there would be no “wasted” requests, reducing workload on both the entity and the CSE.
6.2.6.2
Potential security requirements
Editor's Note: This clause will describe the potential requirements arising from the key issue.

The oneM2M system should provide a mechanism for an entity to query a resource to determine if  “originator” has “operation” permissions. Also the oneM2M system should provide a mechanism to perform a discovery request where it can specify the permissions that should be present for the originator in the resource URIs returned in the discovery response.

6.2.m
Key Issue #1.m: <key issue name>
Editor's Note: Key issues within the security area are not in any particular order but they are added incrementally (m = 1, 2, 3…) when new key issue is identified.

6.2.m.1
Key issue details
Editor's Note: This clause will describe the key issue.

<Text>
6.2.m.2
Potential security requirements
Editor's Note: This clause will describe the potential requirements arising from the key issue.

<Text>
6.3
Solutions
Editor's Note: This clause will contain the solutions that address the key issues in this security area.
6.3.1
Solution #1.1: ABAC Policy Data Flow Model
6.3.1.1
Introduction
The solution provides a data flow model of the ABAC policy based on the oneM2M authorization architecture.

6.3.1.2
Solution details
The data flow model of the ABAC policy based on the oneM2M authorization architecture is shown in figure 6.3.1.2-1.

[image: image2.emf]ACP

ResourcePEP

Requester

(Subject)

PDP

decision 

request

decision 

response

requestrequest

PIPPRP

SubjectEnvironment

attribute 

request

attribute 

response

policy 

request

policy 

response

access 

control 

policies

resource 

attributes

environment 

attributes

subject 

attributes

Obtain 

Request 

Attributes


Figure 6.3.1.2-1: Data flow model of the ABAC policy based on the oneM2M authorization architecture
The model operates by the following steps.
1.
An access requester (subject) sends an access request to the target resource that the requester wants to access.
2.
The PEP intercepts the access request, and makes an access control decision request according to the access request. The PEP sends the access control decision request to the PDP.
3.
The PDP sends an access control policy request that is generated based on the access control decision request to a PRP.
4.
The PRP retrieves applicable ABAC policies and returns them back to the PDP.
5.
The PDP evaluates the access control decision request against the retrieved ABAC policies. According to the specification of the access control rules in the ACPs, The PDP may need to obtain various attributes that are relevant to subject, resource and/or environment (e.g. time) from the access control decision request or the target resource and/or the environment. In distributed authorization scenario, the PDP may obtain some attributes through PIPs.
6.
The PIP obtains the requested attributes and returns them back to the PDP.

7.
The PDP evaluates the access control rules in the ABAC policies with the attributes of subject, resource and/or environment.

8.
PDP returns the evaluation result back to PEP via an access control decision.
9.
PEP either accesses the target resource representing the requester or denies the access request, and returns the access result back to the access requester.
6.3.1.3
Evaluation
Editor's Note: This clause will contain a variety of evaluations of this solution.
<Text>
6.3.2
Solution #1.2: ABAC Policy Language Model
6.3.2.1
Introduction
The solution provides a language model of the ABAC policy.

6.3.2.2
Solution details
6.3.2.2.1
Policy Language Model
The ABAC policy language model is shown in figure 6.3.2.2.1-1. The main components of the model are:

· Rule primitive,
· Rule,
· Policy,
· Policy set.
These are described in the following sub-clauses.

[image: image3.emf]Rule Primitive

Rule Primitive

0..n

0..n

Rule Primitive

Rule Primitive

0..n

0..n

0..n

0..n

0..1

0..1

0..n

0..1

0..1

Policy Set

Policy Set

Policy

Applicable Subjects

Rule

Applicable Resources

Rule Constraint

Rule Condition

Rule Primitive

Rule Primitive

0..n

0..n

0..1

0..1

Applicable Resources

Applicable Subjects

0..1

Permitted Attributes

0..1

Permitted 

SubResources

0..1

Permitted Attributes

0..1

Permitted 

SubResources



Figure 6.3.2.2.1-1: ABAC policy language model
6.3.2.2.2
Rule Primitive

A rule primitive is the most elementary unit of policy. It consists of 3 components:

· Operand 1: It can be a single value, or multiple values of the same type, or represented by a function that can get the values at runtime.
· Operand 2: It can be a single value, or multiple values of the same type, or represented by a function that can get the values at runtime. The data type of operand 1 and operand 2 should be the same.
· Operator: It is a logical operator or a set operator. Logical operator performs logical comparison operation on operand 1 and operand 2, for example, greater than, less than, equal to, and so on. Set operator performs a set comparison operation on operand 1 and operand 2. For example, operand 1 is equal to operand 2, operand 1 is included in operand 2, and so on.
In the case of a successful evaluation of a primitive, the output of the rule primitive is TRUE or FALSE. In other cases, the output of the rule primitive is "Indeterminate"
6.3.2.2.3
Rule

A rule is the basic element for evaluating an access request. The main components of a rule are:

· A rule constraint: It contains a set of rule primitives. These primitives represent the set of requests to which the rule is intended to apply in the form of a logical expression on attributes in the request. The relation between the primitives could be ‘AND’ and/or ‘OR’.

· A condition: It contains a set of rule primitives that represents a Boolean expression that refines the applicability of the rule beyond the predicates implied by rule constraint. Condition may be absent. If it is exist, the associated rule is applicable only when the condition evaluates to TRUE.
· An effect: It indicates the consequence of a rule when the rule evaluates to TRUE. Two values are allowed: "Permit" and "Deny".
The output of a rule is "Permit", "Deny", “Not applicable” or “Indeterminate”.

6.3.2.2.4
Policy
A policy combines multiple rules. The main components of a policy are:

· Applicable subjects: Specify the access requesters that apply to this policy.
· Applicable resources: Specify the resources that apply to this policy.
· A set of rules: Rules are described above.
· Rule combining algorithm: Define a procedure for arriving at an authorization decision given the individual results of evaluation of a set of rules.
· Permitted attributes: Specify a list of attribute ids that apply to this control policy. In case the operation is RETRIEVE and request is permitted by the policy evaluation process, this attribute id list is returned to the Hosting CSE (PEP) that will only returns these resource attributes back to the requester.

·  Permitted sub-resources: Specify a list of sub-resource types that apply to this control policy. In case the operation is RETRIEVE and the request is permitted by the policy evaluation process, this sub-resource type list is returned to theHosting CSE (PEP) that will only returns these types of sub-resources back to the requester.
· NOTE: Permitted attributes and permitted sub-resources apply only to the top-level policy or policy set.
The output of a policy is "Permit", "Deny", “Not applicable” or “Indeterminate”.

6.3.2.2.5
Policy Set
A policy set combines multiple policies. The main components of a policy set are:

· Applicable subjects: Specify the access requesters that apply to this policy set.
· Applicable resources: Specify the resources that apply to this access control policy set.
· A set of policies: Policies are described above.
· Policy combining algorithm: Define a procedure for arriving at an authorization decision given the individual results of evaluation of a set of policies.
· Permitted attributes: Specify a list of attribute ids that apply to this control policy. In case the operation is RETRIEVE and request is permitted by the policy evaluation process, this attribute id list is returned to the Hosting CSE (PEP) that will only returns these resource attributes back to the requester.

·  Permitted sub-resources: Specify a list of sub-resource types that apply to this control policy. In case the operation is RETRIEVE and the request is permitted by the policy evaluation process, this sub-resource type list is returned to the Hosting CSE (PEP) that will only returns these types of sub-resources back to the requester.
· NOTE: Permitted attributes and permitted sub-resources apply only to the top-level policy or policy set.
The output of a policy set is "Permit", "Deny", “Not applicable” or “Indeterminate”.

6.3.2.3
Evaluation
Editor's Note: This clause will contain a variety of evaluations of this solution.
<Text>
6.3.3
Solution #1.3: ABAC Rule and Policy Combining Algorithms
6.3.3.1
Introduction
This solution addresses key issue #1.2.
6.3.3.2
Solution details
6.3.3.2.1
Combining Algorithms
The oneM2M System should consider the following rule and policy combination algorithms defined by XACML [i.5].
· Deny-overrides

· Permit-overrides

· Deny-unless-permit

· Permit-unless-deny
These are discussed in the following sub-clauses.
6.3.3.2.2
Deny-overrides
This clause describes the “Deny-overrides” rule-combining algorithm of a policy and policy-combining algorithm of a policy set. The following text was copied from [i.5].
The deny overrides combining algorithm is intended for those cases where a deny decision should have priority over a permit decision. This algorithm has the following behavior.The algorithm is simplified from the original algorithm defined in XACML [i.5].
1.
If any decision is "Deny", the result is "Deny".
2.
Otherwise, if any decision is "Indeterminate", the result is "Indeterminate".
3.
Otherwise, if any decision is "Permit", the result is "Permit".
4.
Otherwise, the result is "NotApplicable".
6.3.3.2.3
Permit-overrides
This clause describes the “Permit-overrides” rule-combining algorithm of a policy and policy-combining algorithm of a policy set. The following text was copied from [i.5].
The permit overrides combining algorithm is intended for those cases where a permit decision should have priority over a deny decision. This algorithm has the following behavior. The algorithm is simplified from the original algorithm defined in XACML [i.5].
1.
If any decision is "Permit", the result is "Permit".
2.
Otherwise, if any decision is "Indeterminate", the result is "Indeterminate".
3.
Otherwise, if any decision is "Deny", the result is "Deny".
4.
Otherwise, the result is "NotApplicable".
NOTE:
“Permit-overrides” policy-combining algorithm has been supported by oneM2M Release 1, oneM2M Release 2 and oneM2M Release 3.
6.3.3.2.4
Deny-unless-permit
This clause defines the “Deny-unless-permit” rule-combining algorithm of a policy or policy-combining algorithm of a policy set. The following text was copied from [i.5].
The “Deny-unless-permit” combining algorithm is intended for those cases where a permit decision should have priority over a deny decision, and an “Indeterminate” or “NotApplicable” must never be the result. It is particularly useful at the top level in a policy structure to ensure that a PDP will always return a definite “Permit” or “Deny” result. This algorithm has the following behavior.
1.
If any decision is "Permit", the result is "Permit".
2.
Otherwise, the result is "Deny".
6.3.3.2.5
Permit-unless-deny
This section defines the “Permit-unless-deny” rule-combining algorithm of a policy or policy-combining algorithm of a policy set. The following text was copied from [i.5].
The “Permit-unless-deny” combining algorithm is intended for those cases where a deny decision should have priority over a permit decision, and an “Indeterminate” or “NotApplicable” must never be the result. It is particularly useful at the top level in a policy structure to ensure that a PDP will always return a definite “Permit” or “Deny” result. This algorithm has the following behavior.

1.
If any decision is "Deny", the result is "Deny".
2.
Otherwise, the result is "Permit".
6.3.2.2.6
Policy evaluation result

The result of policy evaluation can be one of the following values defined by XACML [i.5]:

· "Permit": the requested access is permitted.

· "Deny": the requested access is denied.

· "Indeterminate": the policy evaluator is unable to evaluate the requested access. Reasons for such inability include: missing attributes, network errors while retrieving policies, syntax errors in the decision request or in the policy, etc.

· "NotApplicable": the policy evaluator does not have any policy that applies to this decision request.
6.3.3.3
Evaluation
Editor's Note: This clause will contain a variety of evaluations of this solution.
<Text>
6.3.4
Solution #1.4: Non-Originator Context
6.3.4.1
Introduction
As described in clause 6.2.3.1, this solution addresses the need to grant access to resources based on criteria that is not limited to actual request primitive. For example, a request can be granted based on a location policy that indicates that the requestor is physically nearby a geographic location.  However, we may also want to require that some other entity is not nearby.  The example from clause 6.2.3.1 describes only granting access to a door lock if the home owner is not home. 

The solution attempts to build upon similar functionality that already exists in oneM2M. ARC-2018-0206-Action_triggering describes a mechanism for performing some operation based on conditions that exist in a potentially different resource.  

	eventCriteria
	0..1 (L)
	RW
	This attribute provides the conditions that must be met before allowing an event to occur. 
	NA


The conditions represented in the eventCriteria attribute determine if the operation is to be allowed.  

Table 6.3.4.1-1: Parameters in eventCriteria 
	Name
	Description

	subjectResourceID
	The resource identifier that will be read by the Hosting CSE to evaluate the event.

	subject
	The attribute of the subjectResurceID that is compared to the threshold attribute.

	operator
	This attribute is a keyword used to construct the evaluation logic, e.g. ‘equals’, ‘not equals’, ‘greater than’, ‘less than’, ‘greater or equal’, ‘less or equal’, ‘string match’, etc.

	threshold
	This parameter provides a value used to evaluate the criteria. The value type shall match the type of the attribute used as subject. 

	eventCriteriaLogic
	Indicates the logical operation (AND/OR) to be used with following eventCriteria in the list.


EventCriteria should be added to an <accessControlPolicy> as an additional type of accessControlContexts.

EventCriteria could be a complex array or a resource like the <dependency> resource presented in the <actionTriggering> resource.

A complex array is more difficult to process, but has the benefit of being able to be created as a single primitive. Representing the eventCriteria as a resource has the benefit of being reusable for more than 1 accessControlPolicy and being easier to manipulate.

Table 6.3.4.1-2: Types of Parameters in accessControlContexts
	Name
	Description

	accessControlTimeWindow
	Represents a time window constraint which is compared against the time that the request is received at the Hosting CSE.

	accessControlLocationRegion
	Represents a location region constraint which is compared against the location of the Originator of the request.

	accessControlIpIPAddress
	Represents an IP address constraint or IP address block constraint which is compared against the IP address of the Originator of the request.

	accessControlEventCriteria
	A list of resource identifiers of <eventCriteria> resources that must be dynamically evaluated as TRUE before granting access.


The procedure will state that the accessControlEventCriteria MUST be satisfied, in addition to any other accessControlContexts. If any resource specified by the accessControlEventCriteria is not available or not reachable then access is not allowed.

Discussion: is there a preference for the way EventCriteria is represented?  Resource vs Complex Attribute

6.3.4.2
Solution details
Editor's Note: This clause will describe the solution.

<Text>
6.3.4.3
Evaluation
Editor's Note: This clause will contain a variety of evaluations of this solution.
<Text>
6.3.5
Solution #1.5: ACPs with limited usage configurations
6.3.5.1
Introduction
As described in clause 6.2.5.1, <accessControlPolicies> generally grant “unlimited” usage, meaning that if the policy grants a permission to perform an operation, that operation can be performed as often as desired by the originator that has the permission.

This solution adds the ability constrain the “unlimited” usage by adding dynamic attributes that the Hosting CSE shall decrement when the evaluated <accessControlPolicy> allows access to some resources.

Table 6.3.5.1-1: Types of Parameters in accessControlContexts
	Name
	Description

	accessControlTimeWindow
	Represents a time window constraint which is compared against the time that the request is received at the Hosting CSE.

	accessControlLocationRegion
	Represents a location region constraint which is compared against the location of the Originator of the request.

	accessControlIpIPAddress
	Represents an IP address constraint or IP address block constraint which is compared against the IP address of the Originator of the request.

	accessControlLimit
	Represents the number of times that the policy defined in this accessControlRule can allow authorization to the requested resource. This attribute maintains of the number of authorizations granted based on this policy. The value is decremented each time the evaluation grants access to the requested resource.


6.3.5.2
Solution details
Editor's Note: This clause will describe the solution.

<Text>
6.3.5.3
Evaluation
Editor's Note: This clause will contain a variety of evaluations of this solution.
<Text>
6.3.6
Solution #1.6 Propagate ACPs
6.3.6.1
Introduction
As described in clause 6.2.4.1, this solution addresses the requirement to assign default access control policies to resources that are added to a CSE.

Currently we can rely on the default behavior defined in oneM2M, that gives ONLY the originator access to the new resource. There is no scalable solution that allows a new device or resource to be safely configured with ACPs.  Two example use cases that a solution should handle are described.

1. When adding a new child resource to any given resource, what ACPs should be applied? Some options are:

a. The originator specifies – this is the current method supported by oneM2M. This does not allow efficient integration of the new resource unless the device is appropriately configured to do so.  Since the oneM2M specification offers no guidance on this aspect, each implementation would determine the method to use. This can lead to non-interoperable devices in the field with no way to specify a means to make the approach interoperable.

b. The same permissions as the parent – this method is OK, however from an implementation perspective this creates problems that could lead to interoperability concerns. For example, when accessing this resource then finding that the acpi is empty,  another search for the parent is needed.  This can lead to traversing the resource tree up to CSEbase (without further definition restricting how far to traverse).   

c. Use a policy to specify how the CSE should populate the acpi attribute of a resource if the value is not populated by the creator.  – This is the solution presented in this contribution.

The proposed solution extends the current accessControlObjectDetails of the <accessControlPolicy>.  This parameter is already used for child resources of the targeted resource, so this extension is consistent with current usage. 
Table 6.3.6‑1: New Parameters added to accessControlObjectDetails
	Name
	Description

	propagateACP
	Indicates that this <accessControlPolicy>can be applied to a descendant of the targeted resource. This ACP can be directly added to the targeted resource’s accessControlPolicyIds attribute or a new <accessControlPolicy>can be created based on the attributes of this <accessControlPolicy>.  

Values – “link” indicates that the accessControlPolicyIds of the new resource should include this <accessControlPolicy> resource identifier. “duplicate” indicates that a new <accessControlPolicy> should be created that is a copy of this <accessControlPolicy> and referenced in the accessControlPolicyIds of the new descendent resource.

	timeLimit
	If propagateACP indicates that a new ACP is created, this attribute specifies the expirationTime of the new <accessControlPolicy> resource. The default value is that the new expirationTime will be the same as the current <accessControlPolicy> expirationTime.

	levels
	An integer value indicates the number of levels of descendants that this can be applied to (default is 0).


6.3.6.2
Solution details
Editor's Note: This clause will describe the solution.
6.3.6.3
Evaluation
Editor's Note: This clause will contain a variety of evaluations of this solution.
<Text>
6.3.7
Solution #1.7: Hard to determine if an entity has authorization
6.3.7.1
Introduction
As described in clause 6.2.6.1, there are two requirements described:

1. Enhance the Discovery request to allow the specification of one or more permissions that should be present in the list of resources returned by the discovery.

a. Currently, oneM2M checks that the originator has DISCOVERY permission.

2. Define a primitive that answers the questions “What permissions does ‘originator-ID’ have for ‘resourceXYZ’”?

a. A variation of #2, that supports #1 is “Does ‘originator-ID’ have ‘permission-X’ for ‘resourceXYZ’”?

If we view ‘resourceXYZ’ as the target of a request primitive and ‘originator-ID’ as the originator of a request primitive, then a solution that is consistent with existing oneM2M procedures is adding a new Result Content type:
· Permissions: A representation of the permissions that the originator has for the targeted resource. This would be a consolidated representation of all the ACPs associated with this resource for this originator. (this addresses #2 above – not #1 or #2a)

We can view ‘permission-X’ as a new type of filter Criteria that can be added to Table 8.1.2-2: Filter Criteria conditions. This parameter would be valid only for filterUsage = ‘discovery’.
	Condition tag
	Multiplicity
	Description

	Matching Conditions

	operations
	0..n
	A matched resource has a linked <accessControlPolicy> that grants the originator access to perform the specified operations.


Discovery responses currently provide a list of all matched resources when the “discovery” permission is granted. This behavior could be maintained for backward compatibility by enhancing the result of the discovery response.

6.3.7.2
Solution details
Editor's Note: This clause will describe the solution.

<Text>
6.3.7.3
Evaluation
Editor's Note: This clause will contain a variety of evaluations of this solution.
<Text>
6.3.8
Solution #1.8: ABAC Policy Syntax
6.3.8.1
Introduction
This solution addresses key issue #1.2. It describes the schema of the proposed ABAC policies
6.3.8.2
Solution details
6.3.8.2.1
Element <PolicySet>
The <PolicySet> element is a top-level element in the ABAC policy schema. <PolicySet> is an aggregation of other policy sets and policies. Policy sets may be included in an enclosing <PolicySet> element either directly using the <PolicySet> element or indirectly using the <PolicySetIdReference> element. Policies may be included in an enclosing <PolicySet> element either directly using the <Policy> element or indirectly using the <PolicyIdReference> element.
Policy sets and policies included in a <PolicySet> element should be combined using the algorithm identified by the PolicyCombiningAlgId attribute. <PolicySet> is treated exactly like a <Policy> in all policy-combining algorithms.
A <PolicySet> element may be evaluated, in which case the evaluation procedure defined in clause x should be used.
<xs:element name="PolicySet" type="m2m:PolicySetType"/>

<xs:complexType name="PolicySetType">

<xs:sequence>

<xs:element ref="m2m:Description" minOccurs="0"/>

<xs:element ref="m2m:PolicyIssuer" minOccurs="0"/>

<xs:element ref="m2m:ApplicableSubjects" minOccurs="0"/>
<xs:element ref="m2m:ApplicableResources" minOccurs="0"/>

<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element ref="m2m:PolicySet"/>
<xs:element ref="m2m:Policy"/>

<xs:element ref="m2m:PolicySetIdReference"/>
<xs:element ref="m2m:PolicyIdReference"/>
</xs:choice>

<xs:element ref="m2m:PermittedAttributes" minOccurs="0"/>

<xs:element ref="m2m:PermittedSubResources" minOccurs="0"/>

</xs:sequence>

<xs:attribute name="PolicySetId" type="xs:anyURI" use="required"/>
<xs:attribute name="Version" type="m2m:VersionType" use="required"/>
<xs:attribute name="PolicyCombiningAlgId" type="xs:anyURI" use="required"/>
</xs:complexType>

The <PolicySet> element contains the following attributes and elements:
· PolicySetId [Required]
The identifier of a policy set.

· Version [Required]
The version number of the PolicySet.
· PolicyCombiningAlgId [Required]
The identifier of the policy-combining algorithm by which the <PolicySet> and <PolicySet> components in the policy set will be combined.
· <Description> [Optional]
A free-form description of the policy set.
· <PolicyIssuer> [Optional]
The identifier of the issuer of the policy set.
· <ApplicableSubjects> [Optional]
The <ApplicableSubjects> element defines the applicability of a policy set to a set of requestors.
· <ApplicableResources> [Optional]
The <ApplicableResources> element defines the applicability of a policy set to a set of requestors.
· <PolicySet> [Any Number]

A policy set that is included in this policy set.

· <Policy> [Any Number]

A policy that is included in this policy set.

· <PolicySetIdReference> [Any Number]

A reference to a policy set that should be included in this policy set.

· <PolicyIdReference> [Any Number]

A reference to a policy that should be included in this policy set.
· <PermittedAttributes> [Optional]
The <PermittedAttributes> element defines a list of attribute ids that will be provided to the PEP when the access request is permitted and the operation is RETRIEVE.
· <PermittedSubResources> [Optional]
The <PermittedSubResources> element defines a list of resource types that will be provided to the PEP when the access request is permitted and the operation is RETRIEVE.
6.3.8.2.2
Element <Policy>
The <Policy> element is the smallest entity that should be presented to the PDP for evaluation.
The main components of this element are the <Rule> element and the RuleCombiningAlgId attribute.
Rules included in the <Policy> element should be combined by the algorithm specified by the RuleCombiningAlgId attribute.

A <Policy> element may be evaluated, in which case the evaluation procedure defined in clause x should be used.
<xs:element name="Policy" type="m2m:PolicyType"/>
<xs:complexType name="PolicyType">
<xs:sequence>
<xs:element ref="m2m:Description" minOccurs="0"/>
<xs:element ref="m2m:PolicyIssuer" minOccurs="0"/>
<xs:element ref="m2m:ApplicableSubjects" minOccurs="0"/>
<xs:element ref="m2m:ApplicableResources" minOccurs="0"/>

<xs:choice maxOccurs="unbounded">
<xs:element ref="m2m:Rule"/>
</xs:choice>
<xs:element ref="m2m:PermittedAttributes" minOccurs="0"/>

<xs:element ref="m2m:PermittedSubResources" minOccurs="0"/>

</xs:sequence>
<xs:attribute name="PolicyId" type="xs:anyURI" use="required"/>
<xs:attribute name="Version" type="m2m:VersionType" use="required"/>
<xs:attribute name="RuleCombiningAlgId" type="xs:anyURI" use="required"/>
</xs:complexType>
The <Policy> element contains the following attributes and elements:
· PolicyId [Required]
The identifier of a policy.

· Version [Required]
The version number of the policy.
· RuleCombiningAlgId [Required]
The identifier of the rule-combining algorithm by which the <rule> components in the policy will be combined.
· <Description> [Optional]
A free-form description of the policy.
· <PolicyIssuer> [Optional]
The identifier of the issuer of the policy.
· <ApplicableSubjects> [Optional]
The <ApplicableSubjects> element defines the applicability of a policy to a set of requestors.
· <ApplicableResources> [Optional]
The <ApplicableResources> element defines the applicability of a policy to a set of requestors.
· <Rule> [Any Number]

A sequence of rules that should be combined according to the RuleCombiningAlgId attribute.
· <PermittedAttributes> [Optional]
The <PermittedAttributes> element defines a list of attribute ids that will be provided to the PEP when the access request is permitted and the operation is RETRIEVE.
· <PermittedSubResources> [Optional]
The <PermittedSubResources> element defines a list of resource types that will be provided to the PEP when the access request is permitted and the operation is RETRIEVE.
6.3.8.2.3
Element <Rule>
The <Rule> element should define the individual rules in the policy.
The main components of this element are the <Constraint> and <Condition> elements and the Effect attribute.

A <Rule> element may be evaluated, in which case the evaluation procedure defined in clause x should be used.
<xs:element name="Rule" type="m2m:RuleType"/>
<xs:complexType name="RuleType">
<xs:sequence>
<xs:element ref="m2m:Description" minOccurs="0"/>
<xs:element ref="m2m:Constraint" minOccurs="0"/>
<xs:element ref="m2m:Condition" minOccurs="0"/>
</xs:sequence>
<xs:attribute name="RuleId" type="xs:string" use="required"/>
<xs:attribute name="Effect" type="m2m:EffectType" use="required"/>
</xs:complexType>
The <Rule> element contains the following attributes and elements:
· RuleId [Required]
The identifier of a rule.

· Effect [Required]
Rule effect. The value of this attribute is either “Permit” or “Deny”.
· <Description> [Optional]
A free-form description of the rule.
· <Constraint> [Optional]
Identifies the set of constraints that should be satisfied for the rule to be assigned its Effect value.
· <Condition> [Optional]
A predicate that must be satisfied for the rule to be assigned its Effect value.
6.3.8.2.4
Element <Primitive>
The <Primitive> element denotes application of a function to its arguments (Operands), thus encoding a function call. The <Primitive> elements are the arguments of the function.
A <Primitive> element may be evaluated, in which case the evaluation procedure defined in clause x should be used.
<xs:element name="Primitive" type="m2m:PrimitiveType"/>
<xs:complexType name="PrimitiveType">
<xs:sequence>
<xs:element name="Operand1" type="m2m:Operand"/>
<xs:element name="Operand2" type="m2m:Operand"/>
</xs:sequence>
<xs:attribute name="FunctionId" type="xs:anyURI" use="required"/>
</xs:complexType>
The <Primitive> element contains the following attributes and elements:
· Operand1 [Required]
Argument 1 applied to the function identified by the attribute FunctionId.

· Operand2 [Required]
Argument 2 applied to the function identified by the attribute FunctionId.

· FunctionId [Required]
The identifier of the function to be applied to the arguments. XACML-defined functions are described in Annex x.
6.3.8.2.5
Element <Operand>
The <Operand> element represents an argument that applies to a function.
<xs:complexType name="OperandType">
<xs:sequence>
<xs:choice>
<xs:element ref="m2m:AttributeDesignator"/>
<xs:element ref="m2m:AttributeValue"/>
</xs:choice>
</xs:sequence>
</xs:complexType>
The <Operand> element contains the following elements:
· <AttributeDesignator> [Required choice]
Retrieve values from request, resource or system.

· <AttributeValue> [Required choice]
Embedded attribute value. 

6.3.8.2.6
Element <AttributeDesignator>
The <AttributeDesignator> element denotes where and how to retrieve a value.
<xs:complexType name="AttributeDesignatorType">
<xs:complexContent>
<xs:attribute name="Category" type="xs:anyURI" use="required"/>
<xs:attribute name="AttributeId" type="xs:anyURI" use="required"/>
<xs:attribute name="DataType" type="xs:anyURI" use="required"/>
</xs:complexContent>
</xs:complexType>
The <AttributeDesignator> element contains the following attributes:
· Category [Required]
This attribute specifies the Category from which to retrieve the attribute.

· AttributeId [Required]
This attribute specifies the attribute that should be retrieved from a data category.

· DataType [Required]
The attribute specifies the data type of the attribute.
6.3.8.2.7
Element <AttributeValue>
The <AttributeValue> element should contain a literal attribute value.
<xs:element name="AttributeValue" type="m2m:AttributeValueType"/> 

<xs:complexType name="AttributeValueType" mixed="true">
<xs:complexContent mixed="true">
<xs:sequence>
<xs:any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="DataType" type="xs:anyURI" use="required"/>
<xs:anyAttribute namespace="##any" processContents="lax"/>
</xs:complexContent>
</xs:complexType>
The <AttributeValue> element contains the following attributes:
· DataType [Required]
The data-type of the attribute value.
6.3.8.2.8
Primitive comparison functions

The comparison functions for comparing operand 1 and operand 2 in <Primitive> are:

· equal: Both operand 1 and operand 2 are single values, and operand 1 is equal to operand 2.
· match: Both operand 1 and operand 2 are single values, and operand 1 is equal to operand 2. This comparison supports wildcards.
· is-in: Operand 1 is a single value, operand 2 is a data set, and operand 1 is a member of operand 2.
· is-in-match: Operand 1 is a single value, operand 2 is a data set, and operand 1 is a member of operand 2. This comparison supports wildcards.
· set-equal: Both operand 1 and operand 2 are data sets, and operand 1 is equal to operand 2.
· set-match: Both operand 1 and operand 2 are data sets, and operand 1 is equal to operand 2. This comparison supports wildcards.
· at-least-one-member-of: Both operand 1 and operand 2 are data sets, and at least one member of operand 1 is also a member of operand 2.
· at-least-one-member-of-match: Both operand 1 and operand 2 are data sets, and at least one member of operand 1 is also a member of operand 2. This comparison supports wildcards.
6.3.9
Solution #1.9: ABAC policy resource
6.3.9.1
Introduction
The resource defined in this clause is used to store ABAC policy defined in clause 6.3.8.

6.3.9.2
Solution details
6.3.9.2.1
Resource Type abacPolicy
The <abacPolicy> resource  is the child resource of the <CSEBase> resource. The <abacPolicy> resource contains the child resource specified in table 6.3.9.2.1-1.

Table 6.3.9.2.1: Child resources of <abacPolicy> resource

	Child Resources of <abacPolicy>
	Child Resource Type
	Multiplicity
	Description
	<abacPolicyAnnc> Child Resource Types

	[variable]
	<subscription>
	0..n
	See clause 9.6.8 in TS-0001 [i.1]
	<subscription>


The <abacPolicy> resource contains the attributes specified in table 6.3.8.2.1-2.

Table6.3.9.2.1-2: Attributes of <abacPolicy> resource

	Attributes of <abacPolicy>
	Multiplicity
	RW/

RO/

WO
	Description
	<abacPolicyAnnc> Attributes

	resourceType 
	1
	RO
	See clause 9.6.1.3 in TS-0001 [i.1].
	NA

	resourceID
	1
	RO
	See clause 9.6.1.3 in TS-0001 [i.1].
	NA

	resourceName
	1
	WO
	See clause 9.6.1.3 in TS-0001 [i.1].
	NA

	parentID
	1
	RO
	See clause 9.6.1.3 in TS-0001 [i.1].
	NA

	expirationTime
	1
	RW
	See clause 9.6.1.3 in TS-0001 [i.1].
	MA

	labels
	0..1(L)
	RW
	See clause 9.6.1.3 in TS-0001 [i.1].
	MA

	creationTime
	1
	RO
	See clause 9.6.1.3 in TS-0001 [i.1].
	NA

	lastModifiedTime
	1
	RO
	See clause 9.6.1.3 in TS-0001 [i.1].
	NA

	announceTo
	0..1 (L)
	RW
	See clause 9.6.1.3 in TS-0001 [i.1].
	NA

	announcedAttribute
	0..1 (L)
	RW
	See clause 9.6.1.3 in TS-0001 [i.1].
	NA

	abacPrivileges
	1
	RW
	See clause 6.3.8.
	MA

	adminPrivileges
	1
	RW
	See clause 8.3.1.2.
	MA

	authorizationDecisionResourceIDs
	0..1 (L)
	RW
	A list of addresses of <authorizationDecision> resources. See clause 9.6.41 in TS-0001 [i.1] for further details.
	MA

	authorizationPolicyResourceIDs
	0..1 (L)
	RW
	A list of addresses of <authorizationPolicy> resources. See clause 9.6.42 in TS-0001 [i.1] for further details.
	MA

	authorizationInformationResourceIDs
	0..1 (L)
	RW
	A list of addresses of <authorizationInformation> resources. See clause 9.6.43 in TS-0001 [i.1] for further details.
	MA


6.3.10
Solution #1.10: Attribute-Level Access Control
6.3.10.1
Introduction
oneM2M access control policies define access privileges for oneM2M resources.  Currently, the lowest level of granularity of privileges supported are resource level privileges.  Resource level privileges define which entities are allowed to access a resource and the operations they are allowed to perform on the entire resource.  The following solution proposes to add further granularity to support attribute level privileges.  Attribute level privileges define the entities that are allowed to access individual attribute(s) of a resource and the allowed operations they are permitted to perform on these individual attribute(s).    

6.3.10.2
Solution details
6.3.10.2.1
Attribute-Level Access Control Rules
Clause 7.1.3 of TS-0003[i.2] defines the privileges and selfPrivileges attributes of the <accessControlPolicy> resource as a set of access control rules. The set of access control rules is denoted as acrs and an individual access control rule in this set is denoted as an acr. The individual access control rules in acrs are indexed with the letter k. The number of access control rules in the set is denoted with the letter K.   
acrs = { acr(1), acr(2), ..., acr(k), ..., acr(K) }
Currently, each access control rule acr(k) is comprised of five types of access-control-rule-tuple parameters, denoted as accessControlOriginators, accessControlOperations, accessControlContexts, accessControlObjectDetails and accessControlAuthenticationFlag. 

To support attribute level access, a sixth access-control-rule-tuple parameter is defined and is denoted as accessControlAttributes.  The definition of accessControlAttributes is shown in Table 6.3.10.2.1-1.

Table 6.3.10.2.1-1: Additional parameters of an access-control-rule-tuple
	Parameter
	Usage Description
	Mandatory/Optional
	Format

	accessControlAttributes
	Set of resource attributes for which access can be authorized 
	O
	List of resource attribute name(s). 


The accessControlAttributes parameter comprises a list of accessible resource attributes names. The list includes one or more names of oneM2M resource attributes represented in their short name format as defined in oneM2M TS-0004[i.4].  

The data type applicable to accessControlAttributes will be defined in oneM2M TS-0004[i.4].  A proposed type is m2m:attributeList but this is FFS.
6.3.10.2.2
Access Control Decision
Figure 6.3.10.2.2-1 shows the modifications to the access decision algorithm defined in TS-0003[i.2] required to support the accessControlAttributes access-control-rule-tuple parameter.  


[image: image5.emf]acrs = { acr(1), arc(2), «��arc(k), «��arc(K) }acr(k) = {acr(k)_accessControlAuthenticationFlag,              acr(k)_accessControlOriginators, acr(k)_accessControlOperations, acr(k)_accessControlContexts, acr(k)_accessControlObjectDetailS, acr(k)_accessControlAttributes}Set of originator parameters. Examples: {CSE-ID1, AE-ID1, AE-ID2, Role-ID1} {all} Set of allowed operations. Examples: {Create, Retrieve, Update, Delete, Discover, Notify} {Retrieve, Discover, Notify} Set (list) of M_k context constraints (number of elements M_k can be different for each acr(k)): {acr(k)_accessControlContext(k, 1), «�«��acr(k)_accessControlContext(k, m), «�«��acr(k)_accessControlContext(k, M_k)} Set of context constraints consisting of the 3 elements: {accessControlTimeWindow(k, m), accessControlLocationRegion(k,m), accessControlIpAddress(k, m)} Set of time windows defined by start and end time Example: {daily 04:30 –��������������–��������������–������`�Set of location regions defined by list of objects representing geographical regions Example:{geoRegion1, geoRegion2, geoRegion3} Set of IP addresses or address blocks Example (IPv4): {212.75.201.105, 88.77.0.0/16, 116.27.123.0/24} Set of child resource type Ids allowed to be created under the target resource . Examples: (a)   Target resource type =  3 (container)        Child resource type = {4}  (contentInstance)(b)   Target resource type =  2 (AE)        Child resource type = {3  23}  (container          and subscription)                                                Set of allowed attribute names. Examples: {creator, lastModifiedTime , e2eSecInfo, labels, creationTime,  announcedAttribute, announceTo}

 
Figure 6.3.10.2.2-1: Logic to evaluate privilege in the reference access decision algorithm

Clauses 7.1.4 and 7.1.5 of TS-0003[i.2] define res_acrs as follows:

res_acrs = res_acr(1) OR res_acr(2) ... OR res_acr(k) … OR res_acr(K),

where, res_acr(k) represents the logical evaluation result (i.e. TRUE/FALSE or 1/0) of the request parameters against the kth access control rule in the set of acrs.  The modification to res_acr(k) required to support the accessControlAttributes access-control-rule-tuple parameter is expressed as follows:  

res_acr(k) = res_authn(k) AND res_origs(k) AND res_ops(k) AND res_ctxts(k) AND res_objd(k) AND res_attrs(k),

where k = 1…K, and

res_attrs(k) = ismember(rq_attributes, acr(k)_accessControlAttributes),

where rq_attributes refers to the targeted attributes specified in the To or Content parameter of the request. 
If all the requested attribute names referenced by rq_attributes match the names of attributes present in   acr(k)_accessControlAttributes, then res_attrs(k) is True or 1, otherwise res_attrs(k) is False or 0.  

Note, attribute level access control checks are optional and only performed for access-control-rule-tuples that include an accessControlAttributes parameter.  If an access-control-rule-tuple does not include an accessControlAttributes parameter, then only resource level access control checks are performed for that rule.

6.3.n
Solution #1.n: <solution name>
Editor's Note: Solutions within the security area are not in any particular order but they are added incrementally (n = 1, 2, 3…) when new solution is identified.

6.3.n.1
Introduction
Editor's Note: Each solution should list the key issues that it addresses. There may be references to the key issues outside the security area.

<Text>
6.3.n.2
Solution details
Editor's Note: This clause will describe the solution.

<Text>
6.3.n.3
Evaluation
Editor's Note: This clause will contain a variety of evaluations of this solution.
<Text>
6.4
Conclusions
Editor's Note: This clause will contain the evaluation between the solutions, and the conclusions made by WG4.
<Text>
7
Security Area #2: Enhanced Privacy Policy Enforcement
7.1
Introduction
Editor's Note: This clause will provide general description related to each security area.

The present security area focuses on how to describe and use privacy policies in oneM2M System.

oneM2M has specified Privacy Policy Management Architecture and Privacy Policy Manager Implementation Models in clause 11 of TS-0003 [i.2]. The Privacy Policy Management Architecture specifies a privacy enforcement architecture and mechanism. The Privacy Policy Manager Implementation Models specifies a Terms and Conditions Mark-up Language that can be used by Application Service Provider (ASP) for setting privacy policies and/or by end user for setting privacy preferences. However, the privacy policy and their enforcement mentioned here are out of scope of oneM2M System. They are supported by oneM2M System through oneM2M distributed authorization system or ASP backend system indirectly.

An access control policy enforcement mechanism that may be used to enforce privacy policies has been proposed in clause 7 of oneM2M TR-0016 [i.4]. However, there is no detailed solution description. Therefore, there is no specific privacy policy and enforcement mechanism in the M2M system except for access control.
In particular this security area covers the following:

· Analyze the pros and cons of the current privacy protection in oneM2M System.
· Improve privacy protection architecture in oneM2M System.
· Improve privacy policy scheme (language) in oneM2M System.
· Represent privacy policies in policy management procedures.
7.2
Key Issues
7.2.1
Key Issue #2.1: Support privacy policy

7.2.1.1
Key issue details
Privacy Policy is an access control policy used to prevent the disclosure of privacy information to unauthorized entities. In many cases, privacy policies may act as filters that filter out privacy information from the original data before the data is transferred to the requesters instead of simply rejecting a request.  

Privacy policy can be enforced in different ways based on the access control architecture adopted by a system. A typical way is that a privacy policy is implemented through normal access control policy. Another way is that a privacy policy is implemented as a special type of access control policy that will filter out privacy related data from the data that has been agreed by the normal access control policy.  For example, filtering of data can make use of techniques such as anonymization and pseudonomization in which personally identifiable information contained within the data is replaced by one or more aliased identifiers or pseudonyms. 

For the first method, the privacy policy could be implemented by the existing access control policy in the oneM2M System. The drawback of this method is that if any data is concerned by the privacy policy, the whole request will be rejected. If the privacy policy is implemented as a data filter, the data irrelevant to privacy policy can still be returned to the request. This method may be more convenient, especially if the privacy policy changes dynamically. For example, user’s privacy policies are generated from time to time based on the user's privacy preferences.
In oneM2M System, privacy policies are supported through Privacy Policy Management Architecture (PPM). The PPM may acts as a PDP (Policy Decision Point) or PRP (Policy Retrieval Point) or DAS (Dynamic Authorization System) Server. When the PPM acts as a PDP or DAS Server, the returned value is an access control decision. When the PPM acts as a PRP, the returned value is an access control policy. In any cases, the access control policies are only used for making access control decisions. None of them can be used for data filter purpose. Therefore, the current oneM2M privacy protection mechanism belongs to the first privacy policy enforcement mechanism.

In order to support new privacy policy enforcement mechanism, the following implementation issues should be addressed:
· Privacy policy scheme that specifies the privacy policy that acts as a filter (e.g. using anonymization or pseudonomization) . 

· How privacy policy rules are provisioned to the privacy policy enforcement point, i.e. the Hosting CSE.

· How privacy policy rules are enforced in the privacy policy enforcement point, i.e. the Hosting CSE.

7.2.1.2
Potential security requirements
Based on privacy policies, the oneM2M System shall preclude the exposure of Personally Identifiable Information (PII) (e.g. via anonymization or pseudonymization schemes) .

The oneM2M System shall enable enforcement of privacy policy rules at the data host, which are dependent on the data originator, data owner, and the data host.
The oneM2M System shall enable provisioning of privacy policy rules to the data host, which are dependent on the data originator, data owner, and the data host.
The oneM2M System shall be able to provide privacy management means to the data owner.

The oneM2M System shall be able to indicate when data has been anonymized.

7.2.m
Key Issue #2.m: <key issue name>
Editor's Note: Key issues within the security area are not in any particular order but they are added incrementally (m = 1, 2, 3…) when new key issue is identified.

7.2.m.1
Key issue details
Editor's Note: This clause will describe the key issue.

<Text>
7.2.m.2
Potential security requirements
Editor's Note: This clause will describe the potential requirements arising from the key issue.

<Text>
7.3
Solutions
Editor's Note: This clause will contain the solutions that address the key issues in this security area.
7.3.1
Solution #2.1: Privacy policy enforcement
7.3.1.1
Introduction
This solution addresses key issue #2.1: Support privacy policy.

In oneM2M System privacy policies are used by the Hosting CSE to filter privacy related information from the response that will be returned to an Originator.

The privacy policy can be stored in the Hosting CSE or obtained through the distributed authorization system.
7.3.1.2
Solution details
7.3.1.2.1
Obtaining privacy policy
In the Hosting CSE the privacy policy may be stored in the filteredAttributes and filteredSubResources attributes of the <accessControlCombiningPolicy> resource that is specified in clause 8.3.1.2.1. The filteredAttributes attribute specifies the resource attributes that need to be filtered from the response. The filteredSubResources attribute specifies the sub-resources that need to be filtered from the response. After the Originator is authorized to access the target resource, the Hosting CSE retrieves the privacy policy from the <accessControlCombiningPolicy> resource bound to the target resource.
The Hosting CSE may obtain the privacy policy through the distributed authorization system. In this case the distributed authorization system needs to be extended in order to transit privacy policy. The privacy policy can be provided through the interfaces of PDP and PIP.

The PDP interface is extended through adding the following attributes into the <authorizationDecision> resource specified in clause 9.6.41 of TS-0001 [i.1].
Table 7.3.1.2.1-1: Extended attributes of <authorizationDecision> resource
	Attributes of <role>
	Multiplicity
	RW/

RO/

WO
	Description

	filteredAttributes
	0..1
	RW
	A list of resource attributes that need to be filtered from the results returned to the Originators.

	filteredSubResources
	0..1
	RW
	A list of sub-resources that need to be filtered from the results returned to the Originators.


The PDP interface is extended through adding the following attributes into the <authorizationPolicy> resource specified in clause 9.6.42 of TS-0001 [i.1].
Table 7.3.1.2.1-2: Extended attributes of <authorizationPolicy> resource
	Attributes of <role>
	Multiplicity
	RW/

RO/

WO
	Description

	filteredAttributes
	0..1
	RW
	A list of resource attributes that need to be filtered from the results returned to the Originators.

	filteredSubResources
	0..1
	RW
	A list of sub-resources that need to be filtered from the results returned to the Originators.


7.3.1.2.2
Generic procedure
The authorization check procedure that focuses on privacy protection is described as follows:
Step 001:
The Originator sends a resource access request to the hosting CSE.
Step 002:
The hosting CSE retrieves the accessControlPolicyIDs attribute of the target resource and then retrieves the corresponding <accessControlCombiningPolicy> resource.

Step 003:
The Hosting CSE either evaluates applicable access control policies and then get an access control decision or gets an access control decision from a PDP if distributed authorization system is used. If the access control decision is "permit", the procedure proceeds with step 4, otherwise the Hosting CSE denies the resource access, and the procedure proceeds with step 7.

Step 004:
The Hosting CSE performs the operation on the target resource according to the Originator’s request, and then generates a response that will be sent back to the Originator.
Step 005:
If there is a privacy policy associated to this access request, the Hosting CSE gets the privacy policy. The privacy policy is either stored in the <accessControlCombiningPolicy> resource or obtained from the access control decision response from a PDP or from the access control policy response from a PIP. For the storage of privacy policies, see clause 7.3.x.2.1.
Step 005:
The Hosting CSE filters attributes and/or sub-resources from the response with the privacy policy gotten in the last step.
Step 007:
The hosting CSE returns the response back to the originator.

7.3.2
Solution #2.2: Attribute-Level Privacy Policy Solution 
7.3.2.1
Introduction
This solution addresses key issue #2.1: Support for privacy policies.

This solution further enhances the attribute-level access control rules solution proposed in clause 6.3.10 to support additional privacy functionality.    

7.3.2.2
Solution details
The attribute-level access control solution proposed in clause 6.3.10 of this specification already supports the privacy capability to filter specified attributes from a resource representation that is shared with a request Originator based on the definition of a new accessControlAttributes parameter within the oneM2M access control policy.  

This solution proposed to further enhance the accessControlAttributes parameter to add additional privacy capability.  As shown in Table 7.3.X.2-1, in addition to the name of an attribute, each element in the list of accessControlAttributes can also include an optional indicator whether the value of the named attribute requires anonymization by the Hosting CSE or not.  If required, then the Hosting CSE can anonymize the value before returning it in a response to the request Originator.  This anonymization functionality can help ensure the privacy of the information contained within the attribute is maintained while at the same time still allowing useful data to be shared with the Originator. This provides an alternative to filtering of attributes.    

Note, the method and type of anonymization performed by the Hosting CSE is outside the scope of this specification.

Table 7.3.2.2-1: Parameters of an accessControlAttributes element
	Parameter
	Usage Description
	Mandatory/Optional
	Format

	attribute
	The name of the attribute applicable to this rule
	M
	Name of resource attribute

	anonymizationRequired
	An indicator whether the value of the named attribute requires anonymization by the Hosting CSE when it is returned to a request Originator.  
	O
	TRUE or FALSE

Default is FALSE




7.3.n
Solution #2.n: <solution name>
Editor's Note: Solutions within the security area are not in any particular order but they are added incrementally (n = 1, 2, 3…) when new solution is identified.

7.3.n.1
Introduction
Editor's Note: Each solution should list the key issues that it addresses. There may be references to the key issues outside the security area.

<Text>
7.3.n.2
Solution details
Editor's Note: This clause will describe the solution.

<Text>
7.3.n.3
Evaluation
Editor's Note: This clause will contain a variety of evaluations of this solution.
<Text>
7.4
Conclusions
Editor's Note: This clause will contain the evaluation between the solutions, and the conclusions made by WG4.
<Text>
8
Security Area #3: Heterogeneous Access Control Policy Integration
8.1
Introduction
Editor's Note: This clause will provide general description related to each security area.

The present security area focuses on how to integrate different kinds of access control policies in oneM2M System.

Current access control policy is access control list (ACL) based. The present work item will develop attribute based access control policy and improved privacy policy. In order to support all these new defined access control policies, an enhanced access control mechanism will be developed.

In particular this security area covers the following:

· Study how to manage and enforce new defined attributed based access control policies.
· Study how to manage and enforce new defined privacy policies.
8.2
Key Issues
8.2.1
Key Issue #3.1: Heterogeneous access control policy integration
8.2.1.1
Key issue details
This TR investigates some newly defined access control policies that may enhance current oneM2M access control system, e.g. the attributed based access control policy developed in clause 6 and the privacy policy developed in clause 7. In order to support the newly defined access control policies, the following issues should be addressed:
· How the newly defined access control policies are stored in oneM2M System.
· How the newly defined access control policies are used in oneM2M System.
· How the newly defined access control policies can work with the existing access control policies in oneM2M System.
8.2.1.2
Potential security requirements
The enhanced access control system should be backward compatible with the existing access control system.
8.2.2
Key Issue #3.2: Authorization mechanism combination
8.2.2.1
Key issue details
oneM2M System supports three kinds of authorization mechanisms:

· Authorization that uses the access control policies stored in <accessControlPolicy> resources.
· Dynamic authorization through which access control policies or roles can be provided via security tokens.
· Distributed authorization through which authorization sub-functions, i.e. making decision, retrieving access control policy and retrieving access control information, can be distributed in different CSEs.
Currently only one authorization mechanism can be used for each authorization check process. The authorization check sequence is: using local stored access control policies, dynamic authorization and distributed authorization.

It would be useful to be able to use these authorization mechanisms in any combination. For example, an access control decision can be made based on the decisions made by local stored access control policies, dynamic authorization and/or distributed authorization.

This key issue addresses:
· How to use multiple authorization mechanisms in one authorization process.
8.2.2.2
Potential security requirements
oneM2M system should be able to use multiple authorization mechanisms in one authorization process.
8.2.m
Key Issue #3.m: <key issue name>
Editor's Note: Key issues within the security area are not in any particular order but they are added incrementally (m = 1, 2, 3…) when new key issue is identified.

8.2.m.1
Key issue details
Editor's Note: This clause will describe the key issue.

<Text>
8.2.m.2
Potential security requirements
Editor's Note: This clause will describe the potential requirements arising from the key issue.

<Text>
8.3
Solutions
Editor's Note: This clause will contain the solutions that address the key issues in this security area.
8.3.1
Solution #3.1: Access control combining policy

8.3.1.1
Introduction
This solution addresses key issue #3.1 and key issue #3.2. It defines a new type of access control policy that is used to integrate different types of access control policies and authorization mechanisms in oneM2M system. This access control policy is named access control combining policy.

Access control combining policy can combine different authorization mechanisms (i.e. static authorization, dynamic authorization and distributed authorization) supported by oneM2M system. For example using dynamic authorization and/or distributed authorization. This is implemented through providing relevant configuration information.

Access control combining policy can directly store concrete access control policies through including corresponding policy resource as a sub-resource of the combining policy resource. The access control combining policy can also refer to access control policies outside of the policy. These policies can be the existing oneM2M access control policies (i.e. stored in <accessControlPolicy> resources) or new defined access control policies (e.g. ABAC policy).

Access control combining policy can manage multiple access control policies. At runtime, these policies are evaluated independently. The policy evaluation results are then combined with policy combining algorithm provided by the access control combining policy. 

Access control combining policy can also support privacy protection through providing privacy policy that is used to filter privacy related information from the access result that will be returned back to the Originator.
An access control combining policy is represented by <accessControlCombiningPolicy> resource. <accessControlCombiningPolicy> resources are located directly under the <CSEBase> resource.
A resource refers to a <accessControlCombiningPolicy> resource via its accessControlPolicyIDs attribute. The resources IDs in accessControlPolicyIDs are the resource IDs of <accessControlPolicy>, <abacPolicy> and/or <accessControlCombiningPolicy> resources. Therefore, from the perspective of data structure, there is no impact on the target resources using the combining policy.
8.3.1.2
Solution details
8.3.1.2.1
Resource Type accessControlCombiningPolicy
An <accessControlCombiningPolicy> resource represents an access control combining policy.
The <accessControlCombiningPolicy> resource contains the child resources specified in table 8.3.1.2.1-1.
Table 8.3.1.2.1-1: Child resources of <accessControlCombiningPolicy> resource

	Child Resources of <accessControlSchedulingPolicy>
	Child Resource Type
	Multiplicity
	Description

	[variable]
	<accessControlPolicy>
	0..n
	See clause 9.6.2 in oneM2M TS-0001 [i.1]

	[variable]
	<abacPolicy>
	0..n
	See clause 6.3.9.

	[variable]
	<subscription>
	0..n
	See clause 9.6.8 in oneM2M TS-0001 [i.1]


The <accessControlCpmbiningPolicy> resource contains the attributes specified in table 8.3.1.2.1-2.

Table8.3.1.2.1-2: Attributes of <accessControlCombiningPolicy> resource

	Attributes of 
<accessControlCombiningPolicy>
	Multiplicity
	RW/

RO/

WO
	Description

	resourceType
	1
	RO
	See clause 9.6.1.3 in oneM2M TS-0001 [i.1].

	resourceID
	1
	RO
	See clause 9.6.1.3 in oneM2M TS-0001 [i.1].

	resourceName
	1
	WO
	See clause 9.6.1.3 in oneM2M TS-0001 [i.1].

	parentID
	1
	RO
	See clause 9.6.1.3 in oneM2M TS-0001 [i.1].

	expirationTime
	1
	RW
	See clause 9.6.1.3 in oneM2M TS-0001 [i.1].

	creationTime
	1
	RO
	See clause 9.6.1.3 in oneM2M TS-0001 [i.1].

	lastModifiedTime
	1
	RO
	See clause 9.6.1.3 in oneM2M TS-0001 [i.1].

	labels
	0..1 (L)
	RW
	See clause 9.6.1.3 in oneM2M TS-0001 [i.1].

	dynamicAuthorizationConsultationIDs
	0..1 (L)
	RW
	See clause 9.6.1.3 in oneM2M TS-0001 [i.1].

	authorizationDecisionResourceIDs
	0..1 (L)
	RW
	See clause 9.6.2 in oneM2M TS-0001 [i.1].

	authorizationPolicyResourceIDs
	0..1 (L)
	RW
	See clause 9.6.2 in oneM2M TS-0001 [i.1].

	authorizationInformationResourceIDs
	0..1 (L)
	RW
	See clause 9.6.2 in oneM2M TS-0001 [i.1].

	adminPrivileges
	1
	RW
	A set of access control rules that apply to the <accessControlCombiningPolicy> resource itself and accessControlPolicyIDs attribute of any other resource which is linked to this <accessControlCombiningPolicy> resource.

	applicableSubjects
	0..1
	RW
	A set of Originators that apply to this policy.

	applicableResources
	0..1
	RW
	A set of resources that apply to this policy.

	policyCombiningAlgorithm
	0..1
	RW
	See clause 6.3.3.2.1.

	tokenPolicyPriority
	0..1
	RW
	Describe how to use token policies. It can be one of the following values:

· "not-use: do not use token policies;
· override-local-policy: the evaluation result of the token policy overrides the evaluation result of the local policy.
· override-token-policy: the evaluation result of the local policy overrides the evaluation result of the token policy.
· combining-with-local-policy: the evaluation results of token policies and  local policies needs to be combined equally.

	tokenAuthorityPoA
	0..1 (L)
	RW
	A list of contact URIs form which the Originator can apply for access tokens.

	policyReferences
	0..1 (L)
	RW
	A list of resource IDs of access control policy resources, e.g. <accessControlPolicy> and/or <abacPolicy> resources.

	filteredAttributes
	0..1
	RW
	A list of resource attributes that need to be filtered from the results returned to the Originators.

	filteredSubResources
	0..1
	RW
	A list of sub-resources that need to be filtered from the results returned to the Originators.


The set of access control rules represented in adminPrivileges attributes are comprised of 2-tuples (accessControlOriginators, accessControlOperations) with parameters shown in table8.3.1.2.1-3 which are further described in the following clauses.

The adminPrivileges attribute contains at least one rule.

Table 8.3.1.2.1-3: Parameters in access-control-rule-tuples

	Name
	Description

	accessControlOriginators
	See clause 9.6.2.1 in oneM2M TS-0001 [i.1].

	accessControlOperations
	See clause 9.6.2.3 in oneM2M TS-0001 [i.1].


8.3.1.2.2
accessControlOriginators
NOTE:
The following text is copied and pasted from clause 9.6.2.1 of TS-0001 [i.1], and then remove the unwanted data fields, i.e. domain and all. The reason for this is that managing ACP should be straightforward. It doesn't need to be as complicated as a normal ACP. For example, accessControlContexts and accessControlObjectDetails are not needed.
The accessControlOriginators is a mandatory parameter in an access-control-rule-tuple. It represents the set of Originators that is allowed to use this access control rule. The set of Originators is described as a list of parameters, where the types of the parameter can vary within the list. Table 8.3.1.2.2-1 describes the supported types of parameters in accessControlOriginators.

Table 8.3.1.2.2-1: Types of Parameters in accessControlOriginators
	Name
	Description

	originatorID
	CSE-ID, AE-ID or the resource-ID of a <group> resource that contains the AE or CSE that represents the Originator.

	Role-ID
	A Role Identifier as defined in clause 7.1.14 in oneM2M TS-0001 [i.1].


When the originatorID is the resource-ID of a <group> resource which contains <AE> or <remoteCSE> as member, the Hosting CSE of the resource checks if the originator of the request matches one of the members in the memberIDs attribute of the <group> resource (e.g. by retrieving the <group> resource). If the <group> resource cannot be retrieved or doesn't exist, the request is rejected.
8.3.1.2.3
accessControlOperations
NOTE:
The following text is copied and pasted from clause 9.6.2.3 of TS-0001 [i.1].
The accessControlOperations is a mandatory parameter in an access-control-rule-tuple that represents the set of operations that are authorized using this access control rule. Table 8.3.1.2.3-1 describes the supported set of operations that are authorized by accessControlOperations.

The following accessControlOperations is considered for access control policy check by the CSE.

Table 8.3.1.2.3: Types of parameters in accessControlOperations
	Name
	Description

	RETRIEVE
	Privilege to retrieve the content of an addressed resource

	CREATE
	Privilege to create a child resource

	UPDATE
	Privilege to update the content of an addressed resource

	DELETE
	Privilege to delete an addressed resource

	DISCOVER
	Privilege to discover the resource

	NOTIFY
	Privilege to receive a notification


8.3.1.2.4
Procedures
The authorization check procedure that is common to all types of access control policies are described as follows:
Step 001:
The Originator sends a resource access request to the hosting CSE.
Step 002:
The hosting CSE retrieves the accessControlPolicyIDs attribute of the target resource. The resource IDs stored in the accessControlPolicyIDs attribute can be the resource IDs of <accessControlPolicy>, <abacPolicy> and/or <accessControlCombiningPolicy> resources.

Step 003:
The hosting CSE evaluates these access control policies independently. The policy evaluation results are combined with policy combining algorithm "permit-override" that is specified in TS-0003 [i.2].

The high level evaluation procedure of combining policy is described as follows:
Step 001:
The policy evaluator retrieves the combining policy from the <accessControlCombiningPolicy> resource.
Step 002:
The policy evaluator checks the applicableSubjects and applicableResources attributes of the <accessControlCombiningPolicy> resource in order to determine whether the access control policy is applicable to the resource access request. If these attributes are empty, it means the access control policy is applicable to any resource access request.
Step 003: 
The policy evaluator obtains policy combining algorithm from policyCombiningAlgorithm attribute for combining multiple access control policies.
Step 004:
Based on the content in the combining policy, the policy evaluator may perform some of the following actions:

· Obtain token policy application rule from tokenPolicyPriority attribute in order to determine how to handle token policies. If the Originator is required to provide a token policy, but there is no token in the access request, the resource access request is rejected. The hosting CSE may provide the Originator an address from which the Originator can apply for an access token.

· Obtain and evaluate the access control policies stored in the <accessControlCombiningPolicy> resource, and/or
· Obtain and evaluate the access control policies referred by the acpReferences and/or abacPolicyReferneces attributes, and/or
· Obtain and evaluate the access control policies stored in tokens.
· Obtain access control decision or access control policies or information from the URIs specified by authorizationDecisionResourceIDs and/or authorizationPolicyResourceIDs and/or authorizationInformationResourceIDs respectively.
Step 005:
When there are multiple applicable access control policies, policy combining algorithm should be used to combine the evaluation results of these policies.
Step 006:
If the resource access request is permitted and the filteredAttributes and/or filteredSubResources attributes are not empty, then obtain the privacy policy.
Step 007:
The hosting CSE performs the access control decision, i.e. either permits the resource access or denies the resource access. In case the access is permitted and the privacy policy is not empty, the hosting CSE should filter the privacy-related information from the access result.
NOTE:
The following text related to distributed authorization is copied and pasted from clause 9.6.2.0 of TS-0001 [i.1], and then modify privileges attribute part to suit <accessControlCombiningPolicy> resource.
The applicability of the authorizationDecisionResourceIDs, authorizationPolicyResourceIDs and authorizationInformationResourceIDs  attributes for the distributed authorization depends on the deployment form of authorization sub-functions:
· In case there are <accessControlPolicy> resources and/or <abacPolicy> resources and/or the policyReferences attribute are not NULL, the access control policies specifies by these sub-resources and/or resource references are used for access control, and the authorizationDecisionResourceIDs, authorizationPolicyResourceIDs and authorizationInformationResourceIDs attributes are not present.
· In case there are no <accessControlPolicy> resources and <abacPolicy> resources and the policyReferences attribute is NULL, how to process further depends on which authorization method is adopted. In the case distributed authorization method is supported, authorizationDecisionResourceIDs or authorizationPolicyResourceIDs attribute is considered for obtaining access control decision or access control policies from another CSE. However, authorizationDecisionResourceIDs and authorizationPolicyResourceIDs attributes are not present at the same time. 
· In case the authorizationInformationResourceIDs attribute is present, the access control information request (e.g. for role information) related to the access control policies is sent to one of the addresses listed in this attribute.
The details of distributed authorization procedures are described in TS-0003 [i.2].
In case the <accessControlCombiningPolicy> resource does specify any access control policy and does not support distributed authorization and the dynamicAuthorizationConsultationIDs attribute is not NULL, dynamic authorization is used. The dynamic authorization process follows the specification in in TS-0001 [i.1] and TS-0003 [i.2].
In case the<accessControlCombiningPolicy> resource does not specify any access control policy and does not support distributed authorization and the tokenAuthorityPoA attribute is not NULL, the Hosting CSE includes the tokenAuthorityPoA attribute in the response. The Originator may use the URIs to apply for access tokens.
8.3.n
Solution #3.n: <solution name>
Editor's Note: Solutions within the security area are not in any particular order but they are added incrementally (n = 1, 2, 3…) when new solution is identified.

8.3.n.1
Introduction
Editor's Note: Each solution should list the key issues that it addresses. There may be references to the key issues outside the security area.

<Text>
8.3.n.2
Solution details
Editor's Note: This clause will describe the solution.

<Text>
8.3.n.3
Evaluation
Editor's Note: This clause will contain a variety of evaluations of this solution.
<Text>
8.4
Conclusions
Editor's Note: This clause will contain the evaluation between the solutions, and the conclusions made by WG4.
<Text>
x
Security Area #y: <security area name>
Editor's Note: The study is expected to be divided into several security areas which all have their own key issues and solutions. Security areas are not in any particular order but they are added incrementally (y = 1, 2, 3…) when new area is identified.
x.1
Introduction
Editor's Note: This clause will provide general description related to each security area.

<Text>
x.2
Key Issues
Editor's Note: This clause will contain the key issues that need to be addressed on each security area.
x.2.m
Key Issue #y.m: <key issue name>
Editor's Note: Key issues within the security area are not in any particular order but they are added incrementally (m = 1, 2, 3…) when new key issue is identified. 'y' refers to the security area.

x.2.m.1
Key issue details
Editor's Note: This clause will describe the key issue.
<Text>
x.2.m.2
Potential security requirements
Editor's Note: This clause will describe the potential requirements arising from the key issue.
<Text>
x.3
Solutions
Editor's Note: This clause will contain the solutions that address the key issues in this security area.
x.3.n
Solution #y.n: <solution name>
Editor's Note: Solutions within the security area are not in any particular order but they are added incrementally (n = 1, 2, 3…) when new solution is identified. 'y' refers to the security area.
x.3.n.1
Introduction
Editor's Note: Each solution should list the key issues that it addresses. There may be references to the key issues outside the security area.
<Text>
x.3.n.2
Solution details
Editor's Note: This clause will describe the solution.

<Text>
x.3.n.3
Evaluation
Editor's Note: This clause will contain a variety of evaluations of this solution.
<Text>
x.4
Conclusions
Editor's Note: This clause will contain the evaluation between the solutions, and the conclusions made by WG4.
<Text>
z
Conclusions
Editor's Note: This clause will contain the overall conclusions made by WG4.

<Text>

The following text is to be used when appropriate:

Proforma copyright release text block

This text box shall immediately follow after the heading of an element (i.e. clause or annex) containing a proforma or template which is intended to be copied by the user. Such an element shall always start on a new page.

Notwithstanding the provisions of the copyright clause related to the text of the present document, oneM2M grants that users of the present document may freely reproduce the <proformatype> proforma in this {clause|annex} so that it can be used for its intended purposes and may further publish the completed <proformatype>.

<PAGE BREAK>

Annexes

Each annex shall start on a new page (insert a page break between annexes A and B, annexes B and C, etc.).

Use the Heading 9 style for the title and the Normal style for the text.
Annex <A>:
Title of annex (style H9)
<Text>

<PAGE BREAK>

Annex <B>:
Title of annex (style H9)
<Text>

B.1
First clause of the annex (style H1)
<Text>

B.1.1
First subdivided clause of the annex (style H2)
<Text>

<PAGE BREAK>
Annex <y>:
Bibliography

The annex entitled "Bibliography" is optional.

It shall contain a list of standards, books, articles, or other sources on a particular subject which are not mentioned in the document itself.

It shall not include references mentioned in the document.

Use the Heading 9 style for the title and B1+ or Normal for the text.

· <Publication>: "<Title>".

OR

<Publication>: "<Title>".

<PAGE BREAK>

History

This clause shall be the last one in the document and list the main phases (all additional information will be removed at the publication stage).
	Publication history

	V1.1.1
	<yyyy-mm-dd>
	<Milestone>

	
	
	

	
	
	

	
	
	

	
	
	


	Draft history (to be removed on publication)

	V0.0.0
	2017-12-08
	Initial version agreed at TP#32 in SEC-2017-0163-Skeleton_of_TR-00xx-Attribute_Based_Access_Control_Policy

	V0.1.0
	2017-12-08
	Includes the following contributions agreed at SEC#33:

SEC-2017-0164R01-Clauses_of_TR-00xx_Attribute_Based_Access_Control_Policy
SEC-2017-0165-Scope_of_TR-00xx_Attribute_Based_Access_Control_Policy

	V0.2.0
	2018-02-05
	Includes the following contributions agreed at SEC#33:

SEC-2018-0001R01-TR-0050_Security_areas_and_high_level_requirements
SEC-2018-0002R01-TR-0050_Introduction_of_Security_Area_#1
SEC-2018-0003R01-TR-0050_Introduction_of_Security_Area_#2
SEC-2018-0004R02-TR-0050_Introduction_of_Security_Area_#3
SEC-2018-0005R02-TR-0050_Introduction_of_Security_Area_#4

	V0.3.0
	2018-03-29
	Includes the following contributions agreed at SEC#34:

SEC-2018-0028R03-TR-0050_Key_issue_1_of_Security_Area_#1
SEC-2018-0029R03-TR-0050_Key_issue_2_of_Security_Area_#1
SEC-2018-0030R02-TR-0050_Key_issue_1_of_Security_Area_#2
SEC-2018-0031R02-TR-0050_Key_issue_1_of_Security_Area_#3

	V0.4.0
	2018-06-06
	Includes the following contributions agreed at SEC#35:

SEC-2018-0057R03-TR-0050_New_Issue
SEC-2018-0058R05-TR-0050_Privacy_Requirement

	V0.5.0
	2018-10-10
	Includes the following contributions agreed at SEC#37:

SEC-2018-0077-TR-0050_Remove_Security_Area_#4

SEC-2018-0078R01-TR-0050_ABAC_Policy_Data_Flow_Model

SEC-2018-0079R01-TR-0050_ABAC_Policy_Language_Model

SEC-2018-0080R01-TR-0050_ABAC_Rule_and_Policy_Combining_Algorithms

SEC-2018-0084-TR-0050_solutions_context_based_authorization

	V0.6.0
	2018-12-25
	Includes the following contributions agreed at SEC#38:

SEC-2018-0095R02-TR-0050_solutions

SEC-2018-0096-TR-0050_ABAC_Policy_Syntax-PolicySet

SEC-2018-0097-TR-0050_ABAC_Policy_Syntax-Policy

SEC-2018-0098-TR-0050_ABAC_Policy_Syntax-Rule

SEC-2018-0099-TR-0050_ABAC_Policy_Syntax-Primitive

	V0.7.0
	2019-03-05
	Includes the following contributions agreed at SDS#39:

SDS-2019-0105R03-TR-0050_Heterogeneous_ACP_Integration_Solution-Resource_Definition

SDS-2019-0107R03-TR-0050_Heterogeneous_ACP_Integration_Solution-Generic_Procedure

SDS-2019-0142R02-TR-0050_Key_Issue_3_1_Revision

SDS-2019-0146R02-TR-0050_ABAC_Policy_Resource_Definition

	V0.8.0
	2019-05-29
	Includes the following contributions agreed at SDS#40:

SDS-2019-0067R01-TR-0050_permission_based_discovery_solution
SDS-2019-0240-TR-0050_Distributed_and_dynamic_authorization_procedures
SDS-2019-0241-TR-0050_Policy_combining_algorithm_details
SDS-2019-0242-TR-0050_Policy_evaluation_result
SDS-2019-0243-TR-0050_Privacy_Policy_Enforcement_Solution
SDS-2019-0273-TR-0050_Key_Issue#3_1_Update

	V0.9.0
	2019-07-01
	Includes the following contributions agreed at SDS#39:

SDS-2019-0066-TR-0050_Attribute_level_access_control_mechanisms

	V0.10.0
	2019-07-15
	Includes the following contributions agreed at SDS#41:

SDS-2019-0371-TR-0050-Privacy_Control_Solution
SDS-2019-0387-TR-0050_ABAC_rule_syntax_correction
SDS-2019-0388-TR-0050_ABAC_policy_syntax-_primitive_comparison_functions
SDS-2019-0389R02-TR-0050_Add_permitted_attributes_and_sub-resources_to_ABAC_policy
SDS-2019-0390-TR-0050_Add_permitted_attributes&sub-resources_to_ABAC_policy_syntax



© oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC)
Page 6 of 45
This is a draft oneM2M document and should not be relied upon; the final version, if any, will be made available by oneM2M Partners Type 1.

_1598036703.vsd
Rule Primitive


Rule Primitive


0..n


0..n


Rule Primitive


Rule Primitive


0..n


0..n


0..n


0..n


0..1


0..1


0..n


0..1


0..1


Policy Set


Policy Set


Policy


Applicable Subjects


Rule


Applicable Resources


Rule Constraint


Rule Condition


Rule Primitive


Rule Primitive


0..n


0..n


0..1


0..1


Applicable Resources


Applicable Subjects



_1623666678.vsd
Rule Primitive


Rule Primitive


0..n


0..n


Rule Primitive


Rule Primitive


0..n


0..n


0..n


0..n


0..1


0..1


0..n


0..1


0..1


Policy Set


Policy Set


Policy


Applicable Subjects


Rule


Applicable Resources


Rule Constraint


Rule Condition


Rule Primitive


Rule Primitive


0..n


0..n


0..1


0..1


Applicable Resources


Applicable Subjects


0..1


Permitted Attributes


0..1


Permitted SubResources


0..1


Permitted Attributes


0..1


Permitted SubResources



acrs = { acr(1), arc(2), …, arc(k), …, arc(K) }
acr(k) = {acr(k)_accessControlAuthenticationFlag,
              acr(k)_accessControlOriginators, acr(k)_accessControlOperations, acr(k)_accessControlContexts, acr(k)_accessControlObjectDetailS, acr(k)_accessControlAttributes}
Set of originator parameters. Examples: 
{CSE-ID1, AE-ID1, AE-ID2, Role-ID1} 
{all}
Set of allowed operations. Examples: 
{Create, Retrieve, Update, Delete, Discover, Notify} 
{Retrieve, Discover, Notify}
Set (list) of M_k context constraints (number of elements M_k can be different for each acr(k)): 
{acr(k)_accessControlContext(k, 1), … 
	…, acr(k)_accessControlContext(k, m), … 
		…, acr(k)_accessControlContext(k, M_k)}
Set of context constraints consisting of the 3 elements: 
{accessControlTimeWindow(k, m), accessControlLocationRegion(k,m), accessControlIpAddress(k, m)}
Set of time windows defined by start and end time 
Example: 
{daily 04:30 – 06:00, 11:30 – 12:30, 22:15 – 00:30}
Set of location regions defined by list of objects representing geographical regions 
Example:
{geoRegion1, geoRegion2, geoRegion3}
Set of IP addresses or address blocks 
Example (IPv4): 
{212.75.201.105, 88.77.0.0/16, 116.27.123.0/24}
Set of child resource type Ids allowed to be created under the target resource . Examples: 
(a)   Target resource type =  3 (container)
        Child resource type = {4}  (contentInstance)
(b)   Target resource type =  2 (AE)
        Child resource type = {3  23}  (container
          and subscription)
Set of allowed attribute names. Examples: 
{creator, lastModifiedTime , e2eSecInfo, labels, creationTime,  announcedAttribute, announceTo}



_1598016708.vsd
ACP


Resource


PEP


Requester
(Subject)


PDP


decision request


decision response


request


request


PIP


PRP


Subject


Environment


attribute request


attribute response


policy request


policy response


access control policies


resource attributes


environment attributes


subject attributes


Obtain Request Attributes



